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Abstract

Sequential decision problems can often be modeled as Markov decision processes.
Classical solution approaches assume that the parameters of the model are known.
However, model parameters are usually estimated and uncertain in practice. As a result,
managers are often interested in how estimation errors affect the optimal solution. In
this paper we illustrate how sensitivity analysis can be performed directly for a Markov
decision process with uncertain reward parameters using the Bellman equations. In
particular, we consider problems involving (i) a single stationary parameter, (ii) multiple
stationary parameters, and (iii) multiple nonstationary parameters. We illustrate the
applicability of this work through a capacitated stochastic lot-sizing problem.
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1. Introduction

The Markov decision process (MDP) framework has been used by researchers to model a
variety of sequential decision problems because it can account for the dynamics of a complex
system and handle a wide range of reward functions. An MDP is defined by a set of states,
with a set of potential actions associated with each state. Classical solution approaches assume
that the parameters of the model, including rewards, transition probabilities, and the discount
factor, are known (see [15], [16], or [26]). However, these are often estimated and uncertain in
practice. For example, it is difficult to quantify the cost of not having an item in the store upon
the arrival of a customer (stock-out cost).

White and El-Deib [25] identified optimal policies for some realization of the imprecise
parameters, termed nondominated policies, for an MDP with imprecise rewards. Harmanec [7]
studied a similar problem where the imprecision was defined in the transition probabilities,
rather than the rewards. However, a decision maker can only implement a single policy in
practice. One approach is to assume that the imprecision is resolved in the most pessimistic
scenario (see [9] and [14]). This is often referred to as the max–min policy. However, it has
been highlighted that max–min policies can be overly conservative and may not be practical in
reality [22].

Managers are often interested in how an optimal solution changes with deviations in the
model parameters. The typical approach to answering this question is to solve the problem
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for different values of the uncertain parameter, but this can be very time consuming when the
problem is large. For example, Topaloglu and Powell [20] were interested in the benefits of
adding an extra vehicle or load in a dynamic fleet management model. Sandvik and Thorlund-
Petersen [17] were interested in the conditions where there is at most one critical risk tolerance
value, such that the knowledge of whether the individual’s risk tolerance is above or below that
value is sufficient for identifying the preferred decision.

In this paper we consider an MDP where rewards are expressed as affine functions of
uncertain parameters. Problems of this form abound in the MDP literature, including the
lot-sizing problem [13, pp. 151–159], the equipment replacement problem [18], the sequential
search problem [10], and various resource allocation problems (see [3], [4], and [6]). Bounds on
the perturbations in the state values for a given policy are computed in [12]. We are interested
in the maximum range parameters are allowed to vary such that a policy remains optimal.
Hopp [8] derived bounds on the minimum perturbations in the future state values required to
change the current optimal decision (i.e. at time 0) and extended the results to perturbations in
the rewards at each state. Our model allows for dependencies between the uncertainties in the
rewards associated with different actions and states. Another important difference is that we
are not deriving bounds, but computing the actual range of values our parameters are allowed
to vary.

A single-parameter analysis provides insight on the stability of the solution with respect
to a particular parameter. However, estimation errors can exist for multiple parameters. Wen-
dell [24] proposed finding a tolerance level which indicates the maximum percentage parameters
are allowed to vary from their base value such that the optimal basis of a linear program remains
optimal. In this paper we illustrate how the maximum tolerance can be obtained for our MDP
when multiple uncertain parameters are allowed to vary simultaneously. In addition, we allow
these parameters to be nonstationary.

The primary contributions of this paper to the literature on MDPs and sensitivity analysis
are as follows.

1. We obtain the range in which a single parameter and multiple parameters are allowed to
vary while maintaining the optimality of the current solution (Propositions 1 and 2).

2. We illustrate how the maximum allowable tolerance can be computed when uncertain
parameters are nonstationary (Proposition 3) and show that it cannot be greater than the
allowable tolerance of the stationary problem (Theorem 3).

3. We derive the conditions where the tolerances of the stationary and nonstationary rewards
problems are the same (Corollary 2) and the conditions where they differ (Theorem 4). In
particular, we show that, under mild assumptions, the tolerances of lot-sizing problems
with uncertain ordering costs and backlog penalties differ when the maximum allowable
tolerance is associated with an action that changes the reorder point (Theorem 5).

This paper is organized as follows. In the next section we describe our stationary rewards
model and illustrate how single-parameter sensitivity analysis can be performed for this prob-
lem. In addition, we demonstrate how the maximum allowable tolerance can be computed
when the uncertain parameters are allowed to vary simultaneously. Next, we illustrate how
the maximum allowable tolerance can be computed for the nonstationary rewards problem. In
Section 4 we study and discuss the difference in the maximum allowable tolerance of the two
problems. We conclude with a short summary and future research directions.
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2. Stationary rewards

Consider a finite state, finite action, infinite horizon MDP. Let S and A(s) denote the set of
states and the set of actions available with s ∈ S, respectively. Each as ∈ A(s) transitions the
system from state s to state s′ with probability P as (s′). Let r̃as denote the reward associated
with as , expressed as an affine function of N uncertain parameters:

r̃as = λ
as

0 + λas x̃.

Here λ
as

0 is some known constant, x̃ = (x̃1, x̃2, . . . , x̃N )� represents the uncertain parameters,
and λas = (λ

as

1 , λ
as

2 , . . . , λ
as

N ) represents the respective known coefficients. We assume that an
estimation of x̃i is available for i = 1, 2, . . . , N . Let x = (x1, x2, . . . , xN)� denote the vector
of estimated parameter values. In addition, let ras denote the estimated reward associated with
as :

ras = λ
as

0 + λas x.

Let ρ = (ρ1, ρ2, . . . , ρN)� denote the corresponding estimation error, where

ρi = x̃i − xi

xi

,

and let �as = (�
as

1 , �
as

2 , . . . , �
as

N ) denote the corresponding coefficient, where

�
as

i = λ
as

i xi,

such that r̃as can be re-expressed as

r̃as = ras + �as ρ.

As in sensitivity analysis, we are interested in the stability of the solution obtained using
the estimated parameters x. In this section we obtain the relationship between the estimation
errors and the total reward received. In addition, we compute the range of error values where
the current solution remains optimal. Here, we consider a problem where the value of ρ is
uncertain but stationary. Since the rewards are stationary (i.e. do not vary with time), there
must exist a stationary optimal policy where the action is determined solely by the state of the
process (see [16, pp. 146–158]). Let γ and � denote the periodic discount factor and the set
of all possible stationary policies, respectively. We assume that ras is bounded and γ < 1 to
ensure that the value function is finite. Let π(s) ∈ A(s) denote the action that is taken at state s

under π ∈ �, and let V π
s (ρ) denote the value function of state s under policy π for a given ρ.

The value function of a state can be expressed by the following recursive equation:

V π
s (ρ) = rπ(s) + �π(s)ρ + γ

∑
s′∈S

P π(s)(s′)V π
s′ (ρ) for all s, π. (1)

Note that V π
s (ρ) depends on the value functions of the other states. Hence, it is conve-

nient to express (1) in matrix form. Let V π (ρ) = (V π
1 (ρ), V π

2 (ρ), . . . , V π
|S|(ρ))�, rπ =

(rπ(1), rπ(2), . . . , rπ(|S|))�,

�π =

⎛⎜⎜⎜⎜⎝
�

π(1)
1 �

π(1)
2 · · · �

π(1)
N

�
π(2)
1 �

π(2)
2 · · · �

π(2)
N

...
. . .

. . .
...

�
π(|S|)
1 �

π(|S|)
2 · · · �

π(|S|)
N

⎞⎟⎟⎟⎟⎠ ,
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and

P π =

⎛⎜⎜⎜⎝
P π(1)(1) P π(1)(2) · · · P π(1)(|S|)
P π(2)(1) P π(2)(2) · · · P π(2)(|S|)

...
. . .

. . .
...

P π(|S|)(1) P π(|S|)(2) · · · P π(|S|)(|S|)

⎞⎟⎟⎟⎠ .

We can express V π (ρ) as

V π (ρ) = rπ + �πρ + γP πV π (ρ),

(I − γP π )V π (ρ) = rπ + �πρ,

V π (ρ) = (I − γP π )−1(rπ + �πρ),

V π (ρ) = (I − γP π )−1rπ + (I − γP π )−1�πρ,

V π (ρ) = V π (0) + (I − γP π )−1�πρ. (2)

Let V (ρ) = maxπ V π (ρ). For a given ρ (including ρ = 0), the policy that maximizes
V π (ρ) can be obtained through value and/or policy iteration approaches (see [16, pp. 158–
195]). Let π̃ denote a policy that maximizes V π (0). It follows from (2) that, within the region
where π̃ is the optimal policy, the marginal change in V (ρ) is (I − γP π̃ )−1�π̃ .

In linear programs, sensitivity analysis is performed by deriving a set of necessary and
sufficient conditions for optimality based on the reduced cost of each variable and finding the
range of values for which these conditions hold [1, pp. 307–314]. In theory, MDPs can be
formulated as linear programs [11] and the allowable ρ values can be obtained by applying
results from parametric linear programming (see [5] and [23]) on the dual of the associated
linear program (see [19]). However, the set of necessary and sufficient conditions (i.e. Bellman
equations) is readily available for MDPs [2]. We state the Bellman equations for this problem,
re-express them in a compact form, and use this form to obtain the maximum allowable error
for the single-parameter and multiple-parameter problems in Sections 2.1 and 2.2, respectively.

Let P as = (P as (1), P as (2), . . . , P as (|S|)). Note that P π(s) is the sth row of P π . The
Bellman equations for the stationary rewards problem are

Vs(ρ) = max
as∈A(s)

{ras + �as ρ + γP as V (ρ)} for all s ∈ S,

and π̃ is optimal if and only if

rπ̃(s) +�π̃(s)ρ +γP π̃(s)V π̃ (ρ) ≥ ras +�as ρ +γP as V π̃ (ρ) for all s ∈ S, as ∈ A(s). (3)

Define
cπ̃,as = rπ̃(s) − ras + γ (P π̃(s) − P as )(I − γP π̃ )−1r π̃

and
bπ̃ ,as = �π̃(s) − �as + γ (P π̃(s) − P as )(I − γP π̃ )−1�π̃ .

Note that cπ̃,as is the marginal decrease in the estimated reward that results from a single
perturbation of the action at s, while bπ̃ ,as is the marginal change in the estimation error that
results from that action perturbation. Using our definitions of cπ̃,as and bπ̃ ,as , (3) can be
rewritten as

cπ̃,as + bπ̃ ,as ρ ≥ 0 for all s ∈ S, as ∈ A(s). (4)

Let H denote the region where π̃ is optimal:

H = {ρ : V π̃ (ρ) ≥ V π(ρ) for all π ∈ �}.
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Theorem 1. Given (2), H is closed and convex.

Proof. It follows from (4) that H is the intersection of closed half-spaces. Hence, H is
closed and convex.

2.1. Single-parameter sensitivity analysis

In single-parameter sensitivity analysis we are interested in the set of ρi values where
π̃ remains optimal when ρj �=i = 0. It follows from Theorem 1 that there exist constants
ρ

(l)
i , ρ

(u)
i ∈ R such that π̃ remains optimal when ρj �=i = 0 and ρi ∈ [ρ(l)

i , ρ
(u)
i ].

Proposition 1. Given (2),

ρ
(l)
i =

⎧⎪⎪⎨⎪⎪⎩
∞, b

π̃,as

i ≤ 0 for all s ∈ S, as ∈ A(s),

max
b
π̃,as
i >0 for all s,as

{
− cπ̃,as

b
π̃,as

i

}
, otherwise

and

ρ
(u)
i =

⎧⎪⎪⎨⎪⎪⎩
−∞, b

π̃,as

i ≥ 0 for all s ∈ S, as ∈ A(s),

min
b
π̃,as
i <0 for all s,as

{
− cπ̃,as

b
π̃,as

i

}
, otherwise.

Proof. Let b
π̃,as

i denote the ith entry of bπ̃ ,as . Setting ρj �=i = 0 and using our definitions

of cπ̃,as and b
π̃,as

i , we obtain the following necessary and sufficient optimality conditions from
(4):

ρi ≥ − cπ̃,as

b
π̃,as

i

when b
π̃,as

i > 0 (5)

and

ρi ≤ − cπ̃,as

b
π̃,as

i

when b
π̃,as

i < 0. (6)

Given that these hold for all values of ρi at optimality, the extreme values are of interest and
the proposition follows from (5) and (6).

Next, we illustrate how single-parameter sensitivity analysis can be conducted for a
capacitated stochastic lot-sizing problem with uncertain ordering cost and backlog penalty.
The interested reader is referred to [13] for an introduction on lot-sizing problems.

Example 1. (Capacitated stochastic lot-sizing problem.) Consider a lot-sizing problem where
the probability distribution of demand in each period is stationary and given by P(D = 0) =
P(D = 1) = P(D = 2) = 1

3 . Each item sells for $150. The inventory capacity of the system
is three and backlogging is allowed. There are a total of five states, S = {−1, 0, 1, 2, 3}.
The index of each state represents the amount of inventory that is available at the beginning
of the period. Orders are placed at the start of the period and an order must be placed if
there is no inventory. Hence, the set of feasible actions (i.e. order quantity) for each state is
A(−1) = {2, 3, 4}, A(0) = {1, 2, 3}, A(1) = {0, 1, 2}, A(2) = {0, 1}, and A(3) = {0}. We
assume that the stock arrives at the end of the period in which it is ordered and the demand is
also realized at the end of the period. The production cost of each item is $20 and the holding
cost of each item is $5 per period. The value of the ordering cost and backlog penalty are
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unclear, but believed to be $40 and $100, respectively. We analyze each uncertain parameter
independently such that N = 1 for each case. The problem extends across an infinite horizon
with a per-period discount factor of 0.9.

Let ρ1 and ρ2 denote the estimation error in the order cost and backlog penalty, respectively.
It follows that the expected reward associated with π(s) is

rπ(s) =
{

(0.9)(150)
( 1

3 + 2
3

) − 20π(s) − 40 − 100 if s = −1,

(0.9)(150)
( 1

3 + 2
3

) − 5s − 20π(s) − 40Iπ(s) otherwise,

and

�π =

⎛⎜⎜⎜⎜⎝
−Iπ(−1) −100
−Iπ(0) 0
−Iπ(1) 0
−Iπ(2) 0
−Iπ(3) 0

⎞⎟⎟⎟⎟⎠ ,

where

Iπ(s) =
{

40 if π(s) ≥ 1,

0 otherwise.

The transition probabilities are defined by

P as (s′) =
{

1
3 if − 2 ≤ s′ − (s + as) ≤ 0,

0 otherwise.

Solving the MDP described above with the policy iteration approach, we obtain π̃ =
(4, 3, 2, 0, 0) and V π̃ (0) = ($723.5, $843.5, $858.5, $908, $928.5)�. It follows from (2) that
the marginal change in V π̃ (ρ) is (−196, −196, −196, −168, −156)�ρ1 + (−100, 0, 0,

0, 0)�ρ2.
There are two uncertain parameters in this problem. We analyze the optimal region of π̃

with respect to ρ1 by setting ρ2 = 0. The corresponding cπ̃,as and b
π̃,as

i values of each action
are listed in Table 1. At state −1, the optimal decision is to order four units when ρ = 0.

Table 1: Single-parameter sensitivity analysis and τ .

s as cπ̃,as b
π̃,as

1 b
π̃,as

2 −cπ̃,as /b
π̃,as

1 −cπ̃,as /b
π̃,as

2 τs,as

−1 2 40.85 20.4 30 −2.00 −1.36 0.81
−1 3 5.5 12 0 −0.46 — 0.46
−1 4 0 0 0 — — —

0 1 40.85 20.4 30 −2.00 −1.36 0.81
0 2 5.5 12 0 −0.46 — 0.46
0 3 0 0 0 — — —
1 0 0.85 −19.6 30 0.04 −0.03 0.02
1 1 5.5 12 0 −0.46 — 0.46
1 2 0 0 0 — — —
2 0 0 0 0 — — —
2 1 34.5 28 0 −1.23 — 1.23
3 0 0 0 0 — — —
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However, if the ordering cost decreases by more than 46% (with ρ2 remaining 0), ordering
three units will result in higher expected profits than ordering four units. In addition, the
decision to order four units at state −1 is better than that of ordering two units so long as the
ordering cost does not decline by 200% of its estimated value (i.e. $40(1 − 2.00) = −$40).
Assuming that the ordering cost must be nonnegative, it follows that a−1 = 2 is suboptimal
when ρ2 = 0. It follows from Table 1 that ρ(l) = max{−2.00, −0.46, −1.23, −∞} = −0.46
and ρ(u) = min{0.04, ∞} = 0.04. Hence, π̃ remains optimal for all ρ1 ∈ [−0.46, 0.04] given
that ρ2 = 0.

In a similar fashion, we find that π̃ remains optimal for all ρ2 ∈ [−0.03, ∞], given that
ρ1 = 0, from the results in Table 1.

2.2. Tolerance approach

When there are multiple uncertain parameters, Wendell [24] proposed finding a tolerance
level τ , where τ is the maximum ratio uncertain parameters are allowed to vary from their
base value such that the optimal basis of a linear program remains optimal. Note that τ is,
by definition, nonnegative. Geometrically speaking, this entails finding the largest hypercube
that is contained in the critical region (i.e. H ). Wendell showed that the maximum allowable
tolerance, which we denote by τ ∗, can be obtained by finding the maximum tolerance with
respect to each constraint independently. Following a similar approach, we illustrate how the
tolerance level can be computed for an MDP with uncertain rewards. Let τs,as denote the
maximum tolerance allowable by (4) for state s and action as :

τs,as = max{y : cπ̃,as + bπ̃ ,as ρ ≥ 0 and |ρi | ≤ y for i = 1, 2, . . . , N}.
Proposition 2. Given (2),

τ ∗ = min
s,as

cπ̃,as∑N
i=1 |bπ̃,as

i | .

Proof. To find the maximum allowable tolerance for each constraint expressed by (4), we
consider the worst case scenario where

ρi =
{

τs,as if b
π̃,as

i ≤ 0,

−τs,as otherwise.

Since cπ̃,as is, by definition, nonnegative, we obtain from (4) the following expression for τs,as :

τs,as = cπ̃,as∑N
i=1 |bπ̃,as

i | .

Since τ ∗ cannot be larger than any of the individual tolerances τs,as ,

τ ∗ = min
s,as

τs,as = min
s,as

cπ̃,as∑N
i=1 |bπ̃,as

i | .

We reconsider Example 1, allowing for simultaneous perturbations in the ordering cost and
backlog penalty, as follows.

Example 2. (Tolerance approach.) Consider Example 1 again. When the ordering cost and
backlog penalty are allowed to perturb simultaneously, it follows from Table 1 and Proposition 2

https://doi.org/10.1239/jap/1324046012 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046012


Sensitivity analysis in Markov decision processes 961

that τ ∗ = 0.02 and is associated with the action a1 = 0. This implies that π̃ will remain optimal
so long as the ordering cost and backlog penalty do not deviate from their current estimates
by more than 2%. In particular, it is suboptimal to order when s = 1 if we underestimate the
ordering cost and overestimate the penalty cost by more than 2% each.

3. Nonstationary rewards

In this section we consider the nonstationary rewards problem where uncertain parameters
are allowed to vary at each period. Let υ denote the tolerance for the nonstationary rewards
problem. In addition, let ω represent the estimation error in the nonstationary reward problem,
where ωs,i,t denotes the value of ρi at state s at period t . We say that ω is stationary if
ωs,i,t1 = ωs,i,t2 for all t1, t2, s, and i. If ω is stationary, ρi depends only on the state that the
process is in and we denote the value of ρi at state s by ωs,i . Let 
NS

υ and 
ST
υ denote the

sets containing all nonstationary ω and stationary ω for a given υ, respectively. Let P π
s,t (i)

denote the probability of being in state i at time t under policy π given initial state s. The value
function of state s given π and ω is

V π
s (ω) =

∞∑
t=0

∑
i∈S

γ tP π
s,t (i)

[
rπ(i) +

N∑
j=1

�
π(i)
j ωi,j,t

]
. (7)

We say that π̃ is υ-optimal if

V π̃
s (ω) ≥ V π

s (ω) for all s ∈ S, π ∈ �, ω ∈ 
NS
υ . (8)

Since there are infinitely many elements in 
NS
υ , it is impossible to evaluate the υ-optimality

of a policy with condition (8). Theorem 2 below highlights that we can limit our analysis to
stationary ω.

Theorem 2. Given (7), π̃ is υ-optimal if and only if

V π̃
s (ω) ≥ V π

s (ω) for all s ∈ S, π ∈ �, ω ∈ 
ST
υ . (9)

Proof. First, we prove that π̃ is υ-optimal if condition (9) holds. We prove this by contradic-
tion. Assume that condition (9) holds and that π̃ is not υ-optimal. This implies that there must
exist some ω′ ∈ 
NS

υ \ 
ST
υ , s ∈ S, and π ′ ∈ � such that V π̃

s (ω′) − V π ′
s (ω′) < 0. It follows

from (7) that

V π̃
s (ω′) − V π ′

s (ω′) =
∞∑
t=0

∑
i∈S

γ t

[
P π̃

s,t (i)r
π̃(i) − P π ′

s,t (i)r
π ′(i)

+
N∑

j=1

(P π̃
s,t (i)�

π̃(i)
j − P π ′

s,t (i)�
π ′(i)
j )ωi,j,t

]
.

We construct a stationary ω′′ by setting

ω′′
i,j =

{
υ if P π̃

s,t (i)�
π̃(i)
j − P π ′

s,t (i)�
π ′(i)
j < 0,

−υ otherwise.

Note that ω′′ ∈ 
ST
υ . In addition, V π̃

s (ω′′) − V π ′
s (ω′′) ≤ V π̃

s (ω′) − V π ′
s (ω′) < 0, contradicting

condition (9). Therefore, condition (9) implies that π̃ is υ-optimal. The proof for the reverse
direction is straightforward and follows from the observation that 
ST

υ ⊆ 
NS
υ .
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Theorem 2 provides a set of conditions that can be used to evaluate the υ-optimality
of a policy. However, the number of policies in � can grow rapidly with the size of the
problem. Corollary 1 below provides a more compact set of conditions. Let V π (ω) =
(V π

1 (ω), V π
2 (ω), . . . , V π

|S|(ω))� and ωs = (ωs,1, ωs,2, . . . , ωs,N )�.

Corollary 1. Given (7), π̃ is υ-optimal if and only if the following Bellman equations are
satisfied:

rπ̃(s) − ras + (�π̃(s) − �as )ωs + γ (P π̃(s) − P as )V π̃ (ω) ≥ 0

for all s ∈ S, as ∈ A(s), and ω ∈ 
ST
υ .

Proof. For a given ω, the Bellman equations are necessary and sufficient:

V π̃
s (ω) ≥ V π

s (ω)

for all s ∈ S and π ∈ � if and only if

rπ̃(s) − ras + (�π̃(s) − �as )ωs + γ (P π̃(s) − P as )V π̃ (ω) ≥ 0

for all s ∈ S and as ∈ A(s). This implies that

V π̃
s (ω) ≥ V π

s (ω)

for all s ∈ S, π ∈ �, and ω ∈ 
ST
υ if and only if

rπ̃(s) − ras + (�π̃(s) − �as )ωs + γ (P π̃(s) − P as )V π̃ (ω) ≥ 0

for all s ∈ S, as ∈ A(s), and ω ∈ 
ST
υ , and the corollary follows from Theorem 2.

Next, we illustrate how υ∗, the maximum allowable tolerance for the nonstationary problem,
can be obtained from Corollary 1. Let (I − γP π )−1

s,i denote the entry in the sth row and ith
column of the matrix (I − γP π )−1. For stationary ω, the value function of a state can be
expressed as

V π
s (ω) =

∑
i∈S

(I − γP π )−1
s,i

(
rπ(i) +

N∑
j=1

�
π(i)
j ωi,j

)
. (10)

Define

f
π̃,as

i,j =
{

(1 + G
π̃,as
s )�

π̃(s)
j − �

as

j if i = s,

G
π̃,as

i �
π̃(i)
j otherwise,

where G
π̃,as

i denotes the ith entry of γ (P π̃(s) − P as )(I − γP π̃ )−1. Note that f
π̃,as

i,j is the
marginal change in the estimation error associated with state i and parameter j that result from
the action perturbation as . Substituting (10) into Corollary 1 and using our definitions of cπ̃,as

and f
π̃,as

i,j defines the following optimality conditions:

cπ̃,as +
∑
i∈S

N∑
j=1

f
π̃,as

i,j ωi,j ≥ 0 for all s ∈ S, as ∈ A(s), ω ∈ 
NS
υ . (11)

Proposition 3. Given (7),

υ∗ = min
s,as

cπ̃,as∑N
j=1 d

π̃,as

j

.
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Table 2: Computing υ.

s as cπ̃,as d
π̃,as

1 d
π̃,as

2 υs,as

−1 2 40.85 20.4 30 0.81
−1 3 5.5 12 0 0.46
−1 4 0 0 0 —

0 1 40.85 20.4 30 0.81
0 2 5.5 12 0 0.46
0 3 0 0 0 —
1 0 0.85 60.4 30 0.01
1 1 5.5 12 0 0.46
1 2 0 0 0 —
2 0 0 0 0 —
2 1 34.5 52 0 0.66
3 0 0 0 0 —

Proof. Let υs,as denote the maximum tolerance allowable by (11) for state s and action as :

υs,as = max

{
y : cπ̃,as +

∑
i∈S

N∑
j=1

f
π̃,as

i,j ωi,j ≥ 0 and |ωi,j | ≤ y for i ∈ S, j = 1, 2, . . . , N

}
.

Similar to the stationary reward case, we consider the worst case scenario and obtain the
following expression for υs,as from (11):

υs,as = cπ̃,as∑N
j=1 d

π̃,as

j

,

where d
π̃,as

j = ∑
i∈S |f π̃,as

i,j |. Hence, the maximum allowable tolerance for the nonstationary
rewards problem is

υ∗ = min
s,as

υs,as = min
s,as

cπ̃,as∑N
j=1 d

π̃,as

j

.

We re-examine our capacitated stochastic lot-sizing problem in Example 3 below by allowing
the ordering cost and backlog penalty to vary over time.

Example 3. (Nonstationary rewards.) Consider Example 1 again. When the ordering cost and
backlog penalty are allowed to perturb simultaneously at each period, it follows from Table 2
and Proposition 3 that υ∗ = 0.01 and is associated with the action a1 = 0. This implies that
π̃ remains optimal so long as the ordering cost and backlog penalty do not deviate from their
current estimates by more than 1% across all periods.

4. Tolerance gap

In the introduction we claimed that the maximum allowable tolerance obtained under the
assumption that the parameters are stationary may be overly optimistic if the values of the
uncertain parameters vary across the horizon. In this section we provide a formal proof for this
statement and highlight the conditions where the tolerances of the stationary and nonstationary
rewards problems are the same and the conditions where they differ.
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If the current decision π̃(s) is replaced by as , |bπ̃,as

j | and d
π̃,as

j represent the marginal changes
in the estimation error of the stationary and nonstationary rewards problems, respectively.
Recall that τs,as and υs,as denote the maximum allowable tolerance for state s and action as in
the stationary and nonstationary problems, respectively. We denote by τ ∗ and υ∗ the maximum
allowable tolerance for the stationary and nonstationary problems, respectively. It follows
from Propositions 2 and 3 that τ ∗ = υ∗ if |bπ̃,as

j | = d
π̃,as

j for all as and j . If that is not true,
the allowable tolerances of the stationary and nonstationary rewards problems may differ. In
particular, τ ∗ > υ∗ if |bπ̃,as

j | < d
π̃,as

j for some s and as, where τs,as = τ ∗.

Lemma 1. It holds that |bπ̃,as

j | ≤ d
π̃,as

j .

Proof. Note that b
π̃,as

j and d
π̃,as

j are the sums of the values and absolute values of f
π̃,as

i,j

across all states, respectively. Hence, it follows that

|bπ̃,as

j | =
∣∣∣∣ ∑

i∈S

f
π̃,as

i,j

∣∣∣∣ ≤
∑
i∈S

|f π̃,as

i,j | = d
π̃,as

j .

Theorem 3. It holds that τ ∗ ≥ υ∗.

Proof. The proof follows directly from Lemma 1 and Propositions 2 and 3.

Lemma 1 highlights that |bπ̃,as

j | cannot be greater than d
π̃,as

j . Theorem 3 states that the
maximum allowable tolerance obtained for a stationary rewards problem is at least as great as
(i.e. more optimistic) the maximum allowable tolerance obtained when the stationary reward
parameters assumption is relaxed.

Lemma 2. It holds that |bπ̃,as

j | < d
π̃,as

j if and only if there exist s1, s2 ∈ S where f
π̃,as

s1,j
is

positive and f
π̃,as

s2,j
is negative.

Proof. If there exist s1, s2 ∈ S where f
π̃,as

s1,j
is positive and f

π̃,as

s2,j
is negative,

|bπ̃,as

j | = |
∑
i∈S

f
π̃,as

i,j | <
∑
i∈S

|f π̃,as

i,j | = d
π̃,as

j .

If |bπ̃,as

j | < d
π̃,as

j , | ∑i∈S f
π̃,as

i,j | <
∑

i∈S |f π̃,as

i,j | and there must exist s1, s2 ∈ S where

f
π̃,as

s1,j
is positive and f

π̃,as

s2,j
is negative.

Theorem 4. It holds that τs,as > υs,as if and only if there exist some parameter j and states
s1, s2 ∈ S where f

π̃,as

s1,j
is positive and f

π̃,as

s2,j
is negative.

Proof. If there exist some parameter j and states s1, s2 ∈ S where f
π̃,as

s1,j
is positive and

f
π̃,as

s2,j
is negative, it follows from Lemma 2 that |bπ̃,as

j | < d
π̃,as

j . Since |bπ̃,as

j | ≤ d
π̃,as

j for all j

(Lemma 1), τs,as > υs,as .
If τs,as > υs,as , there exists some parameter j where |bπ̃,as

j | < d
π̃,as

j and it follows from
Lemma 2 that there exist states s1, s2 ∈ S where f

π̃,as

s1,j
is positive and f

π̃,as

s2,j
is negative.

Theorem 4 provides a set of necessary and sufficient conditions for there to be a difference
in the tolerances between the stationary and nonstationary rewards problems. In particular, the
allowable tolerance associated with action as differs if as increases and decreases the effect
of parameter j on the rewards associated with two different states. In Example 4 below we
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illustrate how this condition can be checked without performing the actual computations. Next,
we present a set of conditions where |bπ̃,as

j | = d
π̃,as

j .

Corollary 2. It holds that |bπ̃,as

j | = d
π̃,as

j if there exists k ∈ S where �
π(i)
j = 0 for all i �= k

and π ∈ �.

Proof. If �
π(i)
j = 0 for all i �= k and π ∈ �, there can be at most one nonzero f

π̃,as

i,j term
and it follows from Lemma 1 and Lemma 2 that |bπ̃,as

j | = d
π̃,as

j .

Corollary 2 provides a sufficient condition for |bπ̃,as

j | = d
π̃,as

j . In particular, when the
contribution of ρi to the value function is restricted to just a single state, the impact of ρi on
the allowable tolerance is the same, regardless of whether ρi is stationary or not. The validity
of Theorems 3 and 4 and Corollary 2 are illustrated in the following example.

Example 4. (Tolerance gap.) In Examples 2 and 3, we obtained τ ∗ = 0.02 and υ∗ = 0.01,
respectively. This result is consistent with Theorem 3, which states that τ ∗ ≥ υ∗.

Example 2 highlights that τ1,0 = τ ∗; τ ∗ will be strictly greater than υ∗ if there is a difference
in the allowable tolerance associated with not ordering when the inventory is one. Under π̃ ,
the optimal action is to order two units. If no order is placed, an ordering cost is avoided
and the probability of entering state 1 remains the same. Hence, f

π̃,0
1,1 is negative. However,

the probability of entering state −1 is increased (i.e. G
π̃,0
−1 is negative). Since �

π̃(−1)
1 is also

negative, f
π̃,0
−1,1 is positive. Hence, it follows from Theorem 4 that τ ∗ > υ∗.

Since �
π(s)
2 = 0 for all s ≥ 0, it follows from Corollary 2 that |bπ̃,as

2 | = d
π̃,as

2 for all as .

This is validated by comparing the values of |bπ̃,as

2 | and d
π̃,as

2 in Tables 1 and 2, respectively.
This implies that the impact of ρ2 on the allowable tolerances for the stationary and nonsta-
tionary rewards problems are the same and that any reduction in the allowable tolerance of the
nonstationary problem is due to the relaxation of the stationary assumption on ρ1.

In Example 1 we found that the optimal policy is to bring the inventory level up to three
whenever the inventory drops below two. We refer to this as an order-up-to policy. Next, we
will show that τ ∗ > υ∗ if the action associated with τ ∗ changes the reorder point for general
lot-sizing problems under mild assumptions.

Consider a lot-sizing problem where pi denotes the probability that demand is i. We assume
that pi is stationary (i.e. remains the same across the horizon). There is a constant lead time, a
discount factor 0 < γ < 1, linear production cost, and a convex holding cost. In addition, each
order incurs an uncertain ordering cost and each backlog item incurs an uncertain penalty cost.
As in Example 1, we model the uncertainties in the ordering cost and backlog penalty by ρ1
and ρ2, respectively. The objective is to find the policy that minimizes the long-run expected
costs.

This problem can be formulated as an MDP where the states represent the amount of inventory
available and the actions represent the amount of inventory to order. It is well known that an
optimal order-up-to policy exists for this problem for a given ρ1 and ρ2 [21].

Theorem 5. For the lot-sizing problem described above, τ ∗ > υ∗ if there exists τs,as = τ ∗,
where as changes the reorder point and pi < 1/2γ for all i.

Proof. First, we consider the case where π̃(s) > 0 and as = 0. If no order is placed at s,
there must exist some state s′ < s where G

π̃,as

s′ is negative (i.e. the probability of entering s′

is increased as a result of as). Since π̃ is an order-up-to policy, �
as′
1 is negative and f

π̃,0
s′,1 is

positive. Recall that G
π̃,as
s is the discounted expected number of subsequent visits to state s
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under as and π̃ . Since pi < 1/2γ , G
π̃,as
s < 1. Since G

π̃,as
s < 1, �

π̃(s)
j < 0, and �

as

j = 0,
f

π̃,0
s,1 is negative. Hence, it follows from Theorem 4 that τ ∗ > υ∗.

When π̃(s) = 0 and as > 0, there must exist some state s′ < s where G
π̃,as

s′ is positive
and f

π̃,0
s′,1 is negative. Since �

π̃(s)
j = 0 and �

as

j < 0, f
π̃,0
s,1 is positive. Hence, it follows from

Theorem 4 that τ ∗ > υ∗.

Theorem 5 highlights that a tolerance gap exists for lot-sizing problems where the action
associated with τ ∗ changes the reorder point when the pi are bounded from above by 1/2γ .
Since γ < 1, the upper bound is greater than 0.5 for all problems and is, in our opinion, a
reasonable assumption for most practical problems.

5. Summary

In this paper we examined how sensitivity analysis can be performed directly for an MDP
with uncertain rewards. For the single-parameter problem, we illustrated how the optimal
region of a policy can be obtained by considering the region in which the current policy is
optimal with respect to each possible action (Proposition 1). When the uncertain parameters
are allowed to vary simultaneously, we computed the maximum allowable error in the estimated
values such that the current solution remains optimal (Proposition 2), and illustrated how the
maximum allowable tolerance can be computed when the uncertain parameters are nonstation-
ary (Proposition 3) by showing that it is sufficient to consider a subset of possible estimation
errors (Theorem 2). In addition, we highlighted that the maximum allowable tolerance of the
stationary problem is at least as great as that of the nonstationary problem (Theorem 3), and
derived the conditions where the tolerances of the stationary and nonstationary problems are
the same (Corollary 2) and the conditions where they differ (Theorem 4).

This work was motivated by the fact that rewards are often estimated and uncertain in practice.
In this paper we considered a capacitated stochastic lot-sizing problem where the ordering
costs and backlog penalties are uncertain. Other sequential problems that involve uncertain
rewards include equipment replacement (e.g. uncertain salvage value), medical decision making
(e.g. value of a human life), and dynamic assignment (e.g. value of a task).

In this paper we considered MDPs where rewards are expressed as affine functions of
uncertain parameters. One extension is to consider rewards involving more general functions.
Another extension is to consider changes in other model parameters, including transition
probabilities, the discount factor, and horizon. In this paper we highlighted the conditions
where stationary uncertain parameter assumptions lead to overly optimistic tolerance levels for
a general lot-sizing problem under mild assumptions (Theorem 5). Another area of further
research is to identify conditions where this is true for other sequential decision problems.
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