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1. Introduction. In [1] it was shown that for a compact normal operator on a
Hilbert space the numerical range was the convex hull of the point spectrum. Here it is
shown that the same holds for a semi-normal operator whose point spectrum satisfies a
density condition (Theorem 1). In Theorem 2 a similar condition is shown to imply that
the numerical range of a semi-normal operator is closed. Some examples are given to
indicate that the condition in Theorem 1 cannot be relaxed too much.

2. The bounded operator T on a Hilbert space H is hyponormal if T*T^ TT* and
semi-normal if either T or T* is hyponormal. A useful reference is [7]. Some properties
are now given.

LEMMA 1. Let T be semi-normal on H. Then W(T) = co Sp T, where W(T) denotes the
numerical range of T, Sp T denotes the spectrum of T and co denotes convex hull.

This is due to Putnam [6] and Stampfli [8] for hyponormal operators; the extension is
trivial.

LEMMA 2. Let T be semi-normal on H. Then the extreme points of W(T) lie in the point
spectrum of T.

Proof. For normal operators this is due to MacCluer [4] and for hyponormal
operators to Stampfli [9]. So suppose T* is hyponormal. Write ex A for the extreme
points of A and pSp T for the point spectrum of T. Then zeex W(T) implies z*e
ex W(T*); but then z*epSp T* and so zepSp T ([8, Lemma 2]).

LEMMA 3. Let T be a hyponormal operator, L a support line for W(T) and

N={J{x:(Tx,x) = z\\x\\2}.

zeL

T h e n N is a reducing subspace for T a n d T \ N is n o r m a l .

Proof. It is shown in [2, Lemma 2] that N is a subspace and that

for all zeL, where 6 is the acute angle between L and the x-axis. So if z is any fixed
point on L and S = T-zI,

N = {x:Sx = e2ieS*x}.

But as S is hyponormal, Lemma 3 of [9] gives that N reduces S and S | N is normal. So
the same holds for T. That, for any operator, such a subspace N is reducing whenever it is
invariant is observed in [3] (page 406).
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3. The main results

THEOREM 1. Let T be a semi-normal operator and assume pSp TO C dense in

C = SpTnd(coSpT).

Then W(T) = co(pSp T).

Proof. We suppose first that T is hyponormal. For z e W(T) we wish to show
z e co(pSp T) and we may suppose z = 0.

(i) Suppose Oed W(T), the boundary of the numerical range, and that im W(T)^0.
Let L be the horizontal support line at 0. Let N be as in Lemma 3 so that To = T | JV is
Hermitian. Write L0 = LD W(T). If Lo = {0} or 0 is an end-point of Lo, then Oeex W(T)
by Lemma 2. Suppose Lo is the interval (a, |8) where a <0</3; if either end-point is in Lo

it is in pSp T and the argument is shortened. Then Sp To D (a, 0) and Sp To D (0, /3) meet
pSp To. For a and (3 are not isolated points of pSp To, so Sp Ton(a, 0) and Sp Ton(0, (3)
are non-empty. Also we can find z, z', yeSpT0 with a < z ' < z < 0 < y < | 3 . Let M be a
circular neighbourhood of 2 not meeting 2' or 0. If M meets d(co Sp T) in the lower
half-plane, at 2" say, choose a neighbourhood Mo of 2 within the triangle 2', 2", y, with
M0<^M so that M o n C c L o . Then by the density hypothesis pSp T meets M o n C
Similarly it meets (0, j3), so 0eco(pSp T).

(ii) Now suppose OeintW(T) and that a square centered at 0 with a corner at
(4d, Aid) lies in W(T). If A = (2d,2id), A eco(ex(co Sp T)). So choose A' in the same
quadrant with | A - A ' | < d and A'eco(ex(coSp T)), say

n

A ' = I Aj2i

where 2, eSp TD3(coSp T), Af are non-negative and ^ Af = l. Let 2(epSpT with
i = l

|ZJ - z-| < d/n. So A" = X Af2• lies in co(pSp T) and A" is in the first quadrant. Similarly for
the other quadrants. So 0eco(pSp T).

Now suppose that T* is hyponormal. Suppose L* is a support line for W(T*) and N*
is the reducing subspace for T* provided by Lemma 3. Then L supports W(T). Also N*
reduces T; indeed JV* is just the subspace JV since (Tx, x) = z ||x||2 whenever (T*x, x)* =
z ||x||2. Since T | N is normal, the proof in (i) proceeds as before. For (ii) we only need the
convexoid property provided by Lemma 1 for T* and hence for T.

COROLLARY. If T is hyponormal and satisfies the conditions of the theorem then
W(T*) = co(pSpT*).

Proof. Since (pSp T)*cpSp T*, we have W(T*) <=co(pSp T*) and the result follows.

The following theorem is of the same kind. The spectral case when T is normal was
proved by Meng [5] by a direct method.

THEOREM 2. Let T be semi-normal. Then a necessary and sufficient condition that
W(T) be closed is that ex(co Sp T) lie in pSp T.
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Proof. The condition implies coSp Tsco(pSp T) so W(T)cW(T), using Lemma 1,
so the condition is sufficient. Also the condition is necessary for, if W(T) is closed,
ex W(T) = ex(co Sp T). But ex W(T) s pSp T (Lemma 2).

Some examples are now given to illustrate the conditions.
(i) Let T be the compact diagonal operator with diagonal elements

Here the set C of Theorem 1 consists of 1, i, 0 so the condition of Theorem 1 is not
satisfied but the conclusion holds. This case is covered by the theorem of [1] referred to in
§1. Here W(T) is not closed. Note that for compact operators normality and semi-
normality are equivalent.

(ii) Let 7\ be the diagonal operator with diagonal elements

1,1/2,1/3,

let T2 = T1 + iI and let T = T1®T2. Here the set C is Sp T. Also W(T) is the square
having corners 0 ,1 ,1 + i, i, without the side [0, i]. Theorem 1 applies, Theorem 2 does
not.

(iii) The following example shows that pSp T dense in 3 Sp T is not sufficient for
Theorem 1. Let T1 be a diagonal operator with diagonal entries on the lines

n n

and including the end-points. Let T2 be Hermitian with W(T2) = (0,1) and let T =
T!(BiT2. Then W(T) is the square having corners 0,1,1 + i, i but with the corners 0, i
removed. So W(T)^co(pSp T) but pSp T is dense in dSp T = Sp T.

I would like to acknowledge the helpful suggestions of Mary Embry-Wardrop.
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