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The L2 restriction norm of a GL3 Maass form

Xiaoqing Li and Matthew P. Young

Abstract

We prove a sharp upper bound on the L2 norm of a GL3 Maass form restricted to
GL2 × R+.

1. Introduction and main result

Kac’s question, ‘Can one hear the shape of a drum?’ [Kac66], is a famous example of the interest
in the connections between geometrical data and spectral information, which continues to be a
fascinating direction of study. Weyl’s law gives a beautiful asymptotic formula for the counting
function of the eigenvalues on a compact Riemannian manifold in terms of geometrical quantities
(dimension, volume, etc.).

In quantum chaos, a key issue is the behavior of the eigenfunctions as the eigenvalue becomes
large. In particular, one would like to know if the eigenfunctions behave like random waves, or
if they can concentrate on certain subdomains. The influential QUE conjecture of Rudnick and
Sarnak [RS94] asserts that the quantum measures associated to the eigenstates tend (in the
weak-∗ sense) to the volume measure provided that the manifold has negative curvature.

We are naturally led to studying the sizes of Laplace eigenfunctions which can be measured
in various ways. For instance, one may consider the Lp norms for p> 2. Alternatively, one may
consider Lp norms of the eigenfunction restricted to some subset of its domain. In the arithmetical
setting one has a commuting family of Hecke operators in addition to the Laplacian, and so it
is natural to consider the behavior of these Maass forms. There are a small handful of results
in this direction for GL2 automorphic forms. In particular, [BH10, IS95, Mil10, Tem10, Xia07]
studied the supremum norm in different aspects. Sarnak and Watson [Sar03] have announced a
proof of a sharp bound (up to λε) on the L4 norm of Maass forms in the spectral aspect.

Reznikov [Rez04] wrote an influential preprint studying L2 restriction problems of
automorphic forms restricted to certain curves. Since then, there have appeared a number
of papers studying very general problems of bounding the Lp norm of the restriction of the
eigenfunction of the Laplacian to a submanifold of a Riemannian manifold, including [BGT07]
(see also [Hu09]) with some very general results which are sharp in their generality, and [BR09]
which in particular stresses the problem of finding lower bounds. However, in the context of
automorphic forms these general results are not sharp and it is desirable to prove stronger results
and to understand what the true order of magnitude should be, whether it can be proven or not.
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Sarnak nicely explained some of the issues in studying such restriction problems, especially the
connection with the Lindelöf hypothesis, on [Sar08, pp. 5 and 6] (see also [Sar04]).

In a slightly different direction, Michel and Venkatesh [MV10] proved a ‘subconvex’
geodesic restriction theorem (see their § 1.4) for the geodesic Fourier coefficients of GL2

automorphic forms.
In this paper, we study a novel restriction problem for a GL3 Maass form restricted to

a codimension two submanifold (essentially GL2 × R+). Such a restricted function has nice
invariance properties; it is invariant by SL2(Z) on the left and by O2(R) on the right, and
it is natural to understand how it fits into the GL2 picture. For instance, one can ask what is
the inner product of this restricted function with a given SL2(Z) Maass form (or, more generally,
we ask for the spectral decomposition). In fact, the Rankin–Selberg L-function for GL3 ×GL2

is constructed along these lines. There are many examples of such period integrals giving values
of L-functions; in particular, we mention [GP92].

Our main result is the following.

Theorem 1.1. Let F be a Hecke–Maass form of type (ν1, ν2) for SL3(Z) that is in the tempered
spectrum of ∆ (meaning Re(ν1) = Re(ν2) = 1/3 or alternately the Langlands parameters
iα, iβ, iγ defined by (2.5)–(2.7) are purely imaginary), with Laplace eigenvalue λF (∆) = 1 +
1
2(α2 + β2 + γ2), and with L2 norm equal to 1. Then we have

N(F ) :=
∫ ∞

0

∫
SL2(Z)\H2

∣∣∣∣F (z2y1

1

)∣∣∣∣2 dx2 dy2

y2
2

dy1

y1
�ε λF (∆)ε|AF (1, 1)|2, (1.1)

where

z2 =
(

1 x2

1

) (
y2

1

)
y
− 1

2
2 , (1.2)

AF (1, 1) is the first Fourier coefficient of F , and the implied constant depends only on ε > 0.

Remarks. This is the first sharp codimension two restriction result, as well as the first such
result in a higher rank (GL3) context.

It is a pleasant exercise to compute the analog of N(F ) when F is a Maass form for SL2(Z),
that is, N(F ) :=

∫∞
0

∣∣F (y 1

)∣∣2 dy/y: one obtains the second moment along the critical line of the
completed L-function associated to F .

For context, the bound of Burq et al. [BGT07] would give N(F )� λF (∆)1/2(log λF (∆))1/2

|AF (1, 1)|2. Strictly speaking, their bound does not apply since SL3(Z)\ SL3(R)/SO3(R) is not
compact, but more importantly our bound is much stronger and is probably sharp (up to the ε).

The problem of bounding N(F ) was given in Sarnak [Sar08], where he remarked that the
Lindelöf hypothesis gives the bound stated in our Theorem 1.1. In our work, this will be apparent
in § 5.

Miller [Mil01] showed that ‘almost all’ cusp forms are tempered, and the Archimedean
Ramanujan–Selberg conjecture implies that all cusp forms are tempered. With the Langlands
functoriality conjectures, one can show |AF (1, 1)|2� λF (∆)ε, but this is difficult to establish
unconditionally as it is related to showing the non-existence of a Landau–Siegel zero for the
Rankin–Selberg L-function L(s, F × F ) (see Proposition 3.1 below for the precise relation).
Fortunately, for Maass forms F that arise as a symmetric-square lift of a SL2(Z) Maass form
(equivalently, F is self-dual), Ramakrishnan and Wang [RW03] have shown that |AF (1, 1)| �
λF (∆)ε, and hence we have the following corollary.
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Corollary 1.2. Let notation be as in Theorem 1.1. If F is self-dual, then

N(F )�ε λF (∆)ε. (1.3)

It would be interesting to find an asymptotic for N(F ); it is not clear if our techniques could be
modified to lead to such an asymptotic. This would be a delicate problem.

We end the introduction with a brief outline of the rest of the paper. Sections 2 and 3 are
devoted to standard material on automorphic forms and Rankin–Selberg L-functions. By the
spectral theory for GL2, Parseval’s formula, and Plancherel’s formula, we derive a pleasant
formula connecting the L2 norm of the restriction to GL2 ×R of the GL3 Maass form to
families of the GL3 ×GL2 L-functions (Theorem 4.1). By applying Stirling’s formula to the
Archimedean factors of the L-functions, we break the families into pieces at appropriate scales;
this is done in § 5. Section 6 provides some standard tools in harmonic analysis as well as some
variations on Gallagher’s large sieve inequalities. We are left with establishing suitable bounds
for averages of Rankin–Selberg L-functions in different ranges. In many ranges (but not all), the
desired bounds correspond to a Lindelöf bound on average, while, in all ranges, dropping all but
one term recovers the convexity bound. By applying the approximate functional equations for
the Rankin–Selberg L-functions, we are led to prove Theorem 7.1: a mean value estimate
for the L-functions. An application of the GL2 Kuznetsov formula transforms the spectral sums
into mean values with standard exponential sums, giving (8.1). In (8.1), when A is small, that is,
B is large, a straightforward application of Gallagher’s large sieve (Lemma 6.3) gives the desired
bound; this is carried out in the rest of § 8. When A is big, that is, B is small, we need to use the
GL3 Voronoi formula to shorten the sum (see § 9) before applying the large sieve; this last step
is done in § 10. This basic outline is similar to [You11], but virtually all the details are changed.
The essential difference is that here the GL3 form is varying, while, in [You11], the GL3 Maass
form is fixed. Here we found a simple method to take care of the uniformity in our estimates
(see Lemma 9.1). Stationary phase arguments in [You11] are avoided here and instead we only
need to use integration by parts.

2. Background on automorphic forms and L-functions

We rely on [Gol06] for many of the basic facts of higher rank automorphic forms.

Let m= (m1, m2) ∈ Z2 and let ν = (ν1, ν2) ∈ C2. The Jacquet–Whittaker function for SL3(Z)
takes the form

WJ(z, ν, ψm) =
∫

R3

Iν(w3uz)ψm(u) du12 du13 du23, (2.1)

where

w3 =

 1
−1

1

, u=

1 u12 u13

1 u23

1

 (2.2)

and

ψm(u) = e(m1u23 +m2u12), Iν(z) = yν1+2ν2
1 y2ν1+ν2

2 (2.3)

for

z =

1 x12 x13

1 x23

1

y1y2

y1

1

 ∈H3 := GL3(R)/O3(R)R×. (2.4)
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In many situations, it is more convenient to work with the Langlands parameters defined by

iα = −ν1 − 2ν2 + 1, (2.5)
iβ = −ν1 + ν2, (2.6)
iγ = 2ν1 + ν2 − 1. (2.7)

Suppose F is a Maass form of type ν = (ν1, ν2) for SL3(Z). The temperedness of F means that
α, β, γ defined above by (2.5)–(2.7) are real. Thanks to Jacquet, Piatetski-Shapiro, and Shalika,
we have the following Fourier–Whittaker expansion (see [Gol06, (6.2.1)]):

F (z) =
∑

γ∈U2(Z)\SL2(Z)

∑
m1>1

∑
m2 6=0

AF (m1, m2)
m1|m2|

WJ

(
M

(
γ

1

)
z, ν, ψ1,m2/|m2|

)
, (2.8)

where U2(Z) is the group of 2× 2 integer, upper triangular matrices with ones along the diagonal,
and M is the diagonal matrix with entries m1|m2|, m1, 1 along the diagonal. In later sections
we may use the shorthand WJ(z) to denote WJ(z, (ν1, ν2), ψ1,1). The dual form associated to F
(see [Gol06, Proposition 6.3.1]) is of type (ν2, ν1) and has a similar Fourier expansion but with
A(m2, m1) as its (m1, m2)th Fourier coefficient. If furthermore F is an eigenform for the full
Hecke ring, then A(m2, m1) =A(m1, m2) (see [Gol06, p. 271]). Note that switching ν1 and ν2

replaces the Langlands parameters (iα, iβ, iγ) by (−iγ,−iβ,−iα).
In our work we crucially require the GL3 Voronoi formula first proved by Miller and

Schmid [MS06] (see [GL06] for another proof), which we now state. Suppose k = 0 or 1,
and ψ(x) is a smooth, compactly supported function on the positive reals. Define

ψ̃(s) =
∫ ∞

0
ψ(x)xs

dx

x
. (2.9)

For σ >−1 + max{−Re(iα),−Re(iβ),−Re(iγ)}, define

ψk(x) =
1

2πi

∫
(σ)

(π3x)−s
Γ
(

1+s+iα+k
2

)
Γ
(1+s+iβ+k

2

)
Γ
(1+s+iγ+k

2

)
Γ
(−s−iα+k

2

)
Γ
(−s−iβ+k

2

)
Γ
(−s−iγ+k

2

) ψ̃(−s) ds. (2.10)

Then define

Ψ+(x) =
1

2π3/2

(
ψ0(x) +

1
i
ψ1(x)

)
, (2.11)

Ψ−(x) =
1

2π3/2

(
ψ0(x)− 1

i
ψ1(x)

)
. (2.12)

Theorem 2.1 [MS06]. Let ψ(x) be smooth and compactly supported on the positive reals.
Suppose d, d, c ∈ Z with c 6= 0, (c, d) = 1, and dd≡ 1 (mod c). Then∑
n>0

AF (m, n)e
(
nd

c

)
ψ(n) = c

∑
n1|cm

∑
n2>0

AF (n2, n1)
n1n2

S(md, n2;mc/n1)Ψ+

(
n2n

2
1

c3m

)

+ c
∑
n1|cm

∑
n2>0

AF (n2, n1)
n1n2

S(md,−n2;mc/n1)Ψ−

(
n2n

2
1

c3m

)
, (2.13)

where S(a, b; c) is the usual Kloosterman sum.

Now we recall the spectral theory of automorphic forms for SL2(Z). Let uj(z) be an
orthonormal basis of Hecke–Maass cusp form for SL2(Z) (as in [Iwa02, p. 117]). Write the Fourier
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expansion as (see [Iwa02, (3.4) and (1.26)])

uj(z) =
∑
n6=0

ρj(n)W 1
2

+itj
(nz), z =

(
1 x

1

) (
y

1

)
y−

1
2 , (2.14)

where

W 1
2

+iτ (z) = 2
√
|y|Kiτ (2π|y|)e(x) (2.15)

and Kiτ is the usual K-Bessel function. Let λj(n) be the nth Hecke eigenvalue of uj , whence

ρj(±n) = ρj(±1)λj(n)|n|−
1
2 . (2.16)

The scaling is such that λj(1) = 1 and the Ramanujan conjecture implies |λj(p)|6 2 for p prime.
By [HL94, Iwa90], we have

t−εj � αj :=
|ρj(1)|2

cosh(πtj)
� tεj , (2.17)

which establishes the scaling of |ρj(1)|2 in terms of tj . In this work we do not require the bounds
(2.17), but we mention them since it is illuminating to understand the scaling, and to contrast
the behavior with SL3(Z) Maass forms. We return to this discussion in § 3.

Next we discuss the continuous spectrum. The SL2(Z) Eisenstein series is defined by

E(z2, s) =
1
2

∑
c,d∈Z,(c,d)=1

ys2
|cz2 + d|2s

=
1
2

∑
γ∈U2(Z)\SL2(Z)

Im(γz2)s, (2.18)

and has the Fourier expansion (see [Iwa02, Theorem 3.4])

E(z2, s) = ys2 + ρ(s)y1−s
2 +

∑
n6=0

ρ(n, s)Ws(nz2), (2.19)

where

ρ(s) =
√
π

Γ(s− 1
2)

Γ(s)
ζ(2s− 1)
ζ(2s)

, ρ(n, s) = πs
λ(n, s)

Γ(s)ζ(2s)|n|
1
2

(2.20)

with

λ(n, s) =
∑
ad=|n|

(
a

d

)s− 1
2

. (2.21)

Observe λ(n, 1
2 + iτ) = λ(n, 1

2 + iτ) for real τ . The analog of (2.17) for the Eisenstein series is
essentially a classical fact about the Riemann zeta function (see [Tit86, (3.5.1) and (3.6.5)]) that
τ−ε� ζ(1 + 2iτ)� τ ε, giving

τ−ε� ατ :=
|ρ(1, 1

2 + iτ)|2

cosh(πτ)
=

1
|ζ(1 + 2iτ)|2

� τ ε. (2.22)

We recall the well-known spectral theorem; see [Iwa02] for example.

Theorem 2.2. Suppose f ∈ L2(SL2(Z)\H). Then

f(z) =
∑
j>0

〈f, uj〉uj(z) +
1

4π

∫ ∞
−∞

〈
f, E

(
·, 1

2
+ it

)〉
E

(
z,

1
2

+ it

)
dt. (2.23)
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If f and ∆f are smooth and bounded, then the sum converges absolutely and uniformly on
compact sets. Furthermore, the Parseval formula says

‖f‖2 =
∑
j>0

|〈f, uj〉|2 +
1

4π

∫ ∞
−∞

∣∣∣∣〈f, E(·, 1
2

+ it

)〉∣∣∣∣2 dt. (2.24)

We also recall the Kuznetsov formula [Iwa02, Theorem 9.3].

Theorem 2.3 (Kuznetsov). Let notation αj , λj(n), ατ , λ(n, 1
2 + iτ) be defined as above, and

suppose h(r) satisfies 
h(r) = h(−r),
h is holomorphic in |Im(r)|6 1

2 + δ

h(r)� (1 + |r|)−2−δ,

(2.25)

for some δ > 0. Then we have∑
j>1

αjλj(m)λj(n)h(tj) +
1

4π

∫ ∞
−∞

ατλ

(
m,

1
2

+ iτ

)
λ

(
n,

1
2

+ iτ

)
h(τ) dτ

= δm,nπ
−2

∫ ∞
−∞

r tanh(πr)h(r) dr +
∞∑
c=1

S(m, n; c)
c

H

(
4π
√
mn

c

)
, (2.26)

where

H(x) =
2i
π

∫ ∞
−∞

rh(r)
J2ir(x)

cosh(πr)
dr =

2i
π

∫ ∞
0

rh(r)
J2ir(x)− J−2ir(x)

cosh(πr)
dr. (2.27)

Lemma 2.4 (Approximate functional equation). Let L(s, f) =
∑

n>1 λf (n)n−s be an L-function
as in [IK04, ch. 5] such that the completed L-function is entire. Let q(f, s) denote the analytic
conductor of L(f, s) as defined on [IK04, p. 95], and suppose that q(f, s) 6Q for some number
Q> 0. Then there exists a function W (x) depending on Q and ε only, such that W is supported

on x6Q
1
2

+ε and satisfies

xjW (j)(x)�j,ε 1, (2.28)

where the implied constant depends on j and ε only (not Q), such that∣∣∣∣L(1
2

+ it, f

)∣∣∣∣2�Qε
∫ log Q

−log Q

∣∣∣∣∑
n>1

λf (n)

n
1
2

+it+iv
W (n)

∣∣∣∣2 dv +O(Q−100), (2.29)

where the implied constant depends on ε, W , and the degree of L(f, s) only.

Remark . The power of positivity makes this formulation extremely simple; an exact formula for
|L(1

2 + it, f)|2 would be much more complicated. The point is that W does not vary with f and
t as long as q(f, 1

2 + it) 6Q.

Proof. The usual approximate functional equation [IK04, Theorem 5.3] gives

L

(
1
2

+ it, f

)
=
∑
n>1

λf (n)

n
1
2

+it
Vf,t(n/

√
q) + εf,t

∑
n>1

λf (n)

n
1
2
−it

V ∗f,−t(n/
√
q), (2.30)

where q is the Archimedean part of the conductor (see [IK04, p. 94]),

Vf,t(x) =
1

2πi

∫
(2)
x−u

γ(f, 1
2 + it+ u)

γ(f, 1
2 + it)

eu
2 du

u
, (2.31)

680

https://doi.org/10.1112/S0010437X11007366 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007366


The L2 restriction norm of a GL3 Maass form

in which

γ(f, s) = π−ds/2
d∏
j=1

Γ
(
s+ κj

2

)
, (2.32)

V ∗f,t is given by

V ∗f,t(x) =
1

2πi

∫
(2)
x−u

γ(f, 1
2 + it+ u)

γ(f, 1
2 + it)

eu
2 du

u
, (2.33)

and εf,t is a complex number with absolute value 1. Note that there is a misprint on [IK04, p. 94],
since γ(f, s) 6= γ(f, s) in general; the correct statement is that if f has parameters {κ1, . . . , κd},
then its dual has parameters {κ1, . . . , κd} (see [RS96, (2.8)] for example).

Shifting the contour to the right and using Stirling’s approximation shows that Vf,t(x/
√
q) is

very small for x> q(f, 1
2 + it)

1
2

+ε. We choose a W0 satisfying (2.28) such that multiplication by
W0(n) in (2.30) introduces an error of size O(Q−100) to the value of L(1

2 + it, f); for example,
one can take W0 to be identically 1 for n6Q

1
2

+ε and then have it smoothly decay to be zero for
n> 2Q

1
2

+ε. Having inserted this weight into the n-sums, we then apply the integral representation
definition of Vf,t(n/

√
q) (shifted to the point σ > 0 to be chosen later) and reverse the orders of

summation and integration. Using Cauchy’s inequality, we obtain∣∣∣∣L(1
2

+ it, f

)∣∣∣∣2 6
2

2π

∣∣∣∣∫
(σ)

qu/2
γ(f, 1

2 + it+ u)
γ(f, 1

2 + it)
eu

2

u

∑
n>1

λf (n)W0(n)

n
1
2

+it+u
du

∣∣∣∣2
+ (similar) +O(Q−100), (2.34)

where the ‘similar’ term has λf (n) replaced by λf (n) and t replaced by −t. The integrand decays
very rapidly as a function of Im(u) due to the exponential decay of eu

2
, so that we can truncate

the u-integrals at |Im(u)|6 log Q without making a new error term. By Stirling’s formula, we
have (see [IK04, p. 100])

qu/2
γ(f, 1

2 + it+ u)
γ(f, 1

2 + it)
�QRe(u)/2 exp

(
πd

2
|u|
)
. (2.35)

Thus,∣∣∣∣L(1
2

+ it, f

)∣∣∣∣2�σ Q
σ

∫
u=σ+iv,|v|6log Q

∣∣∣∣∑
n>1

λf (n)W0(n)

n
1
2

+it+u

∣∣∣∣2 dv + (similar) +O(Q−100). (2.36)

Letting W (n) =W0(n)n−σ, taking σ = ε, and noting that the ‘similar’ term is actually identical
to the displayed term (it is the complex conjugate), we finish the proof. 2

3. Rankin–Selberg L-functions

In this work we require knowledge of various types of Rankin–Selberg L-functions. In particular,
we need the explicit integral representation, the functional equation, and the connection with
the L2 norm.
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It is instructive to first recall the well-known case of GL2 ×GL2. For this, we have the
following integral representation, if uj is even or odd:

ζ(2s)
∫

SL2(Z)\H
|uj(z)|2E(z, s)

dx dy

y2

= 2−1π−s
Γ(s/2)2

Γ(s)
|ρj(1)|2Γ

(
s

2
− itj

)
Γ
(
s

2
+ itj

)
L(s, uj × uj), (3.1)

where

L(s, uj × uj) = ζ(2s)
∞∑
n=1

|λj(n)|2

ns
. (3.2)

This is derived by the unfolding method and from explicit knowledge of the Mellin transform
of the product of two K-Bessel functions. In this way, we deduce a functional equation for
L(s, uj × uj) from that of the Eisenstein series.

On the other hand, the Fourier expansion (2.19) shows that the Eisenstein series has a simple
pole at s= 1 with residue π/2ζ(2). Thus, taking the residues of both sides of (3.1), we have that

1 = 〈uj , uj〉=
|ρj(1)|2

cosh(πtj)
Ress=1L(s, uj × uj). (3.3)

Thus, upper/lower bounds on the residue of the L-function correspond to lower/upper
(respectively) bounds on |ρj(1)|2. It is well known that L(s, uj × uj) = ζ(s)L(s, Sym2uj), where
L(s, Sym2uj) = ζ(2s)

∑
n λj(n

2)n−s is the Gelbart–Jacquet lift [GJ78] of uj , which is known
to correspond to a self-dual SL3(Z) Maass form. Then estimates for the L-functions translate to
estimates on (2.17).

It is less classical to understand the behavior of the first Fourier coefficient of F , a SL3(Z)
Maass form. For this, we have the following proposition.

Proposition 3.1. Let F be a SL3(Z) Hecke–Maass form that is in the tempered spectrum of ∆.
Then, for some absolute constant c > 0, we have

〈F, F 〉= c|AF (1, 1)|2 Ress=1L(s, F × F ), (3.4)

where we write AF (m, n) =AF (1, 1)λF (m, n), and

L(s, F × F ) = ζ(3s)
∑
m>1

∑
n>1

|λF (m, n)|2

(m2n)s
. (3.5)

In contrast to (3.3), (3.4) does not exhibit an external scaling factor analogous to 1/ cosh(πtj)
(an artifact of the definition of the Whittaker functions), so that assuming standard conjectures
on the size of the residue at s= 1 of L(s, F × F ), we have λF (∆)−ε� |AF (1, 1)| � λF (∆)ε.

The proof follows the same lines as (3.1) but requires a much more difficult Archimedean
integral involving the product of two GL3 Whittaker functions. This crucial integral was
computed by Stade [Sta93].

If F is not tempered, then the formula is not so clean and instead c depends loosely on
the form in the sense that 1� c� 1 with absolute implied constants. By the way, a similar
phenomenon already occurs in the SL2(Z) case if tj is not real. We only assume the form is
tempered at the end of the proof.
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Proof. In [Gol06, § 7.4], it was shown that

ζ(3s)〈FG, E(·, s)〉=AF (1, 1)AG(1, 1)L(s, F ×G)Gν,ν′(s), (3.6)

where F and G are SL3(Z) Hecke–Maass forms of types ν and ν ′, respectively,

E(z, s) =
1
2

∑
γ∈Γ̂\SL3(Z)

det(γz)s, (3.7)

Γ̂ is the subset of elements of SL3(Z) with lower row (0, 0, 1),

L(s, F ×G) = ζ(3s)
∑
m>1

∑
n>1

λF (m, n)λG(m, n)
(m2n)s

, (3.8)

and

Gν,ν′(s) =
∫ ∞

0

∫ ∞
0
WJ(y, ν, ψ1,1)WJ(y, ν ′, ψ1,1)(y2

1y2)s
dy1 dy2

y3
1y

3
2

. (3.9)

Here we wrote A(m, n) =A(1, 1)λ(m, n) so that the scaling on λ is such that λ(1, 1) = 1 and
the Ramanujan conjecture implies |λ(1, p)|6 3. Stade [Sta93] computed this integral, but it is a
little tricky to convert notation between [Gol06] and [Sta93].

First we state Stade’s formula [Sta93, (1.2)], observing that Stade’s y1 and y2 are switched
compared to ours, and that his a1 is our iγ, and his a2 is our iβ:

π−3s/2Γ
(

3s
2

)∫ ∞
0

∫ ∞
0
WS
J (y, ν, ψ1,1)WS

J (y, ν ′, ψ1,1)(y2
1y2)s

dy1 dy2

y3
1y

3
2

= π−9s/2
3∏
j=1

3∏
j′=1

Γ
(
s+ iαj + iα′j′

2

)
, (3.10)

where we write the Langlands parameters as (α, β, γ) = (α1, α2, α3), and WS
J denotes Stade’s

normalization of the Whittaker function (defined in (3.11) below). We need to convert between
WS
J and WJ . We can determine the normalization of Stade’s Whittaker function from the integral

representation [Sta93, (1.1)]

WS
J (y, ν, ψ1,1) = 23y

1+iβ/2
1 y

1−iβ/2
2

∫ ∞
0

Kµ(2πy1

√
1 + u)Kµ(2πy2

√
1 + u−1)u3iβ/4du

u
, (3.11)

where µ= 1
2(iγ − iα). Changing variables u= v2, and comparing to [Gol06, (6.1.3)], we see that

WS
J (y, (ν1, ν2), ψ1,1) = cW ∗J (y, (ν2, ν1), ψ1,1), (3.12)

where c= 4, and W ∗J is defined on [Gol06, p. 154] as

W ∗J (z, ν, ψ1,1) = π
1
2
−3ν1−3ν2Γ

(
3ν1

2

)
Γ
(

3ν2

2

)
Γ
(

3ν1 + 3ν2 − 1
2

)
WJ(z, ν, ψ1,1). (3.13)

Notice that 3ν1 = 1− i(β − γ), 3ν2 = 1− i(α− β), and 3ν1 + 3ν2 − 1 = 1− i(α− γ).

It is clear from (3.11) that WS
J (y, ν, ψ1,1) =WS

J (y, ν, ψ1,1). Thus, we obtain

Gν,ν(s) = π−3s

∏3
j=1

∏3
j′=1 Γ((s+ iαj − iα′j)/2)

16π1−3ν1−3ν1−3ν2−3ν2 |Γ(3ν1/2)|2|Γ(3ν2/2)|2|Γ((3ν1 + 3ν2 − 1)/2)|2Γ(3s/2)
.

(3.14)
Furthermore, by [Gol06, Proposition 7.4.4], we have that E∗(z, s) = π−3s/2Γ(3s/2)ζ(3s)E(z, s)
has a simple pole at s= 1 with residue 2/3. Taking the residue at s= 1 of both sides of (3.6),
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and using the fact that α, β, γ are real, we obtain for some non-zero absolute constant c,

〈F, F 〉= c|AF (1, 1)|2 |Γ((1 + i(α− β))/2)|2|Γ((1 + i(α− γ))/2)|2|Γ((1 + i(β − γ))/2)|2

|Γ(3ν1/2)|2|Γ(3ν2/2)|2|Γ((3ν1 + 3ν2 − 1)/2)|2

× Ress=1L(F × F , s). (3.15)

Notice that the ratios of gamma factors above precisely cancel! This completes the proof. 2

Lemma 3.2 [Bru06]. Let F be a Hecke–Maass cusp form for SL3(Z), let AF (m, n) be its (m, n)th
coefficient as in (2.8), and suppose that the L-function associated to F has analytic conductor
Q(F ) defined by

Q(F ) = (1 + |α|)(1 + |β|)(1 + |γ|). (3.16)
Then, for any ε > 0, we have∑

mn6x

|AF (m, n)|2�ε |AF (1, 1)|2x1+εQ(F )ε. (3.17)

The implied constant is independent of F .

Proof. Brumley proved that the convexity bound holds for L(s, F × F ), which by the Perron
method shows that (3.17) holds but with the condition m2n6 x on the left-hand side of
(3.17). We now show how one can obtain the stronger condition mn6 x. Suppose without
loss of generality that AF (1, 1) = 1. On the left-hand side of (3.17), use the Hecke relation
AF (m, n) =

∑
d|(m,n) AF (m/d, 1)AF (1, n/d), apply Cauchy’s inequality to the sum over d, and

reverse the orders of summation. Then apply Brumley’s bound to the inner sum over m, say,
followed by a second application to the sum over n. 2

In this paper we work extensively with the Rankin–Selberg L-functions L(s, F × uj). The
necessary Archimedean integral for this case is given by the following proposition.

Proposition 3.3 [Bum88, Sta90]. Let

Gτ (s) = 4
∫ ∞

0

∫ ∞
0
Kiτ (2πy2)WJ

y1y2

y1

1

, (ν1, ν2), ψ1,1

 (y2
1y2)s−

1
2 y

1
2
2

dy2

y2
2

dy1

y1
. (3.18)

Then

Gτ (s) =
π−3sΓ

(
s−iτ−iα

2

)
Γ
( s−iτ−iβ

2

)
Γ
( s−iτ−iγ

2

)
Γ
(
s+iτ−iα

2

)
Γ
( s+iτ−iβ

2

)
Γ
( s+iτ−iγ

2

)
π−

3
2

+iα−iγΓ
(1+iγ−iβ

2

)
Γ
(1+iβ−iα

2

)
Γ
(1+iγ−iα

2

) . (3.19)

Proof. Bump [Bum88] proved a formula like this but without an explicit constant in front. We
shall refer to [Sta90]. We first remark how to translate notation. By comparing the equation at
the top of [Sta90, p. 318] with [Gol06, (6.1.3)], we see that Stade’s W(3,ν)(y2, y1) is the same
as W ∗J (y, ν, ψ1,1), where W ∗J is defined by (3.13). Then Stade showed (see [Sta90, (7.8) and the
equation on p. 358], though note there is a misprint in the parameter of the Bessel function)
that∫ ∞

0

∫ ∞
0

W ∗J (y, ν, ψ1,1)Kiτ (2πy2)(y2
1y2)s

dy1dy2

y2
1y

2
2

= 4−1π−3sΓ
(
s−iτ−iα

2

)
Γ
( s−iτ−iβ

2

)
Γ
( s−iτ−iγ

2

)
Γ
(
s+iτ−iα

2

)
Γ
( s+iτ−iβ

2

)
Γ
( s+iτ−iγ

2

)
π−

3
2

+iα−iγΓ
(1+iγ−iβ

2

)
Γ
(1+iβ−iα

2

)
Γ
(1+iγ−iα

2

) . (3.20)

Then using (3.13) we convert this into (3.19), as desired. 2
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Proposition 3.4. Suppose F is a SL3(Z) Hecke–Maass form as in (2.8) and uj is a SL2(Z)
Hecke–Maass form. Define

L(s, F × uj) =
∫ ∞

0

∫
SL2(Z)\H2

uj(z2)F
(
z2y1

1

)
y2s−1

1

dx2 dy2

y2
2

dy1

y1
, (3.21)

where z2 is as in (1.2). If uj is even, then

L(s, F × uj) = ρj(1)L(s, F × uj)Gtj (s), (3.22)

where Gτ (s) is given in Proposition 3.3 and where

L(s, F × uj) =
∑
m1>1

∑
m2>1

AF (m1, m2)λj(m2)
(m2

1m2)s
. (3.23)

If uj is odd, then (3.21) vanishes.

Remarks. • In (3.23) we break with our convention of defining L-functions only for
multiplicative Dirichlet series. We do so because it simplifies our forthcoming formulas.

• In [GT06] the y1-integral is called the rank-lowering operator whose analytic properties are
studied.

• The fact that L(s, F × uj) vanishes for uj odd indicates that (3.21) is not the desired integral
representation for this L-function, but nevertheless we continue to use this notation.

Proof. Inserting the Fourier expansion for F , (2.8), and unfolding the integral, we obtain

L(s, F × uj) =
∫ ∞

0

∫ 1

0

∫ ∞
0
uj(z2)

∑
m1>1

∑
m2 6=0

AF (m1, m2)
m1|m2|

×WJ

(
M

(
z2y1

1

))
y2s−1

1

dx2 dy2

y2
2

dy1

y1
. (3.24)

A short matrix computation and the use of a characteristic property of the Whittaker function
(see [Gol06, Definition 5.4.1(1)]) shows

WJ

(
M

(
z2y1

1

))
= e(m2x2)WJ

m1|m2|
m1

1

y1y2

y1

1

. (3.25)

Using this, inserting the Fourier expansion for uj (2.14), and evaluating the x2-integral by
orthogonality of characters, we have

L(s, F × uj) = 2
∑
m1>1

∑
m2 6=0

AF (m1, m2)ρj(m2)

m1|m2|
1
2

∫ ∞
0

∫ ∞
0
Kitj (2π|m2|y2)

× WJ

m1|m2|
m1

1

y1y2

y1

1

 (y2
1y2)s−

1
2 y

1
2
2

dy1 dy2

y1y2
2

. (3.26)

685

https://doi.org/10.1112/S0010437X11007366 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007366


X. Li and M. P. Young

Note that Kiτ (x) =Kiτ (x) for x > 0 and τ real. Changing variables y2→ y2/|m2| and y1→ y1/m1

and using (2.16) gives

L(s, F × uj) = 2
∑
m1>1

∑
m2 6=0

AF (m1, m2)λj(|m2|)ρj(m2/|m2|)
(m2

1|m2|)s

×
∫ ∞

0

∫ ∞
0
Kitj (2πy2)WJ

y1y2

y1

1

 (y2
1y2)s−

1
2 y

1
2
2

dy1 dy2

y1y2
2

. (3.27)

Recall that we say that uj is even if ρj(−1) = ρj(1), and that uj is odd if ρj(−1) =−ρj(1). There
are no odd Maass forms for SL3(Z), meaning AF (m1, m2) =AF (m1,−m2) (see [Gol06, p. 163]).
This implies L(s, F × uj) = 0 if uj is odd. For uj even we simply recall the definition (3.18) to
complete the proof. 2

Proposition 3.5. Suppose F is a SL3(Z) Hecke–Maass form as in (2.8). Define

L
(
s, F × E

(
·, 1

2
+ iτ

))
=
∫ ∞

0

∫
SL2(Z)\H2

E

(
z2,

1
2

+ iτ

)
F

(
z2y1

1

)
y2s−1

1

dx2 dy2

y2
2

dy1

y1
.

(3.28)
Then

L(s, F × E(·, 1
2 + iτ)) = ρ(1, 1

2 + iτ)L(s, F × E(·, 1
2 + iτ))Gτ (s), (3.29)

where

L

(
s, F × E

(
·, 1

2
+ iτ

))
=
∑
m1>1

∑
m2>1

AF (m1, m2)λ(m2,
1
2 + iτ)

(m2
1m2)s

. (3.30)

The proof is very similar to that of Proposition 3.4, so we omit it.

Corollary 3.6 [CP04, JPS79, JPS83]. Let F be as above and let F̃ be its dual. Then
L(s, F × uj) defined by (3.23) and L(s, F × E(·, 1

2 + iτ) defined by (3.30) have analytic
continuation to the entire complex plane and satisfy the respective functional equations

L(s, F × uj) = L(1− s, F̃ × uj) (3.31)

and

L(s, F × E(·, 1
2 + iτ)) = L(1− s, F̃ × E(·, 1

2 + iτ)). (3.32)

An explicit proof of (3.31) is given on [Gol06, p. 375] (the case of (3.32) is similar); it essentially
follows the lines of Riemann’s proof of the functional equation for the zeta function by changing
variables z2→ tz2

−1, y1→ y−1
1 . The measure is invariant under these changes of variables, which

have the effect of replacing s by 1− s, and replacing F by its dual, noting that F is invariant
on the left and right by the Weyl group.

4. The restriction norm and L-functions

In this section we develop a beautiful formula for the restriction norm N(F ) in terms of Rankin–
Selberg L-functions associated to F convolved with Maass forms and Eisenstein series for SL2(Z).

Theorem 4.1. Let F be a Hecke–Maass form for SL3(Z), uj be an orthonormal basis of Hecke–
Maass forms for SL2(Z), E(·, 1

2 + iτ) be the Eisenstein series, and recall the definitions (3.22)
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and (3.29). Then

N(F ) =
1
π

∑
j>1

∫ ∞
−∞

∣∣∣∣L(1
2

+ it, F × uj
)∣∣∣∣2 dt

+
1

4π2

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣L(1
2

+ it, F × E
(
·, 1

2
+ iτ

))∣∣∣∣2 dt dτ. (4.1)

Proof. Since F is a Maass form, it is smooth and has rapid decay and hence fy1(z2) := F
(z2y1

1

)
∈

L2(SL2(Z)\H2) (as a function of z2, with y1 > 0 an arbitrary parameter). By the spectral theory
of SL2(Z), we have

fy1(z2) =
∑
j>0

〈fy1 , uj〉uj(z2) +
1

4π

∫ ∞
−∞

〈
fy1 , E

(
·, 1

2
+ iτ

)〉
E

(
z2,

1
2

+ iτ

)
dτ, (4.2)

where u0 is the constant eigenfunction. The computations in the proof of Proposition 3.4 show
that 〈fy1 , u0〉= 0. Then Parseval’s formula reads∫

SL2(Z)\H2

|fy1(z2)|2 d∗z2 =
∑
j>1

|〈fy1 , uj〉|2 +
1

4π

∫ ∞
−∞

∣∣∣∣〈fy1 , E(·, 1
2

+ iτ

)〉∣∣∣∣2 dτ. (4.3)

The Plancherel formula says∫ ∞
0
|φ(y)|2dy

y
=

1
π

∫ ∞
−∞
|φ̃(2it)|2 dt where φ̃(2it) =

∫ ∞
0

φ(y)y2itdy

y
. (4.4)

Therefore, ∫ ∞
0
|〈fy1 , uj〉|2

dy1

y1
=

1
π

∫ ∞
−∞

∣∣∣∣∫ ∞
0

∫
SL2(Z)\H2

fy1(z2)uj(z2) d∗z2 y
2it
1

dy1

y1

∣∣∣∣2 dt, (4.5)

which, in view of (3.21), gives∫ ∞
0
|〈fy1 , uj〉|2

dy1

y1
=

1
π

∫ ∞
−∞

∣∣∣∣L(1
2

+ it, F × uj
)∣∣∣∣2 dt. (4.6)

Similarly, we have∫ ∞
0

∣∣∣∣〈fy1 , E(·, 1
2

+ iτ

)〉∣∣∣∣2dy1

y1

=
1
π

∫ ∞
−∞

∣∣∣∣∫ ∞
0

∫
SL2(Z)\H2

fy1(z2)E
(
z2,

1
2

+ iτ

)
d∗z2y

2it
1

dy1

y1

∣∣∣∣2 dt, (4.7)

which, in view of (3.28), gives

1
4π

∫ ∞
−∞

∫ ∞
0

∣∣∣∣〈fy1 , E(·, 1
2

+ iτ

)〉∣∣∣∣2dy1

y1
dτ

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣L(1
2

+ it, F × E
(
·, 1

2
+ iτ

)∣∣∣∣2 dt dτ. (4.8)

Recalling the definition (1.1) and gathering the above equations completes the proof. 2
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5. Exercises with Stirling’s approximation

Our goal is to use Theorem 4.1 to estimate N(F ). Recall (3.22) and (3.29), (3.19), and (2.17) and
(2.22). It is necessary to understand the size of |Gτ (1

2 + it)|, as well as the size of the analytic
conductor of L(1

2 + it, F × uj). We perform these computations in this section. Without this
work it is not even obvious how to bound N(F ) on the assumption of the Lindelöf hypothesis
for all the L-functions under consideration.

Suppose that F is in the tempered spectrum of ∆, which recall means that α, β, γ given by
(2.5)–(2.7) are real. By relabelling these parameters, we suppose that

γ 6 β 6 α. (5.1)

Combining this ordering with the relation α+ β + γ = 0 (which follows directly from (2.5)–
(2.7)), observe the simple inequalities α+ 2γ 6 0 = α+ β + γ 6 2α+ γ, which imply α6−2γ
and −γ 6 2α. Set

T = |α|+ |β|+ |γ|, (5.2)

so that T � λF (∆)1/2, and we have α� |γ| � T . We use T as a fundamental parameter for the
rest of the paper. It is convenient to observe that in estimating N(F ) we may suppose without
loss of generality that β > 0. This follows from the functional equations of the Rankin–Selberg
L-functions on the right-hand side of (4.1), which replace F by its dual, switching the signs of
the Langlands parameters.

Lemma 5.1. Suppose that F is an SL3(Z) Hecke–Maass form which is in the tempered spectrum
of ∆ with γ 6 0 6 β 6 α. Let uj and E(z, s) be as in § 2. Write

L(s, F × uj) =
∞∑
n=1

λF×uj (n)
ns

, L

(
s, F × E

(
·, 1

2
+ iτ

))
=
∞∑
n=1

λF×Eτ (n)
ns

. (5.3)

Then there exist O(log2 T ) tuples (R, S, D, Q, T0) of real numbers and a smooth function W
satisfying the following properties:

1�R� (α− β) + log2 T, R�D 6 S� T,
T0 ∈ {α, β, γ}, Q� T 2DR(S + (α− β))(1 + (α− β)),

(5.4)

W satisfies (2.28), and

N(F )�
∑

(R,S,D,Q,T0,±)

Q−
1
2

+ε

[∫ R

−R

∑
S6tj6S+D

αj

∣∣∣∣∑
n>1

λF×uj (n)W (n)

n
1
2

+it±itj+iT0

∣∣∣∣2 dt
+

1
4π

∫ R

−R

∫ S+D

S
ατ

∣∣∣∣∑
n>1

λF×Eτ (n)W (n)

n
1
2

+it±iτ+iT0

∣∣∣∣2 dτ dt]+O(T ε). (5.5)

Furthermore, if T0 = γ, then the following more restrictive relations hold: D� α− β and S � T .

It follows from Lemma 5.1 that the Lindelöf hypothesis implies N(F )� T ε|AF (1, 1)|2. The
content of Theorem 1.1 is thus to remove this unproved hypothesis. In some cases, such as
when β = 0, α=−γ � T , R� T 1−ε, and S �D � T , the bound in Theorem 1.1 corresponds to
the Lindelöf hypothesis on average. In other cases, such as when β = 0 and R�D � S � 1, the
family is very small and we can only claim the convexity bound.
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The proof of Lemma 5.1 takes up this section; we prove some intermediate lemmas building
up to the full proof of Lemma 5.1. At its essence, the proof is simply a long but elementary
computation with many cases to consider.

Define the very convenient variables

X = t+ τ, Y = t− τ. (5.6)

Observe that X > Y if and only if τ > 0, which shall be true in the forthcoming arguments. Next,
for any real number Z, define

qF (Z) = (1 + |Z − α|)(1 + |Z − β|)(1 + |Z − γ|) (5.7)

and then, with X, Y as in (5.6), set

qF (t, τ) = qF (X)qF (Y ). (5.8)

Observe that L(1
2 + it, F × uj) and L(1

2 + it, F × E(·, 1
2 + iτ)) both have analytic conductor (as

in [IK04, ch. 5]) qF (t, τ), where, in the uj case, τ = tj .

Lemma 5.2. Let γ 6 0 6 β 6 α with α+ β + γ = 0. Suppose X > Y and let X0 > 0. If X 6∈
[β −X0, α+X0], then

cosh(πτ)|Gτ (1
2 + it)|2� exp(−πX0). (5.9)

Similarly, suppose Y0 > 0. If Y 6∈ [γ − Y0, β + Y0], then

cosh(πτ)|Gτ (1
2 + it)|2� exp(−πY0). (5.10)

On the other hand, if

β −X0 6X 6 α+X0, γ − Y0 6 Y 6 β + Y0, (5.11)

then

cosh(πτ)|Gτ (1
2 + it)|2� qF (t, τ)−

1
2 , (5.12)

where the implied constant is absolute.

Proof. Recall that Stirling’s approximation implies |Γ(σ + iv)|2� (1 + |v|)−1+2σ exp(−π|v|) for
σ > 0 fixed and all v ∈ R. A computation then gives

cosh(πτ)
∣∣∣∣Gτ(1

2
+ it

)∣∣∣∣2� exp
(
−π

2
WF (t, τ)

)
qF (t, τ)−

1
2 , (5.13)

where (note cosh(πτ)� exp((π/2)|X − Y |))

WF (t, τ) = −|X − Y | − |α− β| − |α− γ| − |β − γ|
+ |X − α|+ |X − β|+ |X − γ|+ |Y − α|+ |Y − β|+ |Y − γ|. (5.14)

Note that WF is invariant under permutations of α, β, γ, and also invariant under switching X
and Y . We first show WF (t, τ) > 0 for all t, τ ∈ R or, equivalently, all X, Y ∈ R. Observe that
WF is piecewise linear and has limit +∞ as X or Y approaches ±∞. Therefore, its minimum
occurs at a critical point. By symmetry (temporarily forgetting our ordering of the Langlands
parameters), it suffices to check that WF (t, τ) > 0 at X = α. In this case,

WF (t, τ)|X=α = |Y − β|+ |Y − γ| − |β − γ|> 0, (5.15)

by the triangle inequality. This gives (5.12), as desired.

689

https://doi.org/10.1112/S0010437X11007366 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007366


X. Li and M. P. Young

By a tedious brute-force computation we obtain the following table of values of 1
2WF (t, τ) for

γ 6 β 6 α. We only display the ranges with X > Y ; the rest can be obtained quickly by observing
that WF (t, τ) is symmetric in X and Y .

1
2WF (t, τ) X 6 γ < X 6 β <X 6 α α <X

Y > α
(X − β)
+ 2(Y − α)

α > Y > β (Y − β) (X − α)
+ (Y − β)

β > Y > γ (β −X) 0 (X − α)

γ > Y
2(γ −X)
+ (β − Y )

(β −X)
+ (γ − Y )

(γ − Y ) (X − α)
+ (γ − Y )

(5.16)

In particular, we directly read from the table the bounds (5.9) and (5.10). 2

In practice, Lemma 5.2 says that N(F ) is determined by the ranges β − log2 T 6X 6
α+ log2 T and γ − log2 T 6 Y 6 β + log2 T , say. The reason is that we may assume X > Y
in view of the expression (4.1), which naturally has tj > 0 for the discrete spectrum, and by
symmetry we may suppose τ > 0 in the continuous spectrum. For X or Y outside of this range
there is exponential decay in the completed L-function.

We need a still finer dissection of the X and Y ranges in order to fix the size of qF (t, τ).

Lemma 5.3. Suppose γ 6 0 6 β 6 α with α+ β + γ = 0. If X = β + l with 0 6 l 6 (α− β)/2, or
X = α− l with 0 6 l 6 (α− β)/2, then

qF (X)� T (1 + (α− β))(1 + l). (5.17)

If Y = β − s with 0 6 s6 (α− β)/2, then

qF (Y )� T (1 + (α− β))(1 + s). (5.18)

If Y = β − s with (α− β)/2 6 s6 (β − γ)/2, then

qF (Y )� T (1 + s)2. (5.19)

If Y = γ + s with |s|6 (β − γ)/2, then

qF (Y )� T 2(1 + |s|). (5.20)

If |Z − α|6 log2 T or |Z − β|6 log2 T , then

(1 + (α− β))T � qF (Z)� log2 T (1 + (α− β))T. (5.21)

Proof. The estimates for qF (X) follow from a direct computation, using that β > 0 so that
β − γ � T . The estimates for qF (Y ) are similar. For example, if 0 6 s6 (α− β)/2, then we use

T � β − γ − s> β − γ − α− β
2

=
1
2
α+

5
2
β� T, (5.22)

which is the key to estimating qF (Y ) in this range. The other ranges are similar. 2

Now we are ready to chop up the regions of summation and integration on the right-hand
side of (4.1) into manageable pieces.
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Lemma 5.4. There exist a sequence of O(log2 T ) pairs of real numbers U , V and a pair of real
numbers X1, Y1 (depending on U , V ) satisfying 1� U 6 (α− β)/4, 1� V � T , β + U 6X1,
X1 + U 6 α− U , γ + V 6 Y1, and Y1 + V 6 β − V , such that on each interval IX1,Y1,U,V defined
by X1 6X 6X1 + U and Y1 6 Y 6 Y1 + V we have qF (t, τ)�Q, where Q depends on F , U , V ,
X1, and Y1 only. Furthermore, every X, Y satisfying β + 1 6X 6 α− 1 and γ + 1 6 Y 6 β − 1
lies in one of the above intervals.

More precisely, we have formulas for Q depending on the case:

Q�


T 2UV (1 + (α− β))2 if Y1 = β − 2V, and V 6

α− β
4

,

T 2UV 2(1 + (α− β)) if Y1 = β − 2V, and
α− β

4
6 V 6

β − γ
4

,

T 3UV (1 + (α− β)) if Y1 = γ + V, and V 6
β − γ

4
.

(5.23)

Furthermore, X1 equals either β + U or α− 2U .

Proof. We consider first the most important cases with β + 1 6X 6 α− 1 and γ + 1 6 Y 6
β − 1. In view of Lemma 5.3, the X parameter naturally lies in an interval of the form
X1 6X 6X1 + U , where β + U 6X1 and X1 + U 6 α− U . Here U runs over O(log T ) numbers
with 1 6 U 6 (α− β)/2. For such X, we have qF (X)� U(1 + (α− β))T . On the other hand,
Y naturally lies in an interval of the form β − 2V 6 Y 6 β − V with V running over O(log T )
dyadic numbers of the form 1 6 V 6 (α− β)/4, in which case qF (Y )� V (1 + (α− β))T , one of
the form β − 2V 6 Y 6 β − V with (α− β)/4 6 V 6 (β − γ)/4, in which case qF (Y )� V 2T , or
Y lies in an interval of the form γ + V 6 Y 6 γ + 2V with 1 6 V 6 (β − γ)/4, in which case
qF (Y )� V T 2. The total number of tuples (U, V, X1, Y1) is O(log2 T ). 2

We are finally ready to prove Lemma 5.1.

Proof. We use Theorem 4.1. As shorthand, let L= log T . Recall that X = t+ τ , Y = t− τ , and,
for the discrete spectrum sum in (4.1), τ = tj . By Lemma 5.2, we may restrict the variables X
and Y appearing in (4.1) so that β − L2 6X 6 α+ L2 and γ − L2 6 Y 6 β + L2, with an error
term of size O(T−100), satisfactory for Lemma 5.1.

For simplicity, first consider the special case β + 1 6X 6 α− 1, γ + 1 6 Y 6 β − 1. By
Lemma 5.4, we conclude that the contribution to the right-hand side of (4.1) of such X and
Y is

�
∑

X1,Y1,U,V

Q−
1
2

[ ∫ ∑
(X,Y )∈IX1,Y1,U,V

∣∣∣∣L(1
2

+ it, F × uj
)∣∣∣∣2 dt

+
1

4π

∫ ∫
(X,Y )∈IX1,Y1,U,V

∣∣∣∣L(1
2

+ it, F × E
(
·, 1

2
+ iτ

)∣∣∣∣2 dt dτ]. (5.24)

Next apply the approximate functional equation, Lemma 2.4, where the conductor Q is given by
(5.23) depending on the case under consideration.

Next we unravel the condition that (X, Y ) ∈ IX1,Y1,U,V and replace this by conditions on t
and τ . We shall use positivity to separate the dependence of t and τ . We show that each choice
of X1, Y1, U, V as in Lemma 5.4 leads to an instance of Lemma 5.1. We first split into two cases.
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Suppose U > V . In this case, we change variables t→ t+ τ + Y1 to get the summation
conditions 0 6 t6 V and X1 6 t+ 2τ + Y1 6X1 + U . Thus, X1 − Y1 − t6 2τ 6X1 − Y1 − t
+ U . By positivity, we extend this to X1 − Y1 − V 6 2τ 6X1 − Y1 + U .

Suppose U 6 V . In this case, we change variables t→ t− τ +X1 to get the summation
conditions 0 6 t6 U and Y1 6 t− 2τ +X1 6 Y1 + V . Thus, X1 − Y1 + t− V 6 2τ 6X1 − Y1 + t.
By positivity, we extend this to X1 − Y1 − V 6 2τ 6X1 − Y1 + U , which is the same answer as
in the previous case.

In both cases we almost obtain an instance of a sum/integral as given on the right-hand
side of (5.5), that is, we have a t-integral and a spectral sum/integral with a bilinear form of
the shape as given by (5.5), but with an extra v-integral of length O(log T ) coming from the
approximate functional equation. However, this v-integral can be absorbed into the t-integral
by positivity (simply change variables t→ t− v, extend the range of t to |t|6 2U by positivity,
and integrate trivially over v). If U > V , then T0 = Y1 and, if U 6 V , then T0 =X1. We claim
the following table describes the family in all the cases. Explanation follows the display of the
table.

Case X1 Y1 Family T0 R D S Q

1a β + U β − 2V U + V β V U U T 2UV (1 + (α− β))2

1b β + U β − 2V U + V β U V V T 2UV (1 + (α− β))2

2a α− 2U β − 2V α− β − 2U + V β V U α− β T 2UV (1 + (α− β))2

2b α− 2U β − 2V α− β − 2U + V α U V α− β T 2UV (1 + (α− β))2

3 β + U β − 2V U + V β U V V T 2UV 2(1 + (α− β))

4 α− 2U β − 2V α− β − 2U + V α U V V T 2UV 2(1 + (α− β))

5a β + U γ + V β − γ + U − 2V γ V U T T 3UV (1 + (α− β))

5b β + U γ + V β − γ + U − 2V β U V T T 3UV (1 + (α− β))

6a α− 2U γ + V α− γ − 2U − 2V γ V U T T 3UV (1 + (α− β))

6b α− 2U γ + V α− γ − 2U − 2V α U V T T 3UV (1 + (α− β))

(5.25)

Here the X1 column denotes whether X1 = β + U or X1 = α− 2U , and it is understood that
1� U 6 (α− β)/4. The cases 1a, 1b, 2a, and 2b have 1� V 6 (α− β)/4; cases 3 and 4 have
(α− β)/4 6 V 6 (β − γ)/4, and cases 5a, 5b, 6a, and 6b have 1� V 6 (β − γ)/4. We use the
label a appended to a particular case to denote U > V , and likewise b denotes U 6 V . In cases
3 and 4 we automatically have U 6 V . If the entry in the ‘family’ column is x, then this means
the spectral sum (or integral) is restricted to x6 2τ 6 x+ U + V . The remaining columns give
the values of T0, R, D, S, and Q. The value of T0 requires a comment; above we mentioned
that if U > V , then T0 = Y1, while, if U 6 V , then T0 =X1. For the sake of exposition, suppose
that U > V and Y1 = β − 2V . Then the t-integral is over 0 6 t6 V , so we can change variables
t→ t+ 2V and extend the t-integral to −2V 6 t6 2V by positivity; this procedure has the effect
of replacing Y1 by β. This procedure can be done in every one of the cases, giving the displayed
value of T0. It is also worth mentioning that the displayed value of S is true up to a multiplicative
constant; for example, in case 2a the family is α− β − 2U + V 6 2τ 6 α− β − U + 2V , which
literally gives S 6 τ 6 S +D with D = 1

2(U + V ) and S = 1
2(α− β − 2U + V ), which satisfies

S � α− β and D � U , as stated.
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We can read from the table the conditions R�D� S� T , Q� T 2RD(1 + (α− β))(S +
(α− β)), and T0 ∈ {α, β, γ}, as stated in (5.4). Furthermore, if T0 = γ, then S � T .

Now we briefly sketch how to extend the above analysis to cover the remaining cases with
β − L2 6X 6 β + 1 or α− 1 6X 6 α+ L2 or γ − L2 6 Y 6 γ + 1 or β − 1 6 Y 6 β + L2. We
can recover these cases from the previous ones by thickening each of the X and Y intervals by
length L2 at the cost of changing the conductor Q by a multiplicative factor of size at most L2.
This is easily absorbed by the Qε in (2.28). Translating the conditions on X and Y into conditions
on t, τ , we see that this thickening procedure simply extends the t-integral by O(L2) and the
τ -sum (or τ -integral) by O(L2). This has the effect of changing the family to one of the form
|t|6R+ L2, S − L2 6 2τ 6 S +D + 2L2. If S > 2L2, then this is already of the form stated in
Lemma 5.1. If S�L2, then R�L2, too, so there essentially is no family to average over. In
this case the convexity bound gives the contribution to N(F ) of T ε, as desired. 2

6. Some tools

The rest of the paper concerns the estimation of the right-hand side of (5.5). We gather here
some facts useful in the proof.

Lemma 6.1. Suppose that X, Y > 0 and r(x) is a Schwartz-class function satisfying

|r(j)(x)|6 CjY
−j
(

1 +
|x|
X

)−2

(6.1)

for some Cj > 0 for each j = 0, 1, 2, . . . . Then

r̂(y)�j X(1 + |y|Y )−j . (6.2)

Proof. This is by standard integration by parts. 2

Lemma 6.2. Let g be a fixed smooth function with compact support. Suppose that for some
Y > 1, f satisfies

f(0) = 0, f ′(0) = 1, f (j+1)(y)� Y −j (6.3)

for j = 1, 2, . . . and all y in the support of g. Define the function I by

I(λ) =
∫ ∞
−∞

g(y)eiλf(y) dy. (6.4)

Then, for any C > 0, we have

I(λ)�C (1 + min(|λ|, Y ))−C . (6.5)

More precisely, I has an asymptotic expansion of the form

I(λ) = I0(λ) + · · ·+ IK(λ) +O(Y −K/2), (6.6)

where each Ij is a function satisfying

λlI
(l)
j (λ)�j,l,C Y

−j(1 + |λ|)−C . (6.7)

In particular, I0(λ) = ĝ(−λ/2π).

The conditions (6.3) say that f is approximately linear, indicating that I should
approximately equal the Fourier transform of g. The asymptotic expansion for I indicates
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that this indeed is the case. The techniques used in the proof are integration by parts, Fourier
inversion, and Taylor’s theorem. The proof gives a convenient description for each Ij in (6.16)
below.

Proof. The first step is to show (6.5) by repeated integration by parts. This will allow us to
assume that λ is not too big compared to Y , which facilitates the development of the asymptotic
expansion. Let r(y) = f(y)− y. By the mean value theorem, r′(y)� Y −1. Then

I(λ) =
∫ ∞
−∞

h(y)eiλy dy = ĥ

(
− λ

2π

)
, where h(y) = g(y)eiλr(y). (6.8)

We claim that h satisfies the bounds

h(j)(y)�j

(
1 +
|λ|
Y

)j
. (6.9)

This can be verified by induction on j with the stronger hypothesis that for each j > 0,
h(j)(y) = qj(y)eiλr(y) for some function qj satisfying q

(k)
j (y)�j,k (1 + (|λ|/Y ))j+k. It is easy to

check that qj+1(y) = q′j(y) + iλr′(y)qj(y), whence one can prove the desired bounds on q
(k)
j+1 by

Leibniz’ rule. Now h satisfies the conditions of Lemma 6.1 with the Y from (6.1) replaced by our
current (1 + (|λ|/Y ))−1. Thus, we have, for any j = 0, 1, . . . ,

ĥ

(
− λ

2π

)
�j

(
1 +

|λ|
1 + (|λ|/Y )

)−j
. (6.10)

Taking j very large as necessary, we obtain (6.5).
Now we derive the asymptotic expansion (6.6). Let p= λ/Y . We may suppose p is small, say

�Y −1/2, since otherwise the main terms of both sides of (6.6) are O(Y −C) for any C > 0, which
is smaller than the stated error term. We return to the definition of ĥ(−λ/2π). We take a Taylor
series expansion for r(y) in the form

r(y) = r′′(0)
y2

2!
+ · · ·+ r(K+1)(0)

yK+1

(K + 1)!
+O(Y −K−1), (6.11)

which gives

h(y) = g(y)eiλr
′′(0)(y2/2!) · · · eiλr(K+1)(0)(yK+1/(K+1)!)(1 +O(pY −K)). (6.12)

Next we obtain a Taylor expansion for each term in the above product. For j > 2, write
cj = Y ((ir(j)(0))/j!) and note that cj � Y −j+2� 1. Then we have

eiλr
(j)(0)(yj/j!) = epcjy

j
= 1 + pcjy

j + (pcj)2y2j/2! + · · ·+ (pcj)KyjK/K! +O(pK+1). (6.13)

By expanding out these products, we obtain an expansion for h(y) of the form

h(y) = g(y)
∑
j6K

∑
k6K2

cj,kp
jyk +O(pK+1) +O(pY −K), (6.14)

where cj,k are certain complex numbers satisfying cj,k�K 1 (note c0,0 = 1). We obtain an
asymptotic expansion for ĥ(−λ/2π) by inserting the above expansion for h(y) into (6.8), as
we now explain. Writing gk(y) = ykg(y), we have

I(λ) =
∑
j6K

∑
k6K2

cj,kp
j ĝk

(
− λ

2π

)
+O(pK+1) +O(pY −K). (6.15)
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Letting

Ij(λ) =
∑
k6K2

cj,kp
j ĝk(−

λ

2π
) = Y −j

∑
k6K2

cj,kλ
j ĝk

(
− λ

2π

)
, (6.16)

we have that Ij satisfies (6.7), using Lemma 6.1 for each ĝk. Thus, (6.15) is the desired asymptotic
expansion, (6.6). 2

Lemma 6.3 [Gal70]. Let an be any sequence of complex numbers and T > 1. Then∫ T

−T

∑
b6B

∑∗

x (mod b)

∣∣∣∣∑
n6N

ane

(
xn

b

)
niy
∣∣∣∣2 dy� (B2T +N)

∑
n6N

|an|2. (6.17)

Furthermore, we have the additive character version∫ T

−T

∑
b6B

∑∗

x (mod b)

∣∣∣∣∑
n6N

ane

(
xn

b

)
e

(
yn

C

)∣∣∣∣2 dy� (B2T + C)
∑
n6N

|an|2. (6.18)

The following general result is useful for simplifying large sieve-type inequalities.

Lemma 6.4. Let N > 1 and suppose bm is a sequence of complex numbers with m6N . Let
f(y) be a smooth function on R such that for some X > 0, Y >N ε, we have for |y|6 2 that f
satisfies

f(0) = 0, f ′(0) =X, and f (j+1)(y)�XY −j for j > 1. (6.19)

Then there exists a non-negative Schwartz-class function q(y) depending on the implied constants
appearing in (6.19) and ε only, satisfying

xjq(j)(x)�j,C (1 + |x|)−C , (6.20)

such that∫ 1

−1

∣∣∣∣∑
m6N

bme(mf(y))
∣∣∣∣2 dy 6

∫ ∞
−∞

q(y)
∣∣∣∣∑
m6N

bme(mXy)
∣∣∣∣2 dy +O

(
N−100

∑
m6N

|bm|2
)
. (6.21)

The point is that the potentially complicated function f(y) is essentially replaced by its best
linear approximation.

Proof. Let g be a smooth compactly supported non-negative function satisfying g(y) = 1 for
|y|6 1, and g(y) = 0 for |y|> 2. Then∫ 1

−1

∣∣∣∣∑
m6N

bme(mf(y))
∣∣∣∣2 dy 6

∑
m,n6N

bmbn

∫ 2

−2
g(y)e((m− n)f(y)) dy. (6.22)

Let λ= 2πX(m− n) and set fX(y) =X−1f(y), so that the inner integral is

I(λ) =
∫ 2

−2
g(y)eiλfX(y) dy, (6.23)

where fX satisfies (6.3). Next we insert the asymptotic expansion (6.6) into (6.22), so∫ 1

−1

∣∣∣∣∑
m6N

bme(mf(y))
∣∣∣∣2 dy 6

∑
m,n6N

bmbn
∑
j6K

Ij

(
− λ

2π

)
+O

(
NY −K/2

∑
m6N

|bm|2
)
. (6.24)
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Then take qK(y) =
∑

j6K Îj(−y) and 202/ε6K < (202/ε) + 1 so that qK satisfies (6.20) (using
Lemma 6.1), and∫ 1

−1

∣∣∣∣∑
m6N

bme(mf(y))
∣∣∣∣2 dy 6

∑
m,n6N

bmbn

∫ ∞
−∞

qK(y)eiλy dy +O

(
N−100

∑
m6N

|bm|2
)
. (6.25)

Using the definition of λ and reseparating the variables m and n, we obtain∫ 1

−1

∣∣∣∣∑
m6N

bme(mf(y))
∣∣∣∣2 dy 6

∫ ∞
−∞

qK(y)
∣∣∣∣∑
m6N

bme(mXy)
∣∣∣∣2 dy +O

(
N−100

∑
m6N

|bm|2
)
. (6.26)

If qK(y) is non-negative, then the proof is complete taking q(y) = qK(y); otherwise we construct a
non-negative Schwartz-class function q(y) > qK(y). One such construction proceeds by defining
real numbers Mn := supn−16|y|6n |qK(y)| for n= 1, 2, 3, . . . . Note that for each N > 0, there
exists CN such that Mn 6 CNn

−N . Then define q(y) = e
∑

n>1 Mne
−(y/n)2 , which dominates qK ,

and is Schwartz-class. 2

The following lemma is useful for converting between multiplicative and additive characters
in a bilinear form setting. The idea used in the proof can be used very generally with various
integral transforms. Indeed, the ideas shall be used later in a more complicated situation in the
proof of Lemma 9.1.
Lemma 6.5. Let bm be complex numbers and suppose T >M ε for some ε > 0. Then∫ T

−T

∣∣∣∣ ∑
M<m62M

bmm
it

∣∣∣∣2 dt� ∫
|y|�T

∣∣∣∣ ∑
M<m62M

bme

(
my

M

)∣∣∣∣2 dy
+Oε

(
M−100

∑
M<m62M

|bm|2
)
, (6.27)

where the implied constants depend on ε > 0 only. Similarly,∫ T

−T

∣∣∣∣ ∑
M<m62M

bme

(
my

M

)∣∣∣∣2 dy � ∫
|y|�T

∣∣∣∣ ∑
M<m62M

bmm
it

∣∣∣∣2 dt
+Oε

(
M−100

∑
M<m62M

|bm|2
)
. (6.28)

Proof. The idea is basically a continuous analog of the more well-known conversion between
additive and multiplicative characters using Gauss sums. We shall prove only (6.27), the other
case (6.28) being very similar.

Let g be a smooth, non-negative, even function such that g(x) > 1 for |x|6 1, and such that
the Fourier transform of g has compact support. Similarly, let w(x) be a smooth, non-negative
function supported on (0,∞) satisfying w(x) = 1 for 1 6 x6 2. As a minor convenience, we
furthermore suppose w(x) 6 g(x). Then the left-hand side of (6.27) is

6
∫ ∞
−∞

g(t/T )
∣∣∣∣∑
m

bmw(m/M)mit

∣∣∣∣2 dt=: J, (6.29)

where we assume for convenience that bm is supported on M <m6 2M . By the Fourier inversion
theorem,

w(x/M)xit =
∫ ∞
−∞

f̂t(y)e(xy) dy, f̂t(y) =
∫ ∞
−∞

w(x/M)xite(−xy) dx. (6.30)
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An integration by parts argument shows that if |y|M � T with a large enough implied constant
depending on the support of w, we have for any C > 0,

f̂t(y)�C T
−C . (6.31)

Then, with Y = T/M , we have

J =
∫ ∞
−∞

g(t/T )
∣∣∣∣∑
m

bm

∫
|y|�Y

f̂t(y)e(my) dy
∣∣∣∣2 dt+O

(
M−100

∑
m

|bm|2
)
, (6.32)

taking C large enough with respect to ε. Write this expression for J as J1 plus the error term.

Now we open up the square to get

J1 =
∑
m,n

bmbn

∫
|y1|�Y

∫
|y2|�Y

e(my1 − ny2)
[∫ ∞
−∞

g(t/T )f̂t(y1)f̂t(y2) dt
]
dy1 dy2. (6.33)

Using the definition of f̂t, this t-integral takes the form∫ ∞
−∞

∫ ∞
−∞

w(x1/M)w(x2/M)e(−x1y1 + x2y2)
∫ ∞
−∞

g(t/T )(x1/x2)it dt dx1 dx2. (6.34)

This innermost t-integral can be expressed as T ĝ((T/2π)log(x2/x1)), where recall ĝ has compact
support, and where x1, x2 �M from the support of w. Thus, the integral is zero unless
|x1 − x2| �M/T � Y −1. We impose this condition on x1 and x2, and again write J1 as a double
sum and a quintuple integral as follows:

J1 =
∫ ∞
−∞

g(t/T )
∫ ∫

|x1−x2|�Y −1

w(x1/M)w(x2/M)(x1/x2)it

×
(∑

m

∫
|y1|�Y

bme(my1)e(−x1y1) dy1

)
×
(∑

n

∫
|y2|�Y

bne(−ny2)e(x2y2) dy2

)
dx1 dx2 dt. (6.35)

We put in absolute value signs to write this in the form |J1|6
∫
t

∫
x1

∫
x2
|
∑

m

∫
y1
||
∑

n

∫
y2
| and

then apply the simple inequality |A||B|6 1
2(|A|2 + |B|2). In our application, each of these two

terms leads to the same sum, so we have

|J1| 6
∫ ∞
−∞

g(t/T )
∫ ∫

|x1−x2|�Y −1

w

(
x1

M

)
w

(
x2

M

)

×
∣∣∣∣∑
m

∫
|y1|�Y

bme(my1)e(−x1y1) dy1

∣∣∣∣2 dx1 dx2 dt. (6.36)

We easily bound the t- and x2-integrals with absolute values, obtaining

|J1| �
T

Y

∫ ∞
−∞

w(x/M)
∣∣∣∣∑
m

∫
|y|�Y

bme(my)e(−xy) dy
∣∣∣∣2 dx. (6.37)

By comparison to (6.35), the gain is that we have executed two of the integrals. The next
step is to do essentially the same procedure as before to execute the inner y-integral. Recalling
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the assumption w(x) 6 g(x), we have after opening the square

|J1| �
T

Y

∑
m

∑
n

bmbn

∫
|y1|�Y

∫
|y2|�Y

e(my1 − ny2)
∫ ∞
−∞

g(x/M)e(−x(y1 − y2)) dx dy1 dy2.

(6.38)
The inner x-integral is Mĝ(M(y1 − y2)), so we may suppose |y1 − y2| �M−1, since otherwise
the x-integral is zero. By a similar arrangement as in the previous paragraph, we have

|J1| �
T

Y

∫ ∞
−∞

g(x/M)
∫ ∫

|y1−y2|�M−1

|y1|,|y2|�Y

∣∣∣∣∑
m

bme(my1)
∣∣∣∣2 dy1 dy2 dx. (6.39)

Bounding the x- and y2-integrals trivially, we have

|J1| �
T

Y

∫
|y|�Y

∣∣∣∣∑
m

bme(my)
∣∣∣∣2 dy. (6.40)

Changing variables y→ (Y/T )y and recalling Y = T/M completes the proof. 2

7. The mean-value results

With notation given as in Lemma 5.1, let

M(R, S, D, Q) =
∫ R

−R

∑
S6tj6S+D

αj

∣∣∣∣∑
n>1

λF×uj (n)W (n)

n
1
2

+it+itj+iT0

∣∣∣∣2 dt
+
∫ R

−R

1
4π

∫ S+D

S
ατ

∣∣∣∣∑
n>1

λF×Eτ (n)W (n)

n
1
2

+it+iτ+iT0

∣∣∣∣2 dτ dt. (7.1)

Our main technical result is the following theorem.

Theorem 7.1. We have

M(R, S, D, Q)�Q
1
2 |AF (1, 1)|2T ε, (7.2)

where the implied constant is independent of F .

In view of Lemma 5.1, Theorem 7.1 immediately implies Theorem 1.1.

The outline of the proof of Theorem 7.1 is similar to [You11] but virtually all the details
are changed for a variety of reasons. The main issue is that the GL3 form F is varying and it
is seemingly very difficult to alter the proof given in [You11] to handle this more general case.
Instead, we found new arguments that are fairly ‘soft’ compared to [You11]. In fact, we were
able to avoid any applications of stationary phase or elaborate asymptotic expansions of integral
transforms, and instead use only integration by parts.

In this section we perform some simplifications and apply the Kuznetsov formula.

Lemma 7.2. Let
∑

M γ(n/M) = 1 be a smooth dyadic partition of unity; that is, γ is a certain
smooth function with support inside the interval [1/2, 1], and M runs over powers of 2.
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Define, for any sequence of complex numbers an,

M(R, S, D, Q, M ; an) =
∫ R

−R

∑
S6tj6S+D

αj

∣∣∣∣ ∑
M/2<n6M

anλj(n)n−it−itj
∣∣∣∣2 dt

+
∫ R

−R

1
4π

∫ S+D

S
ατ

∣∣∣∣ ∑
M/2<n6M

anλ

(
n,

1
2

+ iτ

)
n−it−iτ

∣∣∣∣2 dτ dt. (7.3)

Then, with an = an,l,M defined by

an =
AF (l, n)

n
1
2

+iT0
W (nl2)γ(n/M), (7.4)

we have with N =Q
1
2

+ε,

M(R, S, D, Q)� (log N)3 sup
1�M�N

∑
l6
√
N/M

l−1M(R, S, D, Q, M ; an). (7.5)

Proof. First we insert the definitions

λF×uj (m) =
∑
l2n=m

λj(n)AF (l, n), λf×Eτ (m) =
∑
l2n=m

λ

(
n,

1
2

+ iτ

)
AF (l, n) (7.6)

into (7.1). We remark that it is tempting to think of the sum over l as almost bounded since the
n-dependence is much more difficult than the behavior with respect to l. For this reason, we use
Cauchy’s inequality in the form∣∣∣∣ ∑

nl26N

l−1cl,n

∣∣∣∣2 6 log N
∑
l6
√
N

l−1

∣∣∣∣ ∑
n6l−2N

cl,n

∣∣∣∣2. (7.7)

Thus, we obtain, with N = 2Q
1
2

+ε,

M(R, S, D, Q)� log Q
∑
l6
√
N

l−1

∫ R

−R

[ ∑
S6tj6S+D

αj

∣∣∣∣ ∑
n6l−2N

λj(n)AF (l, n)

n
1
2

+it+itj+iT0
W (nl2)

∣∣∣∣2

+
1

4π

∫ S+D

S
ατ

∣∣∣∣ ∑
n6l−2N

λ(n, 1
2 + iτ)AF (l, n)

n
1
2

+it+itj+iT0
W (nl2)

∣∣∣∣2 dτ] dt. (7.8)

We apply the partition of unity to the inner sum over n above, with M restricted to 1�M �
l−2N . Then we apply Cauchy’s inequality to this sum over M , getting that M(R, S, D, Q) is

� (log N)2
∑
M

∑
l6(N/M)

1
2

l−1

∫ R

−R

[ ∑
S6tj6S+D

αj

∣∣∣∣ ∑
n6l−2N

λj(n)AF (l, n)

n
1
2

+it+itj+iT0
W (nl2)γ

(
n

M

)∣∣∣∣2

+
1

4π

∫ S+D

S
ατ

∣∣∣∣ ∑
n6l−2N

λ(n, 1
2 + iτ)AF (l, n)

n
1
2

+it+iτ+iT0
W (nl2)γ

(
n

M

)∣∣∣∣2 dτ] dt. (7.9)

Bounding this sum over M by the number of terms, O(log N) times the supremum over all
1�M � l−2N , completes the proof. 2

We do not exploit the sum over l until the very final steps (see the remarks following (10.14))
and the reader who considers only the case l = 1 does not miss many crucial changes from the
general case.
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Next we state a crude bound that is sufficient only in some extreme cases.

Lemma 7.3. Suppose (5.4) holds. Then, for any complex numbers an, we have

M(R, S, D, Q, M ; an)�R(SD +M)(MT )ε
∑
n6M

|an|2. (7.10)

This bound is acceptable for proving Theorem 7.1 for R� T ε; it is also strong if M happens to
be small.

Proof. This follows from a variant of Iwaniec’s spectral large sieve inequality [Iwa80] in the form
given by [Mot97, Theorem 3.3]∑

S6tj6S+D

αj

∣∣∣∣∑
n6M

λj(n)an

∣∣∣∣2 +
1

4π

∫ S+D

S
ατ

∣∣∣∣∑
n6M

λ

(
n,

1
2

+ iτ

)
an

∣∣∣∣2 dτ
� (SD +M)(SM)ε

∑
n6M

|an|2. (7.11)

We apply this bound to (7.3) and integrate trivially over t. 2

For a technical reason, it is convenient to have D� ST−η for some η > 0.

Lemma 7.4. Suppose that (5.4) holds. For η > 0, there exists S′ � S such that with D′ =D/T η

we have

M(R, S, D, Q, M ; an)� T ηM(R, S′, D′, Q, M ; an). (7.12)

Proof. This follows simply by breaking up the interval [S, S +D] into subintervals [S, S +
D′], [S +D′, S + 2D′], . . . , [S +KD′, S + (K + 1)D′], where T η − 1<K 6 T η, and bounding
M(R, S, D, Q) by the number of such subintervals times the bound from the subinterval with
the largest contribution. 2

Remark . Lemmas 7.3 and 7.4 allow us to assume M � T ε and replace the assumptions (5.4) by

T ε�R� α− β, R�DT η� S� T,
T0 ∈ {α, β, γ}, Q� T 2DR(S + (α− β))(1 + (α− β)).

(7.13)

Now we state our overall goal for this section. Compare it to [You11, Lemma 7.1].

Theorem 7.5. Suppose that ε > 0, (7.13) holds, T η�M 6 T 100, and an are arbitrary complex
numbers. Then, for some smooth, non-negative Schwartz-class function g, we have

M(R, S, D, Q, M ; an)� RSD
∑
n6M

|an|2 +RS

∫ ∞
−∞

g(v/T ε)
∑

ab6MT ε/SR

1
ab

×
∑∗

r (mod b)

∣∣∣∣∑
n6M

ane

(
nr

b

)
e

(
nv

abD

)∣∣∣∣2 dv. (7.14)

The implied constant depends on g, ε, and η.

The rest of this section is devoted to proving this result. It follows from the Kuznetsov formula.
Some remarks about the form of the right-hand side are in order. The most important point is
that the unknown Hecke eigenvalues of the Maass forms are gone and replaced with explicit
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exponentials, and the right-hand side is a bilinear form. An important point is to explain the
truncation point

c6
M

SR
T ε. (7.15)

A reader familiar with the Kuznetsov formula might expect c to be instead truncated at
MT ε/SD, which can be much smaller (say if R is close to 1 and both S and D are close to
T ). This is true; however, one would obtain a weight function with a phase of shape e(2

√
mn/c)

and there would be an extra cost associated with separating the variables m and n.

Let g be a fixed non-negative Schwartz function satisfying g(x) = 1 for |x|6 1, and whose
Fourier transform has compact support. Then, by positivity,

M(R, S, D, Q, M ; an) =
∫ R

−R
[· · · ] dt6

∫ ∞
−∞

g(t/R)[· · · ] dt, (7.16)

where [· · · ] indicates the inner sums on the right-hand side of (7.3).

Let

P (r) =
(
r2 + (1

2)2

S2

)(
r2 + (3

2)2

S2

)
· · ·
(
r2 + (299

2 )2

S2

)
. (7.17)

By positivity, we attach the non-negative weight exp(−(τ − S)2/D2)P (τ) to the spectral sum
(and integral) and then relax the truncation on τ , getting

M(R, S, D, Q, M ; an)�
∫ ∞
−∞

g(t/R)
[∑
tj>0

αj exp
(
−(tj − S)2

D2

)
P (τ)

∣∣∣∣∑
n6M

λj(n)an
nit+itj

∣∣∣∣2
+

1
4π

∫
τ>0

ατ exp
(
−(τ − S)2

D2

)
P (τ)

×
∣∣∣∣∑
n6M

λ(n, 1
2 + iτ)an
nit+iτ

∣∣∣∣2 dτ] dt. (7.18)

Let

hm,n(r) =
sinh(r(π + i log(m/n)))

sinh2(πr)
P (r)

(
eπr exp

(
−(r − S)2

D2

)
− e−πr exp

(
−(−r − S)2

D2

))
,

(7.19)
so that hm,n is even and has rapid decay for r large. A computation shows for r > 0 that

hm,n(r) = 2 exp
(
−(r − S)2

D2

)
P (r)

((
m

n

)ir
+O(e−2πr)

)
. (7.20)

Thus, we have

M(R, S, D, Q, M ; an)�
∑

m,n�M
aman

[(∫ ∞
−∞

g(t/R)
(
m

n

)it
dt

)
K(m, n) +O(T−100)

]
, (7.21)

where

K(m, n) =
∑
tj

αjhm,n(tj)λj(m)λj(n) +
1

4π

∫ ∞
−∞

ατhm,n(τ)λ
(
m,

1
2

+ iτ

)
λ

(
n,

1
2

+ iτ

)
dτ.

(7.22)
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Notice that the t-integral is simply expressed in terms of the Fourier transform of g, ĝ(x) =∫∞
−∞ g(y)e(−xy) dy. Using this, and Cauchy’s inequality on the error term, we have

M(R, S, D, Q, M ; an)� R
∑

m,n�M
amanĝ

(
R

2π
log
(
n

m

))
K(m, n)

+O

(
MT−100

∑
n6M

|an|2
)
. (7.23)

Since ĝ was assumed to have compact support, then we may assume |log(n/m)| �R−1 (with an
absolute implied constant). Equivalently,

|m− n|
m

�R−1. (7.24)

We shall impose this condition in the following calculations of K(m, n). We make a detour in our
proof of Theorem 7.5 to understand the integral transform in the Kuznetsov formula as follows.

Lemma 7.6. Suppose that (7.13) and (7.24) hold. Then

K(m, n) = H0δm,n +
∑
±

∑
c6MT ε/SR

c−1S(m, n; c)H±

(
4π
√
mn

c

)
+O(T−100) +O(SDM−1), (7.25)

where

H0� SD (7.26)

and, with k(r) = (4/π2)(1 + (D/S)r)P (S +Dr) exp(−r2), with P is given by (7.17), we have

H±

(
4π
√
mn

c

)
= S

∫
|v|6T ε

k̂

(
− v

2π

)
e2i(S/D)ve

(
±m exp(−v/D)

c

)
e

(
±n exp(v/D)

c

)
dv. (7.27)

Furthermore, H±(4π
√
mn/c)� T−400 unless (7.15) holds.

Proof of Lemma 7.6. The Kuznetsov formula, Theorem 2.3, expresses K(m, n) as a diagonal
term plus a sum of Kloosterman sums. The diagonal term given by H0δm,n with

H0 = π−2

∫ ∞
−∞

r tan(πr)hm,n(r) dr (7.28)

is trivially bounded by (7.26).
The sum of Kloosterman sums takes the form

∑
c>1 c

−1S(m, n; c)H(4π
√
mn/c), where

H(x) =
2i
π

∫ ∞
0

rhm,n(r)
J2ir(x)− J−2ir(x)

cosh(πr)
dr. (7.29)

We first require a crude bound on H(x) for small values of x, so that we may truncate the c-sum.
To this end, we now show

H(x)�
(
x

S

)200

DS. (7.30)

By the following integral representation of the J-Bessel function [GR00, 8.411.4],

Jν(x) = 2
(x/2)ν

Γ(ν + 1
2)Γ(1

2)

∫ π/2

0
sin2ν θ cos(x cos θ) dθ, (7.31)
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valid for Re(ν)>−1
2 , one derives from a trivial bound and Stirling’s approximation that

J2iy+200(x)�
(

x

1 + |y|

)200

eπ|y|. (7.32)

Now in (7.29) (actually we need the variant integral over R; see (2.27)) we shift the contour
to Im(r) =−100 without crossing any poles (since P defined by (7.17) vanishes at the zeros of
cosh(πr)). Using the bound

hm,n(−100i+ y)�
(

1 + |y|
S

)302

exp
(
−(y − S)2

D2

)
, (7.33)

we immediately obtain (7.30).

Using (7.30) for x6M−1, that is, c�M2, and the trivial bound for the Kloosterman sum,
we obtain that ∑

c>M2

S(m, n; c)
c

H

(
4π
√
mn

c

)
� SD

M198
, (7.34)

which is a satisfactory error term for Lemma 7.6. For the rest of the proof, assume x >M−1.

Our next overall goal is to show thatH(x) =
∑
± H±(x) +O(T−400), whereH±(x) are defined

by (7.27). We use this estimate for x >M−1, leading to∑
c<M2

S(m, n; c)
c

H

(
4π
√
mn

c

)
=
∑
±

∑
c<M2

S(m, n; c)
c

H±

(
4π
√
mn

c

)
+O(M3T−400). (7.35)

Recalling M 6 T 100, this error term is acceptable. Using the fact that H± is small unless (7.15)
holds (which we prove below), we may then make this further truncation on c to complete the
proof.

Now we begin the development of H for larger values of x using the integral
representation [GR00, § 8.41.11], which states

J2ir(x) =
2
π

∫ ∞
0

sin(x cosh(v)− πir) cos(2rv) dv. (7.36)

After some simple manipulations, we arrive at the identity

J2ir(x)− J−2ir(x)
cosh(πr)

= tanh(πr)
2
πi

∫ ∞
−∞

cos(x cosh(v))e
(
rv

π

)
dv. (7.37)

We insert (7.37) into (7.29). An integration by parts shows that we can truncate the v-integral at
T ε with an error that is O(x−1(1 + r) exp(−T ε)) =O((1 + r) exp(−T ε/2)). Thus, we can reverse
the orders of integration to get

H(x) =
4
π2

∫
|v|6T ε

cos(x cosh(v))
∫ ∞

0
r tanh(πr)hm,n(r)e

(
rv

π

)
dr dv +O(T−200). (7.38)

Next we insert (7.20) and tanh(πr) = 1 +O(e−2πr), getting

H(x) =
8
π2

∫
|v|6T ε

cos(x cosh v)
∫ ∞

0
rP (r)

× exp
(
−
(
r − S
D

)2)(m
n

)ir
e

(
rv

π

)
dr dv +O(T−200). (7.39)
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Next we change variables r→ S +Dr and extend the r-integral to R (without a new error term),
giving

H(x) = D

(
m

n

)iS
2
∫
|v|6T ε

cos(x cosh v)e
(
Sv

π

)
×
∫ ∞
−∞

4
π2

(S +Dr)P (S +Dr) exp(−r2)
(
m

n

)iDr
× e
(
Drv

π

)
dr dv +O(T−200). (7.40)

Now we compute the r-integral as

Sk̂

(
−D
π

(
v +

1
2

log(m/n)
))

, (7.41)

where notice k̂ is a Schwartz-class function satisfying rj k̂(j)(r)�j,C (1 + |r|)−C with implied
constants depending on j and C only. With this definition,

H(x) = DS

(
m

n

)iS
2
∫
|v|6T ε

cos(x cosh v)e
(
Sv

π

)
k̂

(
−D
π

(
v +

1
2

log(m/n)
))

dv

+O(T−200). (7.42)

Since |log(m/n)| �R−1 and R�DT η, if |v| �D−1T η+ε, then the integrand is very small. In
particular, we can extend the range of integration to the whole real line without making a new
error term. Then we change variables v→ v/D − 1

2 log(m/n) and retruncate the integral, getting

H(x) = S

∫
|v|6T ε

2 cos
(
x cosh

(
v

D
− 1

2
log(m/n)

))
e

(
Sv

πD

)
k̂

(
− v
π

)
dv +O(T−400). (7.43)

Write 2 cos(y) = eiy + e−iy and correspondingly write H(x) =H0
+(x) +H0

−(x). Then

H0
±(x) = S

∫
|v|6T ε

k̂

(
− v
π

)
eiφ(v) dv +O(T−400), (7.44)

where

φ(v) = 2
S

D
v ± x cosh

(
v

D
− 1

2
log(m/n)

)
. (7.45)

Now we argue that H0
±(x) is very small if x6 SR/T ε. To see this, we write the integral as∫

|v|6T ε
f(v)e2i(S/D)v dv, f(v) = k̂

(
− v
π

)
e±ix cosh(v/D− 1

2
log(m/n)). (7.46)

A detailed but routine computation shows for |v|6D that

f (j)(v)�j,C

[
1 +

x

D

(
1
R

+
1
D

)]j
(1 + |v|)−C . (7.47)

Thus, by Lemma 6.1, the integral defining H0
± is very small unless

S

D
�ε T

ε

[
1 +

x

D

(
1
D

+
1
R

)]
. (7.48)

Since S/D > T η, by taking ε= η/2, say, and recalling D�RT−η, we conclude that H0
±(x) is

very small unless x� SRT−ε, which is equivalent to (7.15).
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Now we find an alternate formula for φ(v) to give (7.27). We begin with the observation

cosh
(
v

D
− 1

2
log(m/n)

)
=

1
2

(√
m

n
+
√
n

m

)
cosh(v/D)

− 1
2

(√
m

n
−
√
n

m

)
sinh(v/D). (7.49)

Since x= 4π
√
mn/c, we have

x cosh
(
v

D
− 1

2
log(m/n)

)
=

2π(m+ n)
c

cosh(v/D)− 2π(m− n)
c

sinh(v/D), (7.50)

which simplifies as

x cosh
(
v

D
− 1

2
log(m/n)

)
=

2πm
c

exp(−v/D) +
2πn
c

exp(v/D). (7.51)

Thus,

φ(v) = 2
S

D
v ±

(
2πm
c

exp(−v/D) +
2πn
c

exp(v/D)
)
. (7.52)

We conclude that

H(x) =
∑
±
S

∫
|v|6T ε

k̂

(
− v

2π

)
e2i(S/D)ve

(
±me−v/D

c

)
e

(
±nev/D

c

)
dv +O(T−400). (7.53)

This is what we wanted to prove. 2

Now we continue with our proof of Theorem 7.5. We apply Lemma 7.6 to (7.23). Write M0

for the diagonal term contribution,M1 for the contribution from the sum of Kloosterman sums,
and E for the error terms, that is, M=M0 +M1 + E . The trivial bound gives

M0(R, S, D, Q; an)�RSD
∑
n6M

|am|2, (7.54)

which is satisfactory for Theorem 7.5. Furthermore,

E �
∑
m6M

RSD|am|2 (7.55)

using Cauchy’s inequality, since M 6 T 100, which is also acceptable for Theorem 7.5.

For the sum of Kloosterman sums, we rewrite ĝ((R/2π) log(n/m)) as an integral, open the
Kloosterman sum, and insert absolute values to obtain the following:

M1(R, S, D, Q, M ; an)� S
∑
±

∫ ∞
−∞

∫
|v|6T ε

g(t/R)
∣∣∣∣k̂(− v

2π

)∣∣∣∣ ∑
c6MT ε/SR

1
c

∑∗

r (mod c)∣∣∣∣ ∑
m6M

amm
ite

(
rm

c

)
e

(
±me−v/D

c

)∣∣∣∣∣∣∣∣∑
n6M

ann
−ite

(
rm

c

)
e

(
±nev/D

c

)∣∣∣∣ dv dt. (7.56)

705

https://doi.org/10.1112/S0010437X11007366 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11007366


X. Li and M. P. Young

Next we apply the Cauchy–Schwartz inequality and perform some simplifications, in particular
writing |k̂(−v/2π)| � 1 for |v|6 T ε, to get

M1(R, S, D, Q; an)� S
∑
±

∫ ∞
−∞

∫
|v|6T ε

g(t/R)
∑

c6MT ε/SR

1
c

∑∗

r (mod c)

×
∣∣∣∣∑
n6M

ann
−ite

(
(r ± 1)n

c

)
e

(
±n(ev/D − 1)

c

)∣∣∣∣2 dv dt. (7.57)

The v-integral in (7.57) is set up to apply Lemma 6.4, effectively replacing e(±n(ev/D − 1)/c)
by e(±nv/cD) with a very small error term. That is, after some simple manipulations we have

M1(R, S, D, Q; an)� S
∑
±

∫ ∞
−∞

∫ ∞
−∞

g(t/R)g(v/T 2ε)

×
∑

c6MT ε/SR

1
c

∑∗

r (mod c)

∣∣∣∣∑
n6M

ann
−ite

(
(r ± 1)n

c

)
e

(
nv

Dc

)∣∣∣∣2 dv dt
+O

(
T−100

∑
n6M

|an|2
)
. (7.58)

Next we apply Lemma 6.5 to convert the n−it twist by an additive twist. In this way we obtain,
with αn = ane((r ± 1)n/c),∫ ∞

−∞

∫ ∞
−∞

g(t/R)g(v/T 2ε)
∣∣∣∣∑
n6M

αnn
−ite

(
nv

Dc

)∣∣∣∣2 dv dt
�
∫
v

∫
y�R

g(v/T 2ε)
∣∣∣∣∑
n6M

αne

(
nv

cD
+
ny

M

)∣∣∣∣2 dy dv +O

(
R−100T ε

∑
n6M

|an|2
)
. (7.59)

Then we change variables v→ v − (ycD/M) and replace the ranges of integration by y�R
and v� T ε +RcD/M 6 2T ε, using (7.15) and the fact that D� S. Thus, the quantity on the
right-hand side of (7.59) is

�R

∫
|v|�T ε

∣∣∣∣∑
n6M

αne

(
nv

cD

)∣∣∣∣2 dv +O

(
R−100T ε

∑
n6M

|an|2
)
. (7.60)

This procedure effectively removes the t-integral from the right-hand side of (7.58).
Write (r ± 1, c) = a and change variables c= ab, r =∓1 + au, where u runs modulo b such

that (u, b) = 1 and (au∓ 1, b) = 1. By positivity, we drop this latter condition. Simplifying
completes the proof of Theorem 7.5.

8. The large sieve

With Theorem 7.5 combined with the large sieve (Lemma 6.3), we are able to make significant
progress on bounding M(R, S, D, Q, M ; an). We first make a small simplification and set some
notation. For arbitrary complex numbers bn, let

MA,B(R, S, D, Q, M ; bn) =
RS

B

∫ ∞
−∞

g

(
v

T ε

)∑
b�B

∑∗

r (mod b)

∣∣∣∣∑
n6M

bne

(
rn

b

)
e

(
vn

ABD

)∣∣∣∣2 dv. (8.1)
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With this notation, we claim that Theorem 7.5 reads

M(R, S, D, Q, M ; an)�RSD
∑
n6M

|an|2 +
∑
A,B

MA,B(R, S, D, Q, M ; an), (8.2)

where the sum over A and B is over powers of 2, say, such that

AB� MT ε

SR
. (8.3)

This is immediate after changing variables v→ (ab/AB)v, extending v by positivity to say 8T ε,
and summing trivially over a�A.

Lemma 8.1. For any complex numbers bn, we have

MA,B(R, S, D, Q, M ; bn)� (RSB +RDSA)T ε
∑
n6M

|bn|2. (8.4)

Proof. Applying the additive character version of Lemma 6.3, we immediately have

MA,B(R, S, D, Q, M ; bn)� RS

AB
A(B2T ε +ABDT ε)

∑
n6M

|bn|2. (8.5)2

Corollary 8.2. If A6 (N/RSD)T ε, then

MA,B(R, S, D, Q, M ; an)�Q
1
2

+ε
∑
n6M

|an|2. (8.6)

Proof. We recall B 6MT ε/SR, so a short calculation immediately gives the result, recalling
N =Q

1
2

+ε. 2

For ease of reference, recall that (7.5) gives the relation between our main quantity of
interest, M(R, S, D, Q), and M(R, S, D, Q, M ; an). Unravelling the definitions, we have that
the contribution to M(R, S, D, Q) from A6 (N/RSD)T ε is

� T ε sup
1�M�N

∑
l6
√
N/M

l−1(RSD +N)
∑
n6M

|AF (l, n)|2

n
�Q

1
2

+ε
∑
l2n6N

|AF (l, n)|2

ln
. (8.7)

Then recall the statement of Lemma 3.2.
It is perhaps surprising how much progress one makes without using any special properties

of the coefficients an. Since the variable a occurs as the greatest common divisor of two
integers, one might expect that a= 1 is the most important case, but unfortunately larger
values of a are problematic and require new ideas. For the complementary ranges of A, that
is, A> (N/RSD)T−ε, we resorted to using the GL3 Voronoi formula. We will see that for such
sizes of A the Voronoi formula is beneficial in the sense that the dual sum is shorter than the
original sum.

9. Applying the GL3 Voronoi formula

In this section we shall apply the GL3 Voronoi formula to obtain some crucial additional savings
when A is relatively large. We begin by fixing some new notation. We write (8.1) as

MA,B(R, S, D, Q, M ; an) =
RS

B

∑
b�B

∑∗

r (mod b)

S(b, r, v), (9.1)
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where for brevity we have not displayed all the variables of S, and

S(b, r, v) =
∫ ∞
−∞

g(v/T ε)M−1

∣∣∣∣∑
n>1

AF (l, n)e
(
rn

b

)
η(n)n−iT0e

(
vn

ABD

)∣∣∣∣2 dv, (9.2)

where

η(n) =
(
n

M

)− 1
2

W (nl2)γ(n/M). (9.3)

Notice that η satisfies

xjη(j)(x)�j,C

(
1 +

x

M

)−C
. (9.4)

Now we apply Theorem 2.1 and Cauchy’s inequality to S. We obtain

S �
∑
±

∑
k∈{0,1}

∫ ∞
−∞

g(v/T ε)M−1

∣∣∣∣b∑
d|bl

∑
n>1

AF (n, d)
dn

S

(
±rl, n;

bl

d

)
Φk

(
nd2

b3l
, v

)∣∣∣∣2 dv. (9.5)

Here

Φk(x, v) =
1

2πi

∫
(σ)

(π2x)−s
Γ
(

1+σ+it+iα+k
2

)
Γ
(−σ−it−iα+k

2

) Γ
(1+σ+it+iβ+k

2

)
Γ
(−σ−it−iβ+k

2

) Γ
(1+σ+it+iγ+k

2

)
Γ
(−σ−it−iγ+k

2

) φ̃T0(−s) ds, (9.6)

where s= σ + it, and

φ̃T0(−σ − it) =
∫ ∞

0
η(x)x−iT0e2πivx/ABDx−σ−it

dx

x
. (9.7)

The cases k = 0 and k = 1 are very similar. Set

U =
M

ABD
. (9.8)

Lemma 9.1. Let V = α− β if T0 = α or T0 = β, and V = T if T0 = γ. Then we have the bound
for sufficiently large σ > 0

Φk(x, v)�σ,ε

(
U(U + T )(U + V )T ε

xM

)σ
. (9.9)

Furthermore, suppose that bm is an arbitrary finite sequence of complex numbers, and that g
is a non-negative smooth function with compactly supported Fourier transform. Then, with φ̃
given by (9.7), and any real c > 0, we have∫ ∞

−∞
g

(
v

T ε

)∣∣∣∣∑
m>1

bmΦk

(
m

c
, v

)∣∣∣∣2 dv � MT ε

U

∫
|t|6T εU

∣∣∣∣∑
m>1

bmm
iT0

√
m

c
mit

∣∣∣∣2 dt
+ T−100

∑
m>1

|bm|2. (9.10)

The pleasant feature of this lemma is that we avoided a difficult asymptotic analysis of the
complicated function Φk. The method of proof can be applied in many other situations.

Proof. We first prove (9.9). Choose σ > 0 very large compared to ε, and change variables
s→ s− iT0 in the definition (9.6). Notice that φ̃T0(−σ − i(t− T0)) =: φ̃(−σ − it) does not
depend on T0; indeed,

φ̃(−σ − it) =
∫ ∞

0
η(x)e2πivx/ABDx−σ−it

dx

x
. (9.11)
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First note the very crude bound φ̃(−σ − it)�M−σ and Stirling’s approximation∣∣∣∣∣∣∣∣
Γ

(
1 + σ + it+ i(α − T0) + k

2

)
Γ

(
−σ − it − i(α − T0) + k

2

) Γ

(
1 + σ + it+ i(β − T0) + k

2

)
Γ

(
−σ − it − i(β − T0) + k

2

) Γ

(
1 + σ + it+ i(γ − T0) + k

2

)
Γ

(
−σ − it − i(γ − T0) + k

2

)
∣∣∣∣∣∣∣∣

� (1 + |t+ (α− T0)|)
1
2

+σ(1 + |t+ (β − T0)|)
1
2

+σ(1 + |t+ (γ − T0)|)
1
2

+σ. (9.12)

Next we note that if |t|> UT ε, then integration by parts shows that φ̃(−σ − it)�C M
−σ|t|−C

for C > 0 arbitrarily large. Since α− γ � β − γ � T , we have for all three choices of T0 that

Φk(x, v)� (xM)−σ
∫ ∞
−∞

(1 + |t|)
1
2

+σ(1 + |t|+ V )
1
2

+σ(1 + |t|+ T )
1
2

+σ

(1 + (|t|/UT ε))C
dt, (9.13)

which directly gives

Φk(x, v)� T εU3/2(U + T )1/2(U + V )1/2

(
U(U + T )(U + V )

xM

)σ
. (9.14)

Choosing σ large enough compared to ε gives (9.9).
Next we prove (9.10). One could attempt to prove this by finding an asymptotic expansion

of φ̃, then applying the asymptotic form of Stirling’s approximation, opening the square, and
analyzing the triple integral with methods of oscillatory integrals. This is feasible, but it is
very complicated, so it is extremely nice that there is a simpler method presented below. It
is reminiscent of the calculation of the magnitude of a Gauss sum by computing its modulus
squared; of course, the magnitude is much easier to calculate than the argument. The proof
follows the same lines as in Lemma 6.5.

For the rest of the proof, we fix σ =−1
2 . Define

G(t) =
1

2π
π−

3
2−3σ−3it

Γ

(
1 + σ + it+ i(α− T0) + k

2

)
Γ

(
−σ − it− i(α− T0) + k

2

) Γ

(
1 + σ + it+ i(β − T0) + k

2

)
Γ

(
−σ − it− i(β − T0) + k

2

) Γ

(
1 + σ + it+ i(γ − T0) + k

2

)
Γ

(
−σ − it− i(γ − T0) + k

2

) .

(9.15)
Similarly, let

H(u) =
(
u

M

)−σ
η(u). (9.16)

Then, with this notation, we have

Φk(x, v) = x−σ+iT0

∫
|t|6UT ε

φ̃(−σ − it)x−itG(t) dt+O(T−200), (9.17)

the t-truncation coming from the rapid decay of φ̃, and

φ̃(−σ − it) =M−σ
∫ ∞

0
H(u)u−ite

(
vu

ABD

)
du

u
. (9.18)

Note that H satisfies (9.4). Let J be the left-hand side of (9.10), and write J = J1 + (error),
where this acceptable error comes from the t-truncation. Then

J1 =
∑
m,n>1

bmbn

(
m

c

)−σ+iT0
(
n

c

)−σ−iT0

M−2σ

∫ T εU

−T εU

∫ T εU

−T εU

(
m

c

)−it1(n
c

)it2
G(t1)G(t2)

×
∫ ∞

0

∫ ∞
0
H(u1)H(u2)u−it11 uit22

∫ ∞
−∞

g

(
v

T ε

)
e

(
v(u1 − u2)
ABD

)
dv
du1 du2

u1u2
dt1 dt2. (9.19)
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This inner v-integral is T εĝ((T ε(u2 − u1))/ABD), which is zero unless |u1 − u2| �ABDT−ε �
M/UT ε, recalling (9.8). For reference, u1, u2 are of size M by the support of H. Having imposed
this condition, we move the v-, u1-, and u2-integrals to the outside, getting

J1 =
∫ ∞
−∞

g

(
v

T ε

) ∫ ∫
|u1−u2|�M/UT ε

H(u1)H(u2)e
(
v(u1 − u2)
ABD

)
M−2σ

∑
m,n>1

bmbn

(
m

c

)−σ+iT0

×
(
n

c

)−σ−iT0
∫ T εU

−T εU

∫ T εU

−T εU

(
m

c

)−it1(n
c

)it2
G(t1)G(t2)u−it11 uit22 dt1 dt2 dv

du1 du2

u1u2
. (9.20)

We write this in the form

|J1|6
∫
v

∫
u1

∫
u2

∣∣∣∣∑
m

∫
t1

∣∣∣∣∣∣∣∣∑
n

∫
t2

∣∣∣∣, (9.21)

and apply the inequality |X||Y |6 1
2(|X|2 + |Y |2). Both terms lead to the same expression by

symmetry. Integrating trivially over v and the ui not occurring inside the square, we then obtain

|J1| �
M

U
M−2σ

∫
u
|H(u)|2

∣∣∣∣∑
m>1

bm

(
m

c

)−σ+iT0
∫ T εU

−T εU

(
m

c

)−it
G(t)u−it dt

∣∣∣∣2duu2
. (9.22)

We now have one fewer integral sign inside the square, compared to the original definition.
Our next step is to do the same procedure to eliminate the t-integral on the inside. Opening up
the square again, we have

|J1| �
M

U
M−2σ

∑
m,n>1

bmbn

(
m

c

)−σ+iT0
(
n

c

)−σ−iT0
∫
t1

∫
t2

(
m

c

)−it1(n
c

)it2
G(t1)G(t2)

×
∫ ∞
−∞
|H(u)|2u−it1+it2−1 du

u
dt1 dt2. (9.23)

Integration by parts shows that the inner u-integral is very small unless |t1 − t2|6 T ε. According
to this truncation, write the right-hand side of (9.23) as J2 + (error), where the error is acceptable
for the proof. Having imposed this condition, move the u-, t1-, and t2-integrals to the outside
and put in absolute value signs as follows:

J2 6
M

U
M−2σ

∫ ∞
−∞
|H(u)|2u−1

∫ ∫
|t1−t2|6T ε

∣∣∣∣∑
m>1

bm

(
m

c

)−σ+iT0−it1
G(t1)

∣∣∣∣
×
∣∣∣∣∑
n>1

bn

(
n

c

)−σ+iT0−it2
G(t2)

∣∣∣∣dt1 dt2 duu . (9.24)

As in the above treatment of J1, we use Cauchy–Schwartz on the triple integral, giving

J2�
M

U
M−2σ

∫ ∞
−∞
|H(u)|2u−1

∫ ∫
|t1−t2|6T ε

∣∣∣∣∑
m>1

bm

(
m

c

)−σ+iT0−it1
G(t1)

∣∣∣∣2 dt1 dt2duu . (9.25)

We bound the u- and t2-integrals trivially, getting

J2�
T ε

U
M−2σ

∫
|t|6T εU

|G(t)|2
∣∣∣∣∑
m>1

bm

(
m

c

)−σ+iT0−it∣∣∣∣2 dt. (9.26)
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Note the wonderful fact that |G(y)|2 = 1 for σ =−1
2 ! Thus, we get

J2�
MT ε

U

∫
|t|6T εU

∣∣∣∣∑
m>1

bmm
iT0

√
m

c
mit

∣∣∣∣2 dt. (9.27)

This is what we wanted to prove. 2

10. Reduction to the large sieve

In view of (7.5) and (8.2), write

PA,B(R, S, D, M) =
∑
l6
√
N

1
l
MA,B(R, S, D, Q, M ; an), (10.1)

where recall the definition (8.1).

Lemma 10.1. Suppose A> (N/RSD)T−ε, where (5.4) holds. Then

PA,B(R, S, D, M)�Q
1
2

+ε|AF (1, 1)|2. (10.2)

Combining Lemma 10.1 with Corollary 8.2, we complete the proof of Theorem 7.1.
We state and prove some elementary results used in the proof of Lemma 10.1.

Lemma 10.2. Let cm be an arbitrary finite sequence of complex numbers, and suppose r|b∞,
meaning all the prime factors dividing r also divide b. Then∑

x (mod b)

∣∣∣∣∑
m>1

cmS(rx, m; br)
∣∣∣∣2 = br2

∑∗

y (mod b)

∣∣∣∣ ∑
m≡0 (mod r)

cme

(
y(m/r)

b

)∣∣∣∣2. (10.3)

Proof. Opening the square, writing out the definition of the Kloosterman sum, and evaluating
the sum over x using orthogonality of characters, we have∑

x (mod b)

∣∣∣∣∑
m

cmS(rx, m; br)
∣∣∣∣2 = b

∑
m1,m2

cm1cm2

∑∗

h1,h2 (mod br)
h1≡h2 (mod b)

e

(
h1m1 − h2m2

br

)
. (10.4)

Change variables via hi = y + bzi, i= 1, 2, where y runs modulo b and zi runs modulo r. Since
r|b∞, the condition that (hi, br) = 1 is equivalent to (y, b) = 1. The sum over zi vanishes unless
r|mi, in which case the sum is r. Thus, (10.4) equals

br2
∑

r|m1,m2

cm1cm2

∑∗

y (mod b)

e

(
y((m1/r)− (m2/r))

b

)
, (10.5)

which is easily rewritten to complete the proof. 2

Lemma 10.3. Let bm be an arbitrary finite sequence of complex numbers. Then∣∣∣∣∑
m>1

bmS(0, m; s)
∣∣∣∣2 6 s

∑∗

h (mod s)

∣∣∣∣∑
m>1

bme

(
hm

s

)∣∣∣∣2. (10.6)

Proof. This follows from opening the Kloosterman sum, reversing the orders of summation, and
applying Cauchy’s inequality to the outer sum. 2
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Lemma 10.4. Suppose (b, s) = 1, r|b∞, and am is an arbitrary finite sequence of complex
numbers. Then∑∗

x (mod b)

∣∣∣∣∑
m>1

amS(0, m; s)S(rx, m; br)
∣∣∣∣2 6 br2s

∑∗

x (mod bs)

∣∣∣∣ ∑
m≡0 (mod r)

ame

(
x(m/r)
bs

)∣∣∣∣2. (10.7)

Proof. Let S be the left-hand side of (10.7). Letting cm = amS(0, m; s) and applying Lemma 10.2,
we have that

S 6 br2
∑∗

y (mod b)

∣∣∣∣ ∑
m≡0 (mod r)

amS(0, m; s)e
(
y(m/r)

b

)∣∣∣∣2. (10.8)

Next we apply Lemma 10.3 with bm = ame(y(m/r)/b), getting

S 6 br2s
∑∗

h (mod s)

∑∗

y (mod b)

∣∣∣∣ ∑
m>1

ame

(
hr(m/r)

s

)
e

(
y(m/r)

b

)∣∣∣∣2. (10.9)

Finally, we change variables h→ rh, valid since (r, s) = 1, and write x= hb+ ys, which, by the
Chinese remainder theorem, runs over (Z/bsZ)∗. 2

Proof of Lemma 10.1. Recall (9.1) and (9.5). In this way we get (we do not display all of the
parameters of PA,B)

PA,B �
RS

B

∑
l6
√
N

1
l

∑
b�B

∑∗

x (mod b)

∫ ∞
−∞

g(v/T ε)
∑
±,k

M−1

×
∣∣∣∣b∑

y|bl

∑
n>1

AF (n, y)
yn

S

(
±xl, n;

bl

y

)
Φk

(
ny2

b3l
, v

)∣∣∣∣2 dv. (10.10)

Applying Cauchy’s inequality to the sum over y, we obtain

PA,B �
RST ε

B

∑
l6
√
N

1
l

∑
b�B

∑∗

x (mod b)

∑
y|bl

∑
±,k

∫ ∞
−∞

g(v/T ε)M−1

×
∣∣∣∣b∑
n>1

AF (n, y)
yn

S

(
±xl, n;

bl

y

)
Φk

(
ny2

b3l
, v

)∣∣∣∣2 dv. (10.11)

We apply Lemma 9.1, truncating the sum over n with (9.9). In this way we obtain, noting that
the choice of ± sign and choice of k lead to the same upper bound,

PA,B �
RST ε

BU

∑
l6
√
N

1
l

∑
b�B

∑∗

x (mod b)

∑
y|bl

∫ UT ε

−UT ε

∣∣∣∣ ∑
n6N∗2

AF (n, y)′√
nbl

S

(
xl, n;

bl

y

)
nit
∣∣∣∣2 dt

+O(T−50), (10.12)

where AF (n, y)′ =AF (n, y)niT0 and

M
N∗2 y

2

B3l
� T εU(T + U)(V + U). (10.13)

For simplicity, we restrict the variables to dyadic segments as follows: l � L, y � Y , n�N2,
writing PA,B �

∑
L,Y,N2

PA,B(L, Y, N2) +O(T−50), where L, Y , N2 run over dyadic numbers.
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Rearranging (10.13) and recalling (9.8), we have

N2�
B2L

ADY 2

(
T +

M

ABD

)(
V +

M

ABD

)
T ε. (10.14)

We recall that in our application, ML2 6N =Q(1/2)+ε, AB 6 (M/RS)T ε, and A>
(N/RSD)T−ε.

The reader who considers only the case l = y = 1 can finish the proof fairly easily using
the large sieve. Unfortunately, there are other cases that require a more involved treatment; in
particular, in the opposite extreme case with y = b the Kloosterman sum above has modulus l
and one observes that the sums over x and b must be executed trivially. In this case we need to
exploit l as a modulus. In general, we need to ‘interpolate’ between these two extreme cases (y = 1
and y = b) and partially combine b and l into one modulus. This is the underlying motivation
behind the forthcoming arguments.

Now we do some elementary arrangements. Write (b, y) = d and change variables b→ db,
y→ dy, getting

PA,B(L, Y, N2)� RST ε

BUL

∑
l�L

∑
d�min(B,Y )

∑
b�(B/d)

∑∗

x (mod bd)

×
∫ UT ε

−UT ε

∑
y|l,y�Y/d

(b,y)=1

∣∣∣∣ ∑
n�N2

AF (n, dy)′√
nbdl

S

(
xl, n;

bl

y

)
nit
∣∣∣∣2 dt. (10.15)

Then write l = yrs, where r|b∞ (meaning all the prime factors of r divide b) and (s, b) = 1. This
gives

PA,B(L, Y, N2)� RST ε

BUL

∑
d�min(B,Y )

∑
b�(B/d)

∑∗

x (mod bd)

×
∫ UT ε

−UT ε

∑
y�Y/d

(b,sy)=1

∑
yrs�L
r|b∞

∣∣∣∣ ∑
n�N2

AF (n, dy)′√
nbdyrs

S(xyrs, n; brs)nit
∣∣∣∣2 dt. (10.16)

Although x runs modulo bd, the Kloosterman sum is unchanged when replacing x by a multiple
of b. The same sum is repeated at most d times, whence

PA,B(L, Y, N2)� RST ε

BUL

∑
d�min(B,Y )

d
∑
b�B/d

∫ UT ε

−UT ε

∑
y�Y/d

(b,sy)=1

∑
yrs�L
r|b∞

1
brs

×
∑∗

x (mod b)

∣∣∣∣ ∑
n�N2

AF (n, dy)′√
ndy

S(xyrs, n; brs)nit
∣∣∣∣2 dt. (10.17)

From the multiplicativity relation for Kloosterman sums, we have

S(xyrs, n; brs) = S(yrssx, ns; br)S(yrsbrx, nbr; s) = S(yrxs, n, br)S(0, n; s), (10.18)
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which becomes S(rx, n; br)S(0, n; s) after the change of variables x→ syx (observe that y is
coprime to br). Applying Lemma 10.4, we have

PA,B(L, Y, N2)� RST ε

BUL

∑
d�min(B,Y )

d
∑
b�B/d

∫ UT ε

−UT ε

∑
y�Y/d

(b,sy)=1

∑
yrs�L
r|b∞

r
∑∗

h (mod bs)

×
∣∣∣∣ ∑
n≡0 (mod r)

n�N2

AF (n, dy)′√
ndy

e

(
h(n/r)
bs

)
nit
∣∣∣∣2 dt. (10.19)

Next say s�H, where HY r � dL (note H � L) and accordingly write PA,B(L, Y, N2)�∑
H PA,B(L, Y, N2, H). In addition, group bs= c as a new variable and drop the condition r|b∞

by positivity. We get the new bound

PA,B(L, Y, N2, H)

� RST ε

ABUL

∑
a�A

∑
d�min(B,Y )

d
∑
y�Y/d

∑
r�Ld/Y H

r

×
∫ UT ε

−UT ε

∑
c�(BH/d)

∑∗

h (mod c)

∣∣∣∣ ∑
n�N2/r

AF (nr, dy)′/
√
nrdye

(
hn

c

)
nit
∣∣∣∣2 dt. (10.20)

We next apply the large sieve, Lemma 6.3, getting

PA,B(L, Y, N2, H)� RST ε

BUL

∑
d�min(B,Y )

d

×
∑
y�Y/d

∑
r�Ld/Y H

r

(
U

(
BH

d

)2

+
N2

r

)
dy

∑
n�N2/r

|AF (nr, dy)|2

nr(dy)2
. (10.21)

Making nr = q1 and dy = q2 be new variables and summing appropriately, truncating the
innermost sum at, say, q1q

2
2 6 T 100, we have

PA,B(L, Y, N2, H)� RST ε

BUL
(LUB2H +N2Y

2)
∑

q1q226T 100

|AF (q1, q2)|2

q1q2
2

. (10.22)

By Lemma 3.2, this inner sum is O(|AF (1, 1)|2T ε). Then a small calculation gives, recalling
H � L,

PA,B(L, Y, N2, H)� |AF (1, 1)|2T ε
(
RSBL+

RSY 2

BUL
N2

)
. (10.23)

We observe that the first term inside the parentheses is satisfactory, noting that

RSBL�RSL
M

RS
T ε � LMT ε� N

L
T ε. (10.24)

With (10.13), we calculate the second term inside the parentheses in (10.23) as

RSY 2

BUL
N2 �

RSB2

MU

N2Y
2M

B3L
� RSB2

M
(T + U)(V + U). (10.25)

Since V � T (recall the definition of V given in Lemma 9.1) and Y � 1, we have that this term
is

� RSB2

M
(TV + UT + U2) := I + II + III . (10.26)
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We calculate each of these terms in turn. Recall B 6 (M/ARS)T ε (see (8.3)), A> (N/RSD)T−ε,
and M 6N , so that

I � MTV

RSA2
T ε� TV D2RS

N
T ε. (10.27)

We recall that N =Q
1
2

+ε and Q� T 2DR(S + (α− β))(1 + (α− β)). Thus,

TV D2RS = TDR(V SD)� TDR(T (S + α− β)(1 + α− β))�Q, (10.28)

since V � α− β unless T0 = γ, in which case V = T and D� α− β, recalling Lemma 5.1. Thus,
I �NT ε, as desired.

We calculate

II � RSBT
AD

� TM

A2D
T ε� TR2DS2

N
T ε. (10.29)

We claim TR2DS2�Q, which follows from

RS2� (1 + α− β)(S + α− β)T. (10.30)

Thus, II �NT ε, as desired.
Finally, we have

III � RSM

A2D2
� R3S3M

N2
T ε� R3S3

N
T ε. (10.31)

Then we check R3S3�Q, whence III �NT ε. 2
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