https://doi.org/10.1017/jfm.2023.1006 Published online by Cambridge University Press

J. Fluid Mech. (2024), vol. 978, A18, doi:10.1017/jfm.2023.1006

F liad?

7~y On u._ﬂ-':?,&
/9 . ':I" v

A viscous vortex model for predicting the drag
reduction of riblet surfaces

J. Wongl’T, C.J. Camobreco!, R. Garcia—Mayoralz, N. Hutchins! and
D. Chung'

! Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia

ZDepartment of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

(Received 17 March 2023; revised 9 October 2023; accepted 22 November 2023)

This paper introduces a viscous vortex model for predicting the optimal drag reduction of
riblet surfaces, eliminating the need for expensive direct numerical simulations (DNSs) or
experiments. The footprint of a typical quasi-streamwise vortex, in terms of the spanwise
and wall-normal velocities, is extracted from smooth-wall DNS flow fields in close
proximity to the surface. The extracted velocities are then averaged and used as boundary
conditions in a Stokes-flow problem, wherein riblets with various cross-sectional shapes
are embedded. Here, the same smooth-wall-based boundary conditions can be used for
riblets, as we observe from the DNSs that the quasi-streamwise vortices remain unmodified
apart from an offset. In particular, the position of these vortices remain unpinned above
small riblets. The present approach is compared with the protrusion-height model of
Luchini et al. (J. Fluid Mech., vol. 228, 1991, pp. 87-109), which is also based on a Stokes
calculation, but represents the vortex with only a uniform spanwise velocity boundary
condition. The key novelty of the present model is the introduction of a wall-normal
velocity component into the boundary condition, thus inducing transpiration at the riblet
crests, which becomes relevant as the riblet size increases. Consequently, the present
model allows for the drag-reduction prediction of riblets up to the optimal size. The present
approach does not rely on the scale separation formally required by homogenisation
techniques, which are only applicable for vanishingly small riblets.

Key words: drag reduction, turbulent boundary layers

1. Introduction

Energy-saving strategies for large transport systems play an important role in mitigating
both rising energy costs and increasing carbon emissions. Large transport systems
with slender bodies, e.g. ships (Schultz et al. 2011) and aircraft (Viswanath 2002),
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primarily expend energy to overcome skin-friction drag. An approach for reducing the
skin-friction drag is through the use of riblets. Riblets are intentionally roughened surfaces,
streamwise-aligned micro-ribs that reduce drag below that of a smooth surface without
energy input (Choi, Moin & Kim 1993; Bechert et al. 1997; Garcia-Mayoral & Jiménez
2011a; von Deyn, Gatti & Frohnapfel 2022). The optimal spacing of riblets on a passenger
aircraft is of the order of 50-100 pwm (Viswanath 2002). Because of this small scale,
the widespread use of riblets today is hampered by the complexity in manufacturing,
maintenance and wear (Bushnell 2003; Choi 2013). Currently, it is uncertain whether the
performance of imperfectly manufactured or worn riblet surfaces remains acceptable and,
ultimately, cost effective across their lifespan. Particularly, the effect of riblet tip erosion
on performance has not received enough attention, with two noteworthy experiments
by Walsh (1982, 1990). To address the sensitivity of the performance change due to
imperfections, a routine yet highly accurate predictive model is needed. Previously, a
model was advanced by Luchini, Manzo & Pozzi (1991) and Luchini (1996) using the
concept of Stokes-flow protrusion heights. The model predicts that riblets with sharp
tips generally perform better (Garcia-Mayoral & Jiménez 2011a), consistent with Walsh
(1990). However, the magnitude of optimal drag reduction, which riblets attain at small
but non-vanishing sizes, is overpredicted by the model. This is because the model was
designed for vanishingly small riblets. Therefore, our aim is to develop a model to predict
the optimal drag reduction that accounts for the additional effects of non-vanishing riblet
sizes.

The paper is divided into two main parts. The first part (§§ 2-3) uses the present
direct numerical simulation (DNS) dataset to assess riblet drag-reduction predictions
based on the protrusion-height model by Luchini ef al. (1991). The first part provides
clear information to the second part (§ 4), which develops a new model that accurately
predicts the drag reduction up to the optimal riblet size. Specifically, in § 2, we outline
the method to obtain our present DNS dataset comprising several riblet shapes and
sizes around the optimal. In § 3.1, we first show that, as expected, the protrusion-height
model does not accurately predict the drag reduction for riblets of non-vanishing sizes.
However, the DNSs demonstrate that the flow above riblets remains essentially an offset
of the smooth-wall flow, as proposed by Luchini (1996), up to the optimal riblet size.
Thus, the drag reduction (log-layer velocity difference —AU™) can be quantified by the
difference between the observed origin offsets of the mean flow Eﬁ and the turbulence

Z}' (G6mez-de-Segura, Sharma & Garcia-Mayoral 2018b). Further, the DNSs show
that the Stokes-flow protrusion height for the streamwise flow hﬂL remains an accurate

prediction of ¢£;, whereas the protrusion height for the spanwise flow hir becomes an

increasingly inaccurate estimate of ZJTF for larger riblets (for notation, see table 1). In
§ 3.2, we demonstrate that the effect of wall-normal transpiration above non-vanishing
riblets is crucial to predicting EJTr accurately, as the ZJTF values of riblets agree with an
empirical equation for EJT“ proposed by Ibrahim ef al. (2021) that incorporates the effects
of transpiration. However, the empirical equation is developed based on simulations with
Robin boundary conditions and applying the empirical equation to riblets requires a
posteriori measurements from the DNS. To circumvent the need for riblet DNSs, here, we
develop a model that incorporates wall-normal transpiration effects, borrowing ideas and
insights from models for quasi-streamwise vortices surveyed in § 3.3. In § 4, we discuss
the development, methodology and validation of our present model based on a vortex flow
structure representing turbulence to accurately predict ZJT“ and, hence, the drag reduction
up to the optimal size of riblets. In §5, we conclude and discuss the outlook for the
model.
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2. Direct numerical simulation dataset

In this section, we discuss the methodology and validation of our present DNS dataset,
which will allow us to assess the limitations of the model by Luchini ef al. (1991) in § 3, and
to develop the present model in § 4. The DNSs solve the Navier—Stokes equations using a
commercial solver Cliff by Cascade Technologies Inc. (Ham, Mattsson & laccarino 2006;
Ham et al. 2007). Cliff is a second-order accurate node-based collocated finite-volume
incompressible-flow solver on unstructured grids. The code solves the following mass and
momentum equations:

ou 1 2 1dP,
Veu=0, —+V.(uu)=—-——Vp+vVu———Ii, 2.1a,b)
at P p dx

where u = (u, v, w) are the instantaneous fluid velocities in the streamwise, x, spanwise,
v, and wall-normal, z, directions, respectively, ¢ is time, p is the periodic (fluctuating)
pressure, p is the fluid density, v is the kinematic viscosity, dP/dx is the driving pressure
gradient term and i is the streamwise unit vector. The total pressure pr is decomposed into
a mean (driving) and periodic pressure, pr(x,y, z,t) = p(x,y, z,t) + P(x), where P(x)
is the input into our simulation through a spatially uniform body force. The boundary
conditions are a no-slip smooth/riblet wall, periodic x and y boundaries and slip at the top
of the domain, thus simulating an open-channel flow.

Conventional DNSs of wall-bounded turbulent flows use fine grids to resolve the small
viscous scales, while a large domain is used to capture the large outer-layer motions. To
statistically capture the flow behaviour, the size of the domain should be approximately
Ly =2mné and Ly = 76 (Lozano-Durdn & Jiménez 2014), where § is the half-channel
height, or in viscous units, L™ ~ 2500 and L;r ~ 1250 for a friction Reynolds number
Re; = 395, where the ‘4’ superscript is the normalisation with friction velocity and
kinematic viscosity v. For riblets, these simulations are costly because a large number
of cells are needed near the wall to resolve the texture. This is typically 28-32 points
per riblet spacing s™ for 8 < 5™ 50, resulting in a grid resolution of 0.1 < AT < 0.5,
which is denser than a typical smooth-wall DNS (A;r ~ 3). The high computational
costs can be reduced through the use of minimal channels, which involves reducing
the streamwise and spanwise dimensions of a conventional channel domain. Minimal
channels containing the smooth-wall buffer layer turbulence were initially introduced by
Jiménez & Moin (1991). Subsequently, Flores & Jiménez (2010) developed the minimal
channels containing the smooth-wall logarithmic layer turbulence, which was further
extended by Chung et al. (2015) to enable measurements of AU™ for rough walls
(MacDonald et al. 2017) and riblets (Endrikat et al. 2021b). By comparing the mean
velocity profiles of minimal channels with those of conventional channels, accurate
measurements of drag change can be obtained from a prespecified wall-normal range
that extends up to a critical height z;, which is proportional to the span of the channel,
L} (Flores & Jiménez 2010). Suggestions for z vary in the range of 0.3L} < zF <
O.4L;L (Flores & Jiménez 2010; Chung et al. 2015; MacDonald et al. 2017). For the
size of our minimal domain, we choose the spanwise length L;“ 2 250 (same as the
smooth-wall reference minimal-channel case). Thus, z > 100, so that the log region
is accurately captured and AU™ (i.e. the velocity difference in the log region) can be
measured. A detailed measurement of AU is outlined in Appendix A. We also set the

streamwise length L™ 2> 1000, sufficient to capture the streamwise streaks, as suggested by
MacDonald et al. (2017).
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Protrusion heights hy, hy Extrapolated origins from Stokes-flow calculations

Slip/transpiration lengths Ly, by, £, Prescribed at the wall for a Robin boundary condition

Virtual origins Ly Lyy Ly Observed origins of (direct numerical simulation)
root-mean-squared velocity profiles

Mean virtual origin Ly Observed origin of (direct numerical simulation) mean profile

Turbulent virtual origin lr Observed origin of (direct numerical simulation) Reynolds

shear stress profile

Table 1. Summary of lengths used in this paper and how they are obtained. For consistency with the literature,
we use & for those quantities proposed by Luchini et al. (1991), and ¢ for those from Ibrahim er al. (2021).

Table 2 reports the riblet flow cases and the reference smooth-wall cases. All cases are
run at a friction Reynolds number of Re; = 395, except for one smooth-wall case (S1000)
at Re; = 1000. The case IDs with an asterisk (*) are from Endrikat et al. (2021a,b, 2022)
and Modesti et al. (2021). For the larger riblets, for which data overlap permits comparison,
these DNSs demonstrate good agreement with experimental results, including spectra
and time-averaged flow within the grooves (Endrikat ef al. 2022). For minimal channels
(Flores & Jiménez 2010; MacDonald et al. 2017), the largest eddy turnover time, Lsu; /7,
i.e. the simulation time L, normalised by the characteristic period of the largest resolved
turbulent scale z./u;, is chosen to ensure that the uncertainty in the measured AU™ is
small following the guidelines established by MacDonald et al. (2017)

iy ( 91.4 )2 7.520 2.5z, 22)

Li—~6
th ¢tz Le L,

where ¢ 7T is the uncertainty in the measured AU™. Given our minimal domain, gathering
statistics for roughly L;u; /z. = 300 eddy turnover times after transients decay is sufficient
to ensure { T A £0.1 (table 2), except for the cases with longer streamwise domain length,
Lj ~ 2000, where L;u;/z. ~ 125 eddy turnovers are sufficient. These eddy turnover
times based on eddy counts (MacDonald er al. 2017) are corroborated by a statistical
convergence study for riblets by Endrikat et al. (2021b): statistics that are considered
converged based on the L;u;/z. criteria above typically exhibited differences of <1 %
between the measured (x, y, r)-averaged shear stress and the linear profile (cf. Vinuesa
et al. 2016).

The friction velocity can be obtained from two methods: (i) the nominal friction velocity,
Uy, i.e. the drag on the riblet wall per plan area (not wetted area), derived a priori from the
force balance of the domain, or (ii) the effective friction velocity, u,, measured a posteriori
at the virtual origin of turbulence, z+ = —E}r (Gémez-de-Segura et al. 2018a; Fairhall,
Abderrahaman-Elena & Garcia-Mayoral 2019; Ibrahim et al. 2021), outlined in detail in
Appendix A. For the cases considered in table 2, u, and u, differ only by a maximum of
1 %. However, AU differs by approximately 10 % up to the optimum size based on these
two friction velocities. Following the rationale of Ibrahim et al. (2021), we use u; when
measuring AU, which we report in table 2.

We carry out additional small riblet simulations, at £ 2~ 5, 8 and 10, where E;,r is the
square root of the riblet groove area (see sketches in table 2), to fill the viscous parameter
space beyond Endrikat et al. (2021b). The additional cases also utilise an adaptive mesh
refinement tool (Adapt) to refine the mesh near the wall and resolve the riblet texture, while
the mesh farther from the wall is coarser for computational efficiency yet sufficiently fine
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Figure 1. Streamwise uniform riblet mesh visualisation near the wall for present (non-asterisk) cases in table 2.
Grid-line intersections represent locations of nodes, which are closely packed near the wall (0.1 < A;' <0.5)

and are coarsened further from the wall (21 points per riblet spacing, 0.5 < A;r < 2), and further coarsened
near the top boundary (11 points per riblet spacing, 1 < A;r < 3, not shown in figure above). Riblet
cross-sectional geometries shown are (@) JLIL, (b) _A_A_, (¢) A and (d) «Ale.

to resolve all turbulent flow scales. Figure 1 illustrates some of the computational grids
from the current cases (non-asterisk case IDs in table 2). Near the crests, there are ny, = 41
points per riblet spacing, resulting in a spanwise grid size in the range of 0.1 < A;“ < 0.5.
These grid specifications are similar or more refined than previous riblet DNSs, utilising
at least ny = 24 points per riblet spacing (Goldstein, Handler & Sirovich 1995; Goldstein
& Tuan 1998; Garcia-Mayoral & Jiménez 2011b). The mesh is coarsened to n; = 21
05 < A;r < 2), starting from z+ A k* for the blade, trapezoidal and triangular riblets, or

starting from z* ~ 3k* for the asymmetric triangular riblets (figure 1). Above z* ~ 7k™,
the mesh is still finer than typical smooth-wall DNSs with 1 < Af <3 (ny = 11). The
streamwise grid spacing is approximately the same for all cases in table 2 (A} ~ 6),
finer than typical smooth-wall DNSs. Overall, these grid sizes (A} and A;r ) are also in

line with previous riblet DNSs, where A < 9 and Ay+ < 4 (Garcia-Mayoral & Jiménez
2011b, 2012). Furthermore, from the grid convergence study by Endrikat et al. (2021b),
the grid used for T950 (n; = 33, Ax™ =6 and 0.3 < Ayt < 7.1 in table 2) has been
previously shown to achieve convergence in terms of the mean velocity, turbulent stresses
and energy spectra, by comparing against two coarser grids, and one finer grid than that
of T950. The grid resolutions of the present cases are either similar to or finer than that
of T950.

The aforementioned computational demands of conventional DNSs, coupled with the
requisite fine grids near the wall, resulted in limited studies in the past (e.g. El-Samni,
Chun & Yoon 2007; Garcia-Mayoral & Jiménez 2011a,b, 2012), although experimental
data are available (e.g. Choi 1989; Bechert et al. 1997; Griineberger & Hage 2011;
von Deyn et al. 2022). For the previous small riblet DNS cases, Choi et al. (1993)
reported results for triangle riblets with tip angles of 60° (AAA) and 90° (M),
and with K; ~ 14 and 10, respectively. However, these cases were not fully resolved in

the streamwise direction (Aj{ ~ 35). More recently, El-Samni et al. (2007) performed
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Figure 2. Riblet drag-reduction performance DR (right axis) or roughness function AUT (left axis) as a

function of the square root of riblet groove area 62’. Axes on the right show the estimated percentage drag

reduction, DR converted from AU using (2.6) of Spalart & McLean (2011), based on typical laboratory or
DNS conditions (Re; =~ 500), and typical aircraft fuselage conditions (Re; ~ 50000). In the viscous regime,
the smooth-wall turbulent structures are not disrupted by the small textures, apart from their wall-normal
displacement relative to the mean flow, and thus —AU™ is the difference between the observed mean-flow
origin and the turbulence origin (Gémez-de-Segura et al. 2018b), which increases with size (Bechert et al.
1997) up to a shape-independent size of E; ~ 10.7 £ 1 (Garcia-Mayoral & Jiménez 2011b). Grey markers
are data extracted from the mean profiles of (@) Garcia-Mayoral & Jiménez (20115, 2012), (@) Bannier et al.
(2015) and (V) Malathi et al. (2022). Data from (A) Li & Liu (2019) are extracted based on their DR values
and converted to AU™. Coloured markers are present DNS data from table 2.

DNSs of thin blade riblets (_L__1 ) which showed similar results to experimental data
by Bechert et al. (1997). Garcia-Mayoral & Jiménez (2011a,b, 2012) ran DNSs of thicker
blade riblets (JLIL, k/s = 0.5, t,/s = 0.25, 5 < £ < 25) at Re; = 180 and 550 and
reported similar AU™ values (at matched Z;f) between the two Re,. Figure 2 shows that
the measured AU values from table 2 are in good agreement with numerical data from
past studies. Data from Garcia-Mayoral & Jiménez (2011h, 2012) show similar trends
with our present blade riblets. Li & Liu (2019) and Malathi er al. (2022) carried out
boundary-layer DNSs for triangular riblets (A and AAA, respectively), the same
as DNSs of Choi et al. (1993). The percentage drag reduction from Li & Liu (2019) was
converted to AU, whilst AU from Malathi et al. (2022) was found directly from their
mean profiles. These data agree well with our triangular riblet data (A v, figure 2), further
validating the present DNS solver, minimal-channel approach and grid resolution choices.
Finally, Bannier, Garnier & Sagaut (2015) performed wall-resolved large eddy simulation
(LES) on trapezoidal riblets (_LA_A_) with E; ~ 10.7. They reported AUT ~ —1.4 (e,

figure 2), which is larger by 10 % compared with our trapezoidal riblet at E; ~ 10. We
would expect a smaller percentage difference at matched size. There are no existing data in
the literature for comparison for the other geometries (i.e. MMM A A flel). Notably,
for the two-scale trapezoidal riblet simulations (LA Au), Endrikat ef al. (2022) found that
the maximum attainable drag reduction is unaffected by the secondary riblet. Endrikat
et al. (2022) also characterised the appropriate size of Z; for these two-scaled trapezoidal
riblets.
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3. Drag reduction of riblets in light of DNS data

3.1. Drag reduction in terms of Stokes-flow protrusion heights and observed virtual
origins
Luchini et al. (1991) and Luchini (1996) advanced a model for predicting riblet drag
reduction using viscous (Stokes) flow. The model predicts the roughness function AU,
which is related to the drag reduction DR, quantified by the fractional change in
skin-friction coefficient Cy relative to a baseline smooth wall, DR = 1 — Cr/Cyo, where
subscript 0 refers to the smooth wall. The roughness function AU is given by AU =
U;[) - U; at matched Re;, where U; is the mean velocity at the edge (z = §) of the

wall-bounded turbulence. Since Cr =2/ U;z, we can relate DR and AU™ at matched
8t =Re;, by DR=1— (1 — AU*/U;B)*2 ~ —2AU+/U;B for small drag changes,
or equivalently, DR ~ —(2Cyo) I/ZAU* (Spalart & McLean 2011; Garcia-Mayoral,
Goémez-de-Segura & Fairhall 2019). Figure 2 demonstrates the conversion between AU™
and DR for two values of Re;.

Figure 2 shows AU of conventionally shaped riblets (e.g. L _A_A_ \A\), after
Bechert et al. (1997), and of asymmetrical («fle) and two-scaled (LA A) geometries as a
function of the riblet size. The size is characterised by the square root of the riblet groove
cross-sectional area, K;, as defined on the right of figure 2. By using £, the optimal

(maximum) drag reduction occurs at a shape-independent size of Z;(,p, ~10.7 £ 1

(Garcia-Mayoral & Jiménez 2011a,b). For riblets below the optimal size (E; < 10.7),
—AU™ increases with ¢;. To predict this trend, Luchini er al. (1991) and Luchini

(1996) proposed a linear viscous model for —AU™ designed for vanishingly small riblets
(6; — 0)

— AU* ~ po(hf = hT) = polhy /g — hi /L) e, (3.1)

where A and & are the Stokes-flow protrusion heights to locate the virtual origins
perceived by streamwise and spanwise motions (velocities), respectively. The protrusion
heights scaled by the riblet size, /¢, and h, /{,, can be routinely obtained from
Stokes-flow calculations for a given riblet shape (Luchini et al. 1991; Bechert et al. 1997;
Griineberger & Hage 2011; Garcia-Mayoral & Jiménez 2011a), and the protrusion-height
difference (h)/€g — h /€,) expresses the effect of riblet shape on the drag performance.
The proportionality constant, o in (3.1), relates the protrusion heights to —AU™.
The ansatz of Luchini (1996) implies pno = 1. However, the empirical values, uo =
0.785 (Bechert et al. 1997; Griineberger & Hage 2011) and pp = 0.66 (Jiménez 1994;
Garcfa-Mayoral & Jiménez 20115) have also been used. Figure 3(a) shows AUT
compensated by the respective /) /{g — h) /€, and compares these DNS results with (3.1)
using the aforementioned values of 1o. Here, the 30 % scatter in g from the literature is
reproduced by the present DNS data for riblets sizes up to E; ~ 8. This scatter suggests

that o < 1 may be based on the AUT of non-vanishing riblet sizes that departs from
the linear trend of (3.1). Towards vanishingly small riblet sizes (¢ ~ 5), discrepancies for
different geometries are small and tend towards wg = 1, consistent with Luchini (1996).
However, we observe typical departures from linearity of (3.1) near the optimum (Z(‘g|r ~
10.7). Extrapolating (3.1) to the optimal size overpredicts the drag reduction by up to 40 %
(figure 3a). For riblets, which yield small drag changes, such overprediction is especially
undesirable. To account for this departure at the optimum (Z;op,), Garcia-Mayoral &
Jiménez (2011a) introduced an empirical constant 0.83 when evaluating DR and (3.1),
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Figure 3. (a) Roughness function AUT normalised by the protrusion-height difference, hj g —hyi/t,,
reproduces a scatter in wo from (3.1), which is consistent with the scatter in p¢ in the literature (indicated
by the dashed grey lines). Black marker (e) in (@) is an approximation of DR, by Garcia-Mayoral &
Jiménez (2011a,b) using o = 1. (b) Value of AUT normalised by the difference of the mean and turbulence
virtual origins, £y /€g — €1 /€, from (3.2) shows a smaller scatter than the protrusion-height normalisation
shown in (a).

DRyax = (2C10)"/20.83po(hy /Ly — hi/Le)E; o (o, figure 3a). However, the data in
figure 3(a) indicate that this empirical constant has a 20 % discrepancy.

Using the present DNS dataset, we will next review and assess the physical idea behind
the aforementioned discrepancies. The Stokes-flow protrusion heights (hﬁr and hj) in (3.1)
are meant to capture the observed virtual origins of the mean flow (Z?}) and turbulence
(KJTF), respectively. In fact, figure 3(b) shows that it is the difference in the observed virtual
origins, EJ(; - E}F (measured a posteriori from DNS data), that better quantifies —AU™.
These virtual origins are illustrated in figure 4. Here, the quasi-streamwise vortices, which
represent the turbulence, perceive an apparent origin at E; below the crest (z = —EJTF)
that depends on the conditions at the riblet crest plane: no transpiration (figure 4b) or
crest transpiration (figure 4c). We discuss the difference between these two conditions in
§3.2. The virtual origin of the mean flow is offset by ﬁ; (figure 4a), which is deeper
than EJTF for drag-reducing riblets. As such, the turbulence is effectively pushed away
from the wall, which causes the mean flow to slip near the grooves, thereby reducing
drag. Luchini (1996) linked these two virtual origins to the drag change AU by noting
that the turbulence above riblets does not change relative to a smooth wall, apart from
a shift of K“TL. If true, the relationship between AU and KZL] and E}F follows from the

stress balance (at large Re;), dU"/dzt =1 +W+, which constrains the riblet and
smooth-wall mean gradients (dU"/dz") to match when the turbulence profiles (w'w)
collapse at all wall-normal locations, i.e. are smooth-wall like. Figure 5(a) shows the
Reynolds shear stress profile (—W+) against the wall-normal distance from the riblet
crest, z*. Here, we see a scatter in —ww " between riblet shapes and sizes. In figure 5(b),
however, the same data are now shifted by their respective E;’ in the wall-normal direction,
which collapses with the smooth-wall profile, consistent with Luchini (1996). We compute
Z}' by the wall-normal shift that optimally collapses with the smooth-wall Reynolds stress
profile at heights in the range 4 < z* < 6. We also find that the energy distribution across
scales of near-wall turbulence over riblets mimics that above a smooth wall. Figure 6
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shows the premultiplied two-dimensional cospectra of Reynolds shear stress at matched
height above the virtual origin of turbulence of riblets (z* + E'; ~ 5) compared with that
of a smooth wall. Here, we observe a general trend that the near-wall turbulent structures
are smooth-wall like for riblet sizes below the optimal (EZ,r < 10). The smooth-wall-like
behaviour above riblets suggests that quasi-streamwise vortices are maintained without a
change in their statistics above the small grooves, except that they perceive an apparent
origin at 77 = —EJT“ (GOmez-de-Segura et al. 2018a). Now, in figure 4(a), if we set the
origin of the smooth-wall mean profile at z+ = —E}F, then the difference between the
origins of the smooth and riblet mean velocity profiles is E; - EJTF. And since there is a
unity (viscous-scaled) mean velocity gradient near the wall, the difference in mean velocity

approaching the crest is also UT — U(J)r = Ezr, — EJTF, where UaL is the mean velocity

above the smooth wall. Then from the stress balance, since u/'w’ * profiles collapse, the
gradient dU™ /dz™ is the same at every zT + FTL above the crest, and therefore, the velocity
difference near the crest propagates into the overlying flow (Luchini 1996). This gives

— AUt ~ 0} — €5 = (Ly/ly — tr /L], (3.2)

which we observe to be valid for riblets below the optimal size (Z; < 10.7. Figure 5(c)
shows the scatter between riblet shape and sizes in the mean velocity profiles along z ™.
In figure 5(d), the mean velocity profiles as a function of the turbulence virtual-origin
height, zT + £}, now collapse when shifted downwards by their respective E; - E;, thus
validating (3.2). We also illustrate (3.2) in figure 3(b) to contrast with (3.1) in figure 3(a).
From figure 3(b) we observe that there is still a scatter near the optimal size for (3.2) due
to an onset of departure from smooth-wall-like flows, but this scatter is smaller than that
of (3.1) shown in figure 3(a). Furthermore, we observe that the linearity between AU™
and E; near the optimum is preserved for (3.2).

The ansatz of Luchini (1996) suggests that the streamwise and spanwise protrusion

heights are identical to the virtual origins of the mean and turbulence, i.e. ZJ[; = hﬁr

and EJTF = hi, recovering (3.1) with wg = 1. Figure 7(a) demonstrates that o= hﬁ“ is
corroborated by the present data by observing that the ratio 53 /hﬁr ~ 1, even for sizes
larger than the optimal (E;‘ < 15). However, for the turbulence virtual origin, EJTF £ht,
even for riblet sizes near the optimum 5 < E; < 10.7 (figure 7b). The turbulence virtual

origins E; are generally deeper than hi (Z”TL / hi > 1), but seem to asymptote to hi towards
vanishingly small sizes (E‘gIr — 0), consistent with Luchini ez al. (1991). We also observe

that EJTF deviates less from hi for riblets with narrower (higher height-to-spacing ratio)
grooves (e.g. MMM) for sizes below the optimal (Z; < 10.7). For the post-optimal riblet

sizes (E; 2 10.7), a much larger deviation from hi is observed. Note that the value of E}'
for these post-optimal riblets does not accurately represent the turbulence virtual origin.
When attempting to collapse the Reynolds stress profile in the range 4 < z+ < 6 (to find
EJT“), the virtual origin of the Reynolds stress is not well defined due to the departure from
smooth-wall-like turbulence. For pre-optimal riblets, however, the virtual origin of the
Reynolds stress profile is the same as the smooth wall when shifted by £, as observed
in figure 5(b). Within these pre-optimal riblet sizes, we seek an accurate (viscous) drag
model capable of predicting ZJTF for all riblet shapes. One reason E}' > hi is because
the calculation of hir neglects transpiration at the riblet crest plane (Gémez-de-Segura
et al. 2018a). Here, transpiration refers to the spanwise-varying wall-normal flow in the
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Figure 4. Small (viscous-scaled) riblets offset the apparent origins of the mean and turbulent flows downwards
by (a) Ly and (b,c) £, respectively, relative to the riblet crests (z = 0). The turbulence (quasi-streamwise
vortices) does not change relative to a smooth wall, apart from the £7 offset (Luchini 1996). The difference
between the offsets quantifies the drag reduction, —AUT ~ £$ - Z;“ (Luchini 1996; Garcia-Mayoral et al.
2019). (b) Luchini er al. (1991) suggested that the near-wall turbulence is dominated by spanwise motions,
which is valid for vanishingly small riblets. (c¢) Presently, we include the effects of transpiration at the crest
plane, which is crucial in setting Z}L (Gomez-de-Segura et al. 2018a; Ibrahim et al. 2021) for non-vanishing
riblets.

cross-plane (predominantly induced by quasi-streamwise vortices), and does not refer to
the variations of the streamwise velocity in the streamwise direction (cf. Bottaro 2019). The
slip/transpiration simulations of Habibi Khorasani et al. (2022), which permit transpiration
in both of these senses, show that it is indeed transpiration due to spanwise variation of
the spanwise velocity that determines the displacement of quasi-streamwise vortices, and
thus to the near-wall turbulent mixing and the generation of Reynolds stresses upon which
E}' is defined.

3.2. Transpiration effects at the riblet crest plane

Gomez-de-Segura et al. (2018a) and Ibrahim et al. (2021) show that the turbulence
virtual origin Z}r is not set by the virtual origin for the spanwise velocity alone, but
that wall-normal velocity (transpiration) also plays a role. They performed textureless
DNS channel simulations with a Robin boundary condition prescribed on a reference
plane (z = 0) for the streamwise (u|,—0 = €x0u/0dz|;—0), spanwise (v|,—o = £,0v/3z|;=0)
and wall-normal (w|,—o = £,0w/0z|,—0) instantaneous velocities, where £, ¢, and
£, are prescribed slip/transpiration lengths. These DNSs are termed slip/transpiration
simulations. Physically, the streamwise and spanwise slip lengths, £, and ¢,, correspond
to the local equivalent distances below the reference plane at which a no-slip boundary
condition is satisfied if the flow field is extrapolated linearly below the reference plane
(Lauga & Stone 2003). For the wall-normal velocity, however, £, does not convey a slip
effect but provides a local transpiration at the reference plane (Gémez-de-Segura et al.
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Figure 5. (a,b) Reynolds shear stress for small riblets (Z; < 10.7) with (a) the wall-normal coordinate

origin at the crest, z, and (b) the wall-normal origin at the turbulence virtual origin, z* +E}', which
displays a smooth-wall-like behaviour. Inset shows the same profiles with linear-scaled wall-normal coordinate.
(c,d) Mean velocity profile for all small riblets (E;,r < 10) as a function of (c) the crest-origin height, z*,

and (d) turbulence virtual-origin height, z* +£;“. The velocity profiles in (d) are shifted downwards by
the respective Z; — Z; that collapse perfectly with the smooth-wall profile (Z; = Z}r =0), hence —AUT ~
€$ — E; (Gomez-de-Segura et al. 2018a; Garcia-Mayoral et al. 2019; Ibrahim et al. 2021).

2018a). The slip/transpiration simulations of Gémez-de-Segura et al. (2018a) and Ibrahim
et al. (2021) demonstrate that EJTF does not depend on the prescribed streamwise slip length
€7, no matter how large, but only on both £ and £ (cross-flow slip and transpiration

lengths). This dependency suggests that EJTF is the origin perceived by the quasi-streamwise
vortices that induce velocities in y and z (cf. Habibi Khorasani et al. 2022), as first proposed
by Luchini et al. (1991). The independence to ¢, meanwhile, suggests that the origin
of the streaks (the streamwise velocity fluctuations) does not influence EJTF (figure 11 of
Ibrahim et al. 2021).

From the results of these slip/transpiration simulations, Ibrahim ez al. (2021) proposed

an empirical expression for E; in the smooth-wall-like regime

0y =€)

o+ , ifet > e,
G~ " THE —6)/5 Co (3.3)
eF if ¢ <¢f,

as a function of the virtual origins of the spanwise and wall-normal root-mean-squared
(r.m.s.) velocities, £;" and £;}, respectively. These virtual origins (¢, and ;) are computed
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Figure 6. Premultiplied two-dimensional cospectra of Reynolds shear stress, & /c;r E"
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where A, and A, are the streamwise and spanwise wavelengths. Contours

for smooth walls (———) are compared with contours for riblets (filled). All available E; < 8 riblets show
smooth-wall-like turbulence, whilst the onset of deviation from smooth walls is observed to occur at E; ~ 10,

except for the two-scale trapezoids (LAA_A ) at E';f ~ 7. For large riblets (lZ;r = 20), the co-spectra contours
generally break at /l:,r ~ st (——), which indicates pinning of turbulent structures by the riblet textures. Boxes

near the top delimit the region of Kelvin—-Helmholtz rollers (Garcfa-Mayoral & Jiménez 20115), which are

present in _L_P_ and MMM (Endrikat ef al. 2021a).
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Figure 7. Comparison between (a) the observed mean virtual origin E; from the DNS, and Stokes-flow
streamwise protrusion height hm and between (b) the observed turbulent virtual origin from the DNS ¢, and
Stokes-flow spanwise protrusion height 4, for non-vanishing riblet sizes, Z; 2 5. The mean virtual origin E;
is computed by the distance from the crest to the virtual origin of the linearly extrapolated mean velocity profile

with a gradient measured locally at z+ & 1. The turbulence virtual origin K}L is computed by the wall-normal
shift that best collapses the smooth-wall Reynolds stress profile within heights in the range 4 < z+ < 6.

by collapsing the near-wall r.m.s. profiles from the DNSs with that of the smooth wall, and
are related to (but distinct from) the slip/transpiration lengths (E;r and ). Here, when
transpiration is allowed at the boundary-condition plane (non-zero r.m.s. wall-normal
velocity, i.e. £ #0), the quasi-streamwise vortices are able to penetrate closer to the
wall, which deepens the turbulence virtual origin KJTF (GOmez-de-Segura et al. 2018a), as
shown by (3.3).

For pre-optimal riblets (Iil‘gIr < 10.7), we presently use (3.3) to explain the relationship
between E}F and transpiration (i.e. Z;; ). Figure 8(a) compares the DNS-obtained KJTF and
the empirical ZJT“’ﬁ[, showing good agreement, except for the two-scale trapezoidal riblets
(LA ML) which exhibit the onset of departure from smooth-wall-like turbulence at E; ~7
(figure 6m). Figure 8(b) demonstrates that all the riblet geometries tested here come close
to satisfying £ ~ ¢ and ;) #0, the latter showing that crest-transpiration effects are
relevant. As such, £ ~ ¢;7 ~ £} according to (3.3). This agreement (that £5 ~ £} ~ ¢;)
is shown graphically in figure 9, where the r.m.s. cross-flow velocity profiles (v'* and w'*)
of riblets collapse with those of the smooth wall after a wall-normal shift of Z}L (contrast
figure 9a,b). In the case of non-vanishing riblets, the a priori spanwise protrusion height
hir differs from the a posteriori spanwise virtual origin ¢, (and from K“TL), as uniform v
and zero w (which are used to calculate hi) cannot adequately represent the finite length
scale v and w fluctuations, typical of near-wall streamwise vortices near the crest.

Figures 9(c) and 9(d) show that the r.m.s. streamwise vorticity fluctuation intensities,
/", for riblets also collapse with the smooth wall when shifted by ZJTF (EJTr having been
determined from the Reynolds shear stress), suggesting a strong correspondence between
the streamwise vorticity and Reynolds shear stress. This collapse is also observed in the
o/ profiles from slip/transpiration simulations of Gémez-de-Segura & Garcia-Mayoral
(2020) when £, & ¢;}. For the streamwise r.m.s. profiles «'", a shift of £} do not result
in the collapse with the smooth-wall profile (see different peaks at z+ & 15 and slopes
at z < 5 in figure 9b); a similar behaviour was observed in the «/* profiles of Ibrahim
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Figure 8. (a) Turbulence virtual origin of riblets, £; from DNS agree with €7 4 for £5 < 10.7 with the
exception of A A riblets due to an onset of non-smooth-wall-like turbulence at l;' ~ 7 in figure 6.
(b) Riblets of sizes 62{ < 10.7 are in the ¢ ~ £} regime regardless of shape, and thus, based on the empirical
fit (3.3) by Ibrahim et al. (2021), z;ﬁ, A
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Figure 9. (a,b) Root-mean-squared streamwise ('), spanwise (v'") and wall-normal (w'") velocity
fluctuations and (c,d) streamwise vorticity fluctuation profiles for small riblets (llgr < 10.7) and smooth wall
(S395) from table 2 as a function of (a,c) z* (crest origin) and (b,d) z+ + Z‘TL (turbulence virtual origin). The
collapse of v/ and w'™ profiles in (b) further corroborates (3.3), whilst that in (d) is consistent with the profiles
from the slip/transpiration simulations of Gémez-de-Segura & Garcia-Mayoral (2020).
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et al. (2021). This implies that the streamwise fluctuations do not contribute to setting the
turbulence virtual origin, E}L.

This validation of (3.3) with riblets suggests that EJTF can be predicted accurately when
incorporating crest-transpiration effects. Presently, we propose a model to quantify EJTF a
priori by explicitly modelling an effect of the quasi-streamwise vortices near the wall,
bypassing the empirical expression to find EJTF. In doing so, we will be able to form a
physically justified model of the non-trivial behaviour of the empirical model (3.3).

3.3. Models of quasi-streamwise vortices

Vortical structures that consist of spanwise-varying cross-flow velocities have been
previously modelled as a sinusoidal wave with one or a combination of two spanwise
wavelengths, /l;r (Coles 1978; Chapman & Kuhn 1986; Pollard et al. 1994). Pollard
et al. (1994) proposed a spanwise and time-varying sinusoidal function for the prescribed
upper bound streamwise (u'), spanwise (v') and wall-normal (w’) velocity fluctuations,
using two values of A7 to model the autonomous behaviour of turbulence. Using these
upper boundary conditions, they numerically solved the Navier—Stokes equations in a
two-dimensional height-restricted domain (L} ~ 40) with no-slip smooth or riblet wall
at the bottom. This model is similar to that of Chapman & Kuhn (1986), where they also
solved the Navier—Stokes equation in a two-dimensional height-restricted domain, but only
for a smooth wall (see also Minnick 2022). Both models by Pollard et al. (1994) and
Chapman & Kuhn (1986) resolve the turbulence profile (u'w") for both smooth and riblet
walls, which can be used to predict ZJTF. However, these models require a Navier—Stokes
simulation (involving the nonlinear terms). Coles (1978) suggested a simpler viscous
sublayer model for the turbulence by approximating the velocity fluctuations using a
time-independent, sinusoidal function, where the amplitudes are height dependent, tuned
using an equation for the mean sublayer profile by Spalding (1961). These velocities are
approximated using one mode with a spanwise wavelength of A7 = 100, following from
the typical spanwise spacing between two adjacent near-wall coherent streaks (Kline ef al.
1967; Smith & Metzler 1983). Using this viscous sublayer model by Coles (1978), a
turbulence profile up to z* A~ 15 can be obtained. The viscous sublayer model by Coles
(1978) is straightforward, but does not provide an extension to riblet walls. The model from
Pollard et al. (1994) is able to include the riblet wall, but an unsteady numerical simulation
of the two-dimensional Navier—Stokes equations is required.

These aforementioned models motivate our present modelling approach in §4. We
briefly discuss the present approach with the aid of an instantaneous wall-normal velocity
field in the cross-plane in figure 10. In this region, a single isolated quasi-streamwise
vortex induces an ejection event (Robinson 1991), which lifts up a streak, that is spaced
approximately 100 viscous units from the neighbouring streak (Kline et al. 1967; Smith
& Metzler 1983). These quasi-streamwise vortices are invariant across the outer-flow
geometry and Reynolds number (Schlatter et al. 2014). Each vortex has an average
diameter of d* ~ 20—40 (Kim, Moin & Moser 1987; Robinson 1991) and is essentially
streamwise aligned with a length of 300 viscous units (Jeong et al. 1997). The cores of
these vortices are, on average, located 20 viscous units above a smooth wall (Kim et al.
1987). This average is based on the location of the local peak in the r.m.s. streamwise
vorticity profile (figure 9¢,d).

The scales of the quasi-streamwise vortices inform the region of interest for the present
model. Here, we employ a two-dimensional domain with a smooth or riblet wall at the
bottom, following Pollard er al. (1994), but we solve the (viscous) Stokes equations,
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Figure 10. Instantaneous wall-normal velocity field in the yz-plane of the smooth-wall minimal-channel case
(S395). Mean flow is out of the page. Near the wall (10 < zT < 20), the intense wall-normal-velocity regions
(dark blue and dark red) are induced by quasi-streamwise vortices (circular arrows). Grey arrows indicate the
cross-flow velocity field, where ejection events (which lift up streaks) can be identified and observed to have a
spacing of about 100 viscous units in the span (Kline ez al. 1967; Smith & Metzler 1983). On average, the core
diameter of these vortices are 30 viscous units (dashed circular region of intense streamwise vorticity) with
the centre (‘4 symbols) located 20 viscous units above the wall. The dashed rectangular area represents the
region of interest for the viscous vortex model, where the upper boundary is exposed to an overlying vortex
that induces wall-normal (transpiration) and spanwise fluctuations.

further restricting the domain height to the near-wall region, z+ ~ 12 (see shaded region,
figure 10). Since the ZJTF shift is near the riblet wall, we do not need an explicit model for
quasi-streamwise vortices (including their autonomous behaviour) farther away from the
riblet wall. Instead, restricting the domain height to the near-wall region allows us to model
the viscous response below these vortices. As such, the boundary condition at z* ~ 12 of
our present model is an ensemble-averaged flow induced by quasi-streamwise vortices,
characterised by spanwise and wall-normal velocities varying sinusoidally in the spanwise
direction and modelled using a single wavelength, /l;r , similar to Coles (1978). Jiménez,

del Alamo & Flores (2004) noted that the spanwise wavelength of a vortex is /I;L ~ 50,
as they observed the peak in the wall-normal velocity spectral density at /l;r ~ 50 and

A ~ 300, aligning closely with the signature of a quasi-streamwise vortex (Kim ez al.
1987; Robinson 1991; Jeong et al. 1997; Schlatter et al. 2014). In Appendix B, we perform
a parameter calibration and sensitivity study to further inform our choice of /l;“ = 50. We

further show in §4 that a single /1; from the full turbulent flow signal is sufficient to
determine ZJTF. We neglect the streamwise velocity u because it is not responsible in setting

KJTF (Ibrahim et al. 2021). Since u is absent, the present model does not provide a turbulence

profile u’w’. Instead, we calculate E}r from the model by collapsing the r.m.s. streamwise

vorticity profiles with a smooth-wall reference case. Indeed, the r.m.s. vorticity profiles
also shift with the turbulence above riblets as shown in figure 9(d).

The spirit of the model is similar to the stretched spiral vortex by Lundgren (1982),
where a simple flow structure allows us to calculate properties of the turbulent flow (cf.
Pullin & Saffman 1993). In our present model, we allow a simple vortical structure to
interact with non-vanishing riblet textures in order to yield EJT“. The present approach
departs from homogenisation techniques, which require the texture sizes to be vanishingly
small compared with the turbulent scales. It also bypasses resolving the autonomous,
nonlinear behaviour of turbulence over riblets (Pollard et al. 1994; Minnick 2022), by
predicting an averaged near-wall response induced by a quasi-streamwise vortex.
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4. The viscous vortex model

The present model, which we term the viscous vortex model, predicts EJT“ by modelling
the averaged near-wall response below a quasi-streamwise vortex governed by the steady,
two-dimensional Stokes equations. The key aspect of the viscous vortex model, in contrast
to the homogenisation approaches of Luchini ef al. (1991) and Bottaro (2019), is that it
does not require scale separation between turbulent flow structures and riblet textures.
The model is designed to be applicable for non-vanishing, optimal riblet sizes where
turbulent flow structures and riblet textures are comparable. We further demonstrate that
the viscous vortex model is calibrated by smooth-wall DNS data alone, as we observe
from the DNSs that the unpinned, smooth-wall-like nature of quasi-streamwise vortices
persists even above riblet surfaces (see § 4.3). This observation suggests that the influence
of riblets on the behaviour of these vortices is relatively limited, and the viscous vortex
model remains applicable even in the presence of riblets up to the optimal size.

4.1. Formulation and methodology

This section includes a brief overview of the formulation and methodology of the viscous
vortex model. We discuss further details of the model in §§ 4.2—4.3.

Figure 11 shows the viscous vortex domain used to model the flow below a
quasi-streamwise vortex (representing turbulence). Here, we model a two-dimensional
flow in the cross (yz) plane, i.e. d/dx = 0, given that the quasi-streamwise vortices are
relatively long, 2300 (Jeong et al. 1997; Schlatter et al. 2014) compared with the optimal
riblet spacing (st & 15, table 2). The model is an ensemble-averaged flow structure
below a quasi-streamwise vortex (figure 10). The strength of this averaged structure is
obtained by averaging the cross-flow Fourier amplitudes from smooth-wall DNSs (see
§4.2). Nonlinearity is essential in setting the strength of the near-wall structures (streaks
and vortices) of the autonomous self-sustaining process in the buffer region 10 < z+ < 30
(e.g. Jiménez 2018). However, by modelling only the flow very near the wall below
the self-sustaining process in the buffer layer, we bypass directly contending with the
nonlinearity. Instead, we only use a product of this nonlinear process, namely the strength
of the vortical structures, as model input, which we measure once in a smooth-wall
simulation since this part is identical to that of small riblets (e.g. figure 6). Thus, the
modelled flow is governed by the steady Stokes equations

1dp 9%v N 3%v 0 1dp 92w N 32w v N w_
-+ v9|l—=+—])=0, ———4+V|—+—1]=0, —+— =0,
p oy 0y2 072 p 0z R e dy 0z
(4.1a—c)

which are derived by neglecting nonlinearity and ensemble averaging the y and z
components of (2.1). We neglect the x component of (2.1) because EJTF only depends on the
cross-flow velocities (Ibrahim et al. 2021). Up to here, this is the same set-up as that for
calculating hi’ (Luchini et al. 1991), that is meant to be K}r. However, instead of prescribing
spanwise-homogeneous, or infinitely large scale velocities at the top (Luchini et al. 1991),
we will instead prescribe the top velocities with a given scale (wavelength) and intensities
(amplitudes)

w(y,z=h) = —Asin(By), v(y,z=h)= —Bsin(fy+ @), (4.2a,b)

as illustrated at the top of figure 11. Here, A and B are the prescribed amplitudes, @ is the
prescribed phase difference, £ is the prescribed height of the model domain measured
from the riblet crest and B is the period that is related to the prescribed wavelength,
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Figure 11. The viscous vortex model. Stokes flow (4.1) is solved in the grey-coloured two-dimensional domain
with the given spanwise and wall-normal velocity boundary condition at the top (z = h), periodic sides and a
no-slip smooth or riblet wall at the bottom. For the riblet surface, a uniform average of the solutions between
A = 0and A = s along the coordinate n = y + A is performed to incorporate the unpinned, smooth-wall-like
character of quasi-streamwise vortices. The model turbulence virtual origin, £7,yyv, is measured by the negative
offset of the height of the domain 4 measured from the crest plane such that the r.m.s. streamwise vorticity
matches with that of the equivalent smooth wall at the local minimum (i.e. z* + Z; v ~5).

Ay (B =2m/Ay). The top boundary condition (4.2) models the action below a vortex
in the cross-plane, similar to the formulation of the sublayer model by Coles (1978).
Furthermore, transpiration effects at the crest are readily incorporated through (4.2a),
which is crucial to accurately predicting EJTF (Ibrahim et al. 2021). Using the modelled
cross-flow velocities at the upper boundary (4.2) and a no-slip smooth or riblet wall at
the bottom, as well as periodic boundary conditions in the span, we can solve for v and w
using (4.1).

Even though the Stokes equation (4.1) is formally in the limit of zero Reynolds number,
we retain the effect of finite friction Reynolds number, Re;, in the Stokes calculation
through, for example, the riblet spacing, s

sT= A5/ )y (4.3)

where A7 is associated with the quasi-streamwise vortex, and the ratio of riblet size to the
wavelength, (s/4y)y,, is prescribed in the Stokes calculation. Through this ratio, (s/4y)y
the model captures the non-vanishing riblet sizes relative to the near-wall turbulence
(represented by the averaged quasi-streamwise vortex), with the latter characterised by
a given universal scale, /l;“ . From here on, sizes represented in the viscous vortex model
are quantified in viscous units (4), using a similar calculation as per (4.3).

The prescribed parameters (A, B and @) in (4.2) are obtained through a Fourier analysis
of the DNS cross-flow velocities for a smooth and riblet wall, which we outline in detail
in §4.2. As the turbulence above small (E; < 10.7) riblets remains smooth-wall like, we
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use the same A, B and @ to model the flow above both smooth and riblet walls. These
parameters vary with height above the wall, z*, and wavelength, 4;". Once a height and
wavelength are chosen, these set the height and span of the model domain, respectively
(figure 11). The domain height should be within 10 < H™ < 15 such that the modelled
flow is below the average height of the vortex centres (Kim ef al. 1987). This height also
provides enough room for the flow to recover from the riblet wall boundary condition. The
domain span is restricted by positive-integer () multiples of A7, i.e. L = ndy, to ensure
the spanwise periodicity of the top boundary condition (4.2).

Next, we specify the spanwise location of the riblet textures relative to the
quasi-streamwise vortex, measured by A, illustrated at the bottom of figure 11. As we will
show from the DNS in § 4.3, the quasi-streamwise vortices above smooth-wall-like riblets
(¢ < 10) have an equal probability of residing at any spanwise location above the riblet
wall, which indicates that these vortices are unpinned, like those above a smooth wall. We
model this unpinned character of these vortices by a uniform average of the Stokes field
across spanwise shifts of the riblet wall in the range 0 < A < s.

Using the above procedure, the modelled flow fields above smooth and riblet walls can
be obtained. These flow fields are used to calculate KJTTVV, which is the turbulence virtual
origin predicted by the viscous vortex model. Here, E; vy 18 found by iterating the negative
offset of the riblet domain height #™ measured from the crest plane, such that the modelled
r.m.s. streamwise vorticity profile, a))’C matches with that of the equivalent smooth wall at
the local minimum (i.e. z+ + EJTF’VV ~ 5). As we will show in § 4.3, once )/, at the local
minimum is matched, the entire profile above the riblet crests (z+ > 0) collapses with the
equivalent modelled smooth wall profile. This is analogous to the collapse of the r.m.s.
vorticity profiles measured from DNSs of riblet and smooth wall, as shown in figure 9(d),
which reinforces that the modelled turbulence above riblets remains smooth-wall like. The
output of the viscous vortex model, K“TLJ,V, for a range of riblet shape and sizes are reported

and compared with Z}’ measured from DNS in § 4.4.

4.2. Smooth-wall-like turbulence

This section outlines the process to obtain the magnitudes of A, B and @ in (4.2), through
a Fourier analysis of the DNS cross-flow velocities for smooth and riblet walls. We also
show that the DNSs of riblets are not required for the present model because A, B and
@ are the same as that for smooth walls at matched height above the turbulence virtual
origin.

Figure 12 illustrates the process to obtain samples of the Fourier coefficients of the
wall-normal velocity from the minimal-channel smooth-wall DNS (S395). We perform
the same analysis for the spanwise velocity. Here, the goal is to extract the parameters
for a single spatially localised near-wall quasi-streamwise vortex using a windowed
Fourier analysis. At each cross-plane (at fixed x and ¢), we divide the spanwise and
wall-normal (v, w) velocity fields into overlapping segments of spanwise length, L;g ~

150. Figure 12(a) shows a segment for 0 < y* < 150, in which a vortex can be identified
at y© ~ 60. We also take segments at spanwise increments of 50 units, 50 < y* <
200 and 100 < y™ < 250 (both are not shown in figure 12a) to ensure we capture a
vortex at the centre of the segment. For cases where the DNS channel spans are wider
(i.e. SF395 and S1000 in table 2), the fields are segmented with the same L;; ~ 150 and
spanwise increments, resulting in more segments per yz-field. Segmenting the cross-plane
is crucial as these vortices are usually isolated in the cross-plane (Robinson 1991; Jiménez

978 A18-21


https://doi.org/10.1017/jfm.2023.1006

https://doi.org/10.1017/jfm.2023.1006 Published online by Cambridge University Press

J. Wong, C.J. Camobreco, R. Garcia-Mayoral, N. Hutchins and D. Chung

et al. 2004; Jiménez 2018). The Fourier amplitudes from unwindowed samples contain
distortions resulting from the average effect of multiple vortices (figure 10). The difference
between the Fourier amplitudes obtained from segmented and unsegmented signals is
discussed in detail in Appendix B.2. In figure 12(b), we multiply each segmented field by
the normalised Hann window function, 2(y*) = (2/3)'/?[1 — cos(2myt /L)1, so that
the fields are periodic in y, and we can take the discrete Fourier transform at each height

Z+

Nyg—1
[0 ) (A, = 2n/kh 2h) = — Z nrs DRG] exp (<ivy i),

(4.4)

where k,, = 21tm/Lys, y, = nlLys/Ny; and Ny is the number of spanwise discrete points at
a fixed height in a segment. In physical space, the velocities for each positive and finite
wavelength /l;,L = 27t/B T can be written in terms of the Fourier coefficients as

forwh ot ah =21 Wt sin (B9 + (0% 0} +7/2), @)

for a fixed height z* and for each segment, where |(")| = [Re{()}*> + Im{(")}*]'/? and
/(%) is the argument of (*) from the positive /l;r. The factor of 2 in (4.5) is included in the

amplitude to combine both positive and negative /l;r. We illustrate (4.5) in figure 12(c)
for a single /l;r ~ 50, extracted from the full flow field in figure 12(b). We shift the

spanwise coordinate y* =yt — (ZWw' 4+ /2)/B8™" so that these sinusoids resemble the
upper boundary velocities of the viscous vortex model in (4.2)

wh G, 2 =20t sin (BT5Y), vl G 2T = 2007 [sin (875 + £8F — 2Z0t).
' ' (4.6a,b)

We extract each component of the signal, namely the amplitude (a;, b;) and phase
difference (¢;), given by

bl .2 = 21071 (A7 D) =201 (. = L0 —Lb, (4Tab)

where j is the sample index within the range 1 < j < NygNN;. The upper bound
(maximum number of samples) of j is the product of the number of segments for each
yz-field (N,g), the number of yz-fields in the streamwise direction (Ny) and the number of
time snapshots (Ny).

Figures 13(a)-13(c) depict the p.d.f. of the samples (4.7) obtained from the smooth-wall
DNS cases. These include the full-channel and minimal-channel smooth walls at
Re; = 395, as well as a minimal-channel smooth-wall case at Re; = 1000. The samples in
these p.d.f.s correspond to a height of z™ ~ 12, i.e. below the average vortex core height
of z ~ 20 (Kim et al. 1987) and a sinusoidal wavelength of A" ~ 50 to represent a
quasi-streamwise vortex (Jiménez et al. 2004). At this specific height and wavelength,
the p.d.f.s for the smooth-wall DNS cases collapse, indicating that the variables A, B and
@ are independent of the channel span and friction Reynolds number Re;. By averaging
the amplitude and phase difference across all samples j, we obtain A = 0.2, B = 0.28 and
® = 0.31n. A value @ < 0.57 indicates that, on average, the quasi-streamwise vortices
are tilted with respect to the streamwise direction (cf. Jeong et al. 1997; Schlatter et al.
2014). Our modelling choices of z+ = 12 and /l;r = 50 (and corresponding values of A, B
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Figure 12. Illustration of the process to extract the Fourier coefficients from both spanwise and wall-normal
instantaneous velocities in the cross-plane. Mean flow is out of the page. Instantaneous wall-normal velocity
field in the yz-plane in figure 10 is segmented into overlapping segments of length, L;;, ~ 150: 0 <yt <150
(shown in a), 50 < y™ < 200 and 100 < y™ < 250 (the last two not shown in the figure). (b) Segments are
multiplied by a normalised Hann window function, £2(y*) = (2/3)"/?[1 — cos2my™ /L;'S)] so that a Fourier
transform can be applied. (¢) Resulting field for one wavelength, /l;' ~ 50, where samples of the Fourier
amplitudes as a function of z* can be obtained.

@/t =0.31

Tl =, ‘poowrg

0 02 04 06 08 1.0 0 02 04 06 08 10 -10 -05 0 0.5 1.0
Spanwise amplitude, b; Wall-normal amplitude, a; Phase difference, ¢;/m

Figure 13. Probability density functions (p.d.f.s) of the cross-flow parameters extracted from DNS (4.7a,b).
These parameters correspond to /ly+ ~ 50 at a height of zt +£}' ~ 12. The p.d.f.s of the smooth-wall
minimal-channel case at Re; = 395 are represented by the vertical bars in (a—f), compared with (a—c) the
full-channel Re; = 395 smooth-wall case ( ) and the minimal-channel Re; = 1000 smooth-wall case
(—, grey), as well as (df) the blade (JL_IL) riblet cases with £] ~ 5, 10 and 16 (dark blue to light
blue). The red vertical lines represent the mean values of these sample p.d.f.s, which are prescribed in the
viscous vortex model, along with /lj =50and HT = 12.

and @) are additionally supported by a parameter calibration and sensitivity study outlined
in Appendix B.

As demonstrated in figures 13(d)—-13(f), the values of A, B and @ obtained from
minimal-channel DNSs of blade riblets (__L) with sizes of E; < 10 (i.e. cases BL0O8
and BL16 from table 2) are consistent with those from smooth-wall DNSs. For these
riblets (g; < 10), the p.d.f.s collapse when the parameters are extracted at equivalent

heights above the turbulence virtual origin, z+ + EJTF ~ 12. This collapse further shows
that the turbulence above riblets behaves like that above a smooth wall, and demonstrates
that only smooth-wall DNS data are required to obtain A, B and @. The p.d.f.s for
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large, non-smooth-wall-like riblets (EZ,r ~ 16) in figures 13(d)-13(f) appear similar to the
smooth-wall equivalents, but exhibit noticeably lower peaks in b; and ¢;, suggesting that
A, B,and @ at 17 ~ 50 and z" + KJTF ~ 12 are not overly sensitive to the drag-increasing
mechanisms associated with these riblets, in contrast to the full Reynolds stress cospectra
atzt + K“TL ~ 5 (figure 6e).

The above observation suggests that the information from one wavelength is sufficient
to compute Z}'. Moreover, this wavelength (/l;r = 50) is also of the same order as the riblet

sizes (10 < s < 15). Thus, these parameters for obtaining E; appear robust and do not
require the stricter scale separation between the riblet textures and turbulence imposed on
homogenisation techniques.

4.3. The unpinned, smooth-wall-like quasi-streamwise vortices above riblets

In this section, we justify from DNS that the quasi-streamwise vortices above riblets are
unpinned like those above a smooth wall. We incorporate this character of vortices in the
viscous vortex model by a uniform average of the solutions across spanwise shifts A of
the riblet texture (figure 11).

We have previously shown, from the DNSs, that the flow above small riblets (Z; < 10.7)
is smooth-wall like in terms of the collapse of the Reynolds stress profiles (figure 5b)
and the collapse of Fourier amplitudes and phases (figures 6 and 13). Thus, we expect
the quasi-streamwise vortices (representing turbulence) above riblet walls to behave as
if above featureless smooth walls, which have no preferential spanwise position relative
to the riblets. Figure 14 shows that these vortices above either a smooth wall or small
riblets are unpinned, through a uniform p.d.f. of the DNS cross-flow velocity phase shifts
at wavelengths /l;r similar to the average diameter of a vortex. Here, we quantify the
relative spanwise positions of the vortex by phase shifts of the spanwise and wall-normal
velocities, ¢, = Z0 and ¢,, = /W, respectively. These phase shifts are found from the
argument of the discrete Fourier transform of the velocity signals from (4.4). Samples
of the phase shifts are taken at a height of 12 units above the turbulence virtual origin,
7F+ EJTF ~ 12, from the DNSs of smooth walls (figure 144, f) and blade (L) riblets
(figure 14b—e,g—j). For the wavelengths considered (10 < /l;Ir < 60), the uniform p.d.f.s

(white regions) for the smooth and E; ~ 5 blade riblets (figure 14a,b, f,g) demonstrate that
the flow signals shift between —m and 7 at equal probability, indicative of unconstrained
turbulent motions for these scales. This further demonstrates that the turbulent flow is
smooth-wall like above riblets of this size. For 8 < ¢+ < 16 (figure 14c¢,d,h,i), we observe

~Y 8 v
that wavelengths close to the riblet spacing, /1;L st ( ) are pinned by the riblet
textures, indicated by the varying p.d.f. along —m to m. As these pinned wavelengths
increase with riblet spacing towards the average diameters of quasi-streamwise vortices
(dT ~ 25, Kim et al. 1987; Robinson 1991; Jeong et al. 1997), the textures begin
to interfere with these vortex scales, disrupting the smooth-wall-like behaviour of the
cross-flow velocity fields. A small interference at this scale is seen for the w phase shifts
¢w of €5 ~ 10 riblets (A} ~ 2sF ~ 30, figure 14i), indicating that pinning may be a
mechanism resulting in the onset of departure from smooth-wall-like flows at E; ~ 10
(figure 6). For the riblets of size E; ~ 16 (figure l4e,f), the peaks observed in the p.d.f.s
of ¢, and ¢,, for Aj ~ 25 indicate that the scales of quasi-streamwise vortices are now
pinned by the textures (Choi et al. 1993; Lee & Lee 2001). The pinning of vortices was
thought to stabilise the streamwise streaks (Goldstein et al. 1995; Goldstein & Tuan 1998),
which thereby explained how smaller riblets reduced drag. However, figure 14(e, j) shows
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Figure 14. Probability density functions of the phase shifts of v and w fluctuations (¢, and ¢,,, respectively)
as a function of wavelength, AF, at zH + E}“ 2 12. These shifts quantify the spanwise location of the flow
structures of various sizes /l;r in the yz-plane. The cases considered are (a,f) full-span smooth wall (SF395),
and blade (L) riblets of sizes (b.g) £ ~ 5, (c.h) £ ~ 8, (d.i) £ ~ 10 and (e.j) £ ~ 16. For each A,
white regions indicate a p.d.f. of 0.5 where phase shifts are of equal probability, indicating the turbulent scales
are unpinned by the wall. Regions bounded by red contours are where the p.d.f. is above 0.6, and blue contours
are where the p.d.f. is less than 0.4, which shows that the turbulent scales are pinned by the riblet textures,
particularly when the wavelength is approximately the size of the riblet spacing, /1;r ~ sT, indicated by a solid
black line (. ).

that vortex pinning is only active for the larger (post-optimal) riblets (E; 2 10), suggesting
that pinning is actually associated with drag increase (see also § 5.1 of Garcia-Mayoral &
Jiménez 2011b).

From the analysis above, the quasi-streamwise vortices (d* & 25) are unpinned above
riblets with sizes below the optimal, E:,r < 10.7. We incorporate this unpinned character of
vortices in the viscous vortex model by uniformly averaging the solutions at all spanwise
locations of the riblets relative to the vortex. We quantify the relative spanwise position by
A through a related spanwise coordinate n = y + A, which has an origin at a riblet crest
(figure 11). Here, the coordinate y is fixed to the location of zero wall-normal velocity at
the upper boundary, i.e. w(y = 0, h) = 0 (blue line, figure 11), and A is the horizontal
shift of the wall relative to y. Hence, increasing A horizontally shifts the wall whilst fixing
the top velocity boundary condition. Figures 15(a)—15(c) show the solution fields for the
spanwise and wall-normal velocities and the streamwise vorticity for A = 0 (no shift, filled
contours) and A = s/2 (half-riblet-spacing shift, solid line contours) for the two-scale
trapezoidal riblets with £ ~ 5.5, or sT = 10, where s is computed using (4.3). Near the
top, the solutions are similar for the various shifts of A because of the same prescribed
top boundary conditions. However, differences are seen near the wall, particularly for the
vorticity (figure 15¢), where we observe local peaks in vorticity near the crests. These
peaks are also observed in the instantaneous flow fields of Lee & Lee (2001), which
were previously characterised as the centres of vortices. However, the Stokes solution in
figure 15(c) suggests that these peaks are instead caused by a rapid change in velocity due
to the no-slip crests.
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Figure 15. The Stokes solution fields of (top to bottom) spanwise velocity (v), wall-normal velocity (w) and
streamwise vorticity (w, = dw/dy — dv/dz) for the two-scale trapezoidal (LA As) riblets with Z; ~5.5
(st = 10), where s* is computed using (4.3). (a—c) Two-scale riblet solutions for A = 0 (filled contours,
grey riblets) are compared with that for A = 5/2 ( , phantom-lined riblets); (d—f) average two-scale riblet
solutions for all 0 < A < s (filled contours) show a collapse with the smooth wall (——-) above the riblet crest

plane, after a vertical offset by E}',W.

Using these two linearly independent solutions (A =0 and A =s/2), we can
analytically obtain additional solutions for any other A (see Appendix C for more details).
We then uniformly average the solutions in the range 0 < A < s, i.e. one riblet period by

N

1
(v, W, 1) (3, 2) = ;fo (Va0 wa. 05} (A, y.2) dA. 38)

where ()4 denotes the Stokes solution for a given A. The phase-averaged solutions for
the same two-scale trapezoidal riblets with Z; ~ 5.5 are illustrated in figures 15(d)-15(f)

where each are compared with the equivalent smooth-wall case. Here, the value of Z; vy s
. . . . . . +
determined by negatively offsetting the riblet domain height by a guessed value of €7
and then iterating on this value until the r.m.s. streamwise vorticity, w/, matches with
that above the equivalent smooth wall at the local minimum (i.e. z* + EJTF vy~ 5). After

matching o, at the local minimum, we also observe that the phase-averaged v, w and wy
collapse everywhere above the riblet crest plane (z* > 0, figure 15d—f), which reflects
the collapse of the DNS r.m.s. profiles in figure 9(b,d). The collapse also reaffirms the
smooth-wall-like flow above riblets, even in regions close to the wall, after accounting for
the unpinned character of quasi-streamwise vortices.
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4.4. Drag predictions for riblets

In ﬁgure 16, we report the turbulence virtual origin calculated by the viscous vortex
model, ET vy for all riblet geometries from table 2, and for blade riblets (ML) by
Garcia-Mayoral & Jiménez (2011a,b). Figure 16(a) shows the comparlson between the
modelled £+’ 7 vy and the DNS €+ using a ratio between the two, ET /7 of r.vy- Here, we observe
that E;W differs from E}L in the range of 1%-10% for all present riblet geometries
below the optimal size. This difference is noticeably less than E; / hir where the error in
predicting EJTF becomes larger (up to 40 % at the optimal) with increasing size, because hir
is applicable only for vamshlngly small riblets (figure 7b). For larger (post-optimal) riblets,
the increased error in ET yy can be attributed to the departure from a smooth-wall-like
turbulence as well as the pinning of quasi-streamwise vortices, both of which are not
accounted for in the viscous vortex model. Figures 16(b)—16(i) show the magnitudes of
L7 /€y from DNS (coloured filled symbols), £7,yy /£, from the viscous vortex model (open
white symbols and black fitted lines), and s /£, from the protrusion-height model (grey
lines) as a function of £;. For each riblet shape, we compute £7 vy /¢ for several riblet
sizes, then use a best-fit line to obtain £7 yy /¢, for a continuous range of riblet sizes.
We observe that the viscous vortex model also predicts E}' — hi for vanishingly small
riblets (£ — 0) (L, figure 16b), tending towards the same output as the protrusion-height
model (Luchini ef al. 1991; Luchini 1996). Hence, E‘TF’ yy for any riblet size E;,’ can be
approximated as

O vy =hi +mrel?, 4.9)

where mr is the gradient of the (empirical) best-fit line of {7 vy /£, against sz for a given
riblet shape. This gradient, mr, can be computed by using at least two data points for a
givenriblet shape (e.g. figure 16d): (i) h /{4 from the protrusion-height model for E; =0,

and (ii) £7,yv/{g for one riblet size below the optimum. In figure 16, we observe that
m7 decreases with increasing height-to-spacing ratio, especially obvious for the triangular
riblets with systematically varied tip angle « = 30°, 60°, 90° (figure 16d—f). Here, a larger
mr is associated with a larger AU deviation from the linear protrusion-height model (3.1)
at matched £, as observed in figure 3(a).

Figure 16(g) shows two calculations of 7 yy/{, at matched sizes for the asymmetric
triangle riblets (le). Due to the asymmetric nature of the riblets, the Stokes solutions
may differ depending on the direction of rotation of the modelled vortex. Here, we
computed the additional €7 yy /€, by reversing the direction of the modelled vortex,
i.e. changing the signs of (4.2). These two {1 yy/{, differ only by 2 %, and hence, the
direction of rotation of the modelled vortex does not significantly affect £7 yy /¢, for the
asymmetric riblets.

Equation (4.9) is a second-order polynomial fit to the viscous vortex model, distinct
from second- or higher-order asymptotic expansions in homogenisation. Higher-order
asymptotic expansions formally require a scale ratio of riblets to turbulence approaching
zero for convergence. Even the smallest coherent turbulent scales (&30, such as the
diameter of a near-wall vortex core) are of the order of the optimal riblet size, s &~ 15. At
such a finite ratio, adding more terms need not improve the approximation of the expansion
(Bender & Orszag 1978). As such, higher-order homogenisation techniques are formally
invalid for finite viscous-scaled riblet textures (Ibrahim et al. 2021). The present analysis
also suggests that formal expansions, if successfully attempted, would inevitably involve
tackling the nonlinear interactions of the flow that sets the model parameters (A, B, @
and /l;r ), noting that even the well-known streak spacing has not been calculated by any
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Figure 16. (a) Ratios of the observed Z; from DNS to the calculated Z;W show that the present model
accurately predicts Z;“ for sizes below the optimum, 6; < 10.7. For convenience, the grey region indicates

the range of KJTr /I, as in figure 7(b). (b—i) Turbulence virtual origin per unit Ly, Lr/Lg, as a function of
riblet size, £;". Coloured markers represent data from DNS, open markers are outputs of the viscous vortex
model, ¢7,yy/€,, with a corresponding linear best-fit line (solid black). Solid grey lines indicate the spanwise
protrusion height, 1 /£,.

formal mathematical procedure. In other words, unless introduced explicitly, obtaining
these model parameters requires modelling the self-sustaining process. Instead, here, we
use the mean information from the nonlinear flow to retain the use of linear viscous
equations in the spirit of Luchini et al. (1991). The present approach effectively bypasses
the aforementioned challenges by recognising that the nonlinearity is similar regardless of
the wall conditions (i.e. smooth-wall like), and thereby, requires us to determine the flow
properties only once. Correspondingly, the ability of the present approach to accurately
predict Z; indicates that the essential physics have been captured.

With the accurate prediction of ZJTF at non-vanishing riblet sizes, we can now predict

the drag reduction, AUY. As —AU" ~ £}, — £ (figure 5d) and £, ~ hﬁr (figure 7a), the
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drag prediction of the model can be written as

+ + _ ¥
— AUy = =t . (4.10)

by simply replacing hlr with E}L’W in (3.1). Similar to the protrusion-height model, (4.10)
consists of a priori quantities, which are solely based on a given riblet shape and size
below the optimal (E; < 10.7). In figure 17, we note that AU?}V for all riblet shapes

agree with AUT measured from the present DNS, and from DNSs and wall-resolved
LES of past studies (El-Samni et al. 2007; Garcia-Mayoral & Jiménez 20115, 2012;
Bannier et al. 2015; Li & Liu 2019; Malathi et al. 2022; Cipelli 2023), for riblet sizes
up to Z; ~ 10.7. However, the experimental drag reduction of triangular and trapezoidal
riblets from Bechert et al. (1997), shown in figure 17(b,e,f,i), generally exhibits lower
magnitudes compared with DNS/wall-resolved LES data. Experimental drag-reduction
measurements have been converted to AU™ based on matched bulk Reynolds number
following from Bechert et al. (1997), ACy/Cro &~ AU /[(2C0)~Y/? + (2k) "] using k =
0.4. Some error will be introduced into the converted AU values as the experiments were
conducted in an asymmetric channel set-up (one smooth and one riblet wall). Nonetheless,
considering figure 17(b), there is a 30 % discrepancy in the optimal performance of
trapezoidal riblets (LA_A_) between the experimental and DNS data. A source of this
discrepancy is the finite width of the milled riblet tips (e.g. _.a_a_), with tip bluntness
having been shown to decrease drag performance (Walsh 1990; Bechert et al. 1997;
Garcia-Mayoral & Jiménez 2011a; Griineberger & Hage 2011). While Bechert et al. (1997)
did not provide measurements of the width of the trapezoidal (and triangular) riblet tips,
the manufacturing tolerance can be estimated based on tip measurements of scalloped
riblets (figure 9 of Bechert et al. 1997), as R/s ~ 0.01-0.02 or R ~ 0.03-0.11 mm, where
R/s represents the ratio of effective tip radius R to the riblet spacing s. Assuming a
similar manufacturing tolerance for trapezoidal riblets implies R/s =~ 0.03 (_A_A_), or
R = 0.13 mm based on the provided s =4 mm spacing (figure 24 of Bechert et al.
1997). With R/s = 0.03, the viscous vortex model would predict a degradation in optimal
performance of ~15 % (figure 17b), accounting for half of the observed 30 % discrepancy.
Griineberger & Hage (2011) repeated measurements using sharper flat-tipped trapezoidal
riblets (equivalent to R/s ~ 0.003-0.005) with o = 45° in the same testing facility, and
obtained better agreement with both the protrusion-height model and AU;,LV (figure 17i),
given the smaller R/s. A similar level of accuracy is observed when comparing the
experimental data of von Deyn et al. (2022), depicted in figure 17(j), whose riblets were
manufactured to a tolerance of R/s &~ 0.002. Another source of disagreement with Bechert
et al. (1997) is an unmatched bulk Reynolds number. Small changes in the effective
channel height have been shown to significantly change —AU™ (von Deyn et al. 2022).
Adjusting the experimental drag curve of Bechert et al. (1997) for the trapezoidal riblets
(LA_A_) using an effective channel height starting from z+ = —ZJTF’W compared with
that from zt = —0.4k™ (figure 24 of Bechert et al. 1997) results in a 5% increase in
—AU;;,,. Other sources of discrepancy include the finite fetch of the riblet test plate (cf.
Garratt 1990; Garcia-Mayoral & Jiménez 2011a), and the unflushed transition from smooth
channel to riblet test plates which induces pressure drag (cf. Bechert, Bruse & Hage 2000;
Spalart & McLean 2011; Li et al. 2019; Smith, Yagle & McClure 2023).

As (4.10) is quadratic in E;, the departure near the optimum from linearity of the
extrapolated protrusion-height model (by up to 40 %, figure 3a) can also be captured.
Figure 18 compares (4.10) and the extrapolated protrusion-height model (3.1) against

the optimal drag reduction AU;;,, obtained from the DNS/wall-resolved LES. Here, the
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Figure 17. Roughness function AU of riblets as a function of riblet groove size, 6;,", Roughness functions
measured from DNS (coloured symbols) are compared with the linear protrusion-height model of Luchini et al.
(1991) (——, grey) and the present drag prediction (4.10) for perfectly sharp riblets ( ) and a tip-rounded
trapezoidal riblet with R/s =~ 0.03 and k/s ~ 0.4 (- - -) in (b). Grey markers are LES/DNS results from (b)
Bannier er al. (2015), (e) Choi er al. (1993), Malathi er al. (2022), Cipelli (2023), (f) Li & Liu (2019), (h)
Garcia-Mayoral & Jiménez (2011b, 2012) and (k) El-Samni et al. (2007). White circles (o) are experimental
AUT from (b,e,fk) Bechert et al. (1997), (i) Griineberger & Hage (2011) and (j) von Deyn et al. (2022).
Crosses (x) in (i) are from Bechert et al. (1997). These experimental AU data, except for von Deyn et al.
(2022), are obtained by adjusting the percentage drag reduction DR based on the respective flow conditions.

riblet sizes are determined by the optimal drag reduction from the DNS and LES data. In
figure 18(a), the overprediction of optimal drag reduction up to 40 % in the extrapolated
protrusion-height model is somewhat mitigated by applying an empirical factor of 0.83
(Garcia-Mayoral & Jiménez 2011a,b), which instead leaves a discrepancy of £20 % among
different riblet geometries. Note that, in the original work of Luchini et al. (1991), it was

never suggested that the protrusion-height model could be used to predict AU, ;’;U,, but was
only intended to be valid for vanishingly small riblets. In figure 18(b), we observe that
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Figure 18. Optimal riblet drag reduction obtained from DNS, AU(TP,, compared with (a) an extrapolation
of the protrusion-height model to the optimal size, and (b) the present drag-reduction prediction in (4.10).
Markers indicate different riblet shapes consistent with figure 17. Riblet sizes are 10 < E;' < 11 depending on
the optimal drag reduction available in the dataset.

replacing hI with EJT“ vy further improves the optimal drag prediction, and alleviates the
40 % overprediction from before.

5. Conclusion

In this paper, we present a flow-structure-based model governed by the steady,
two-dimensional Stokes equations to accurately predict the drag performance, AU™, of
small riblets up to the optimal groove size E; < 10.7 (figure 18). We first note that the

flow above these riblets remains essentially smooth-wall like (figures 5b,d and 6), such
that the drag performance is the difference in offsets of the mean flow and turbulence,
—AUT = E;} — Z; (Garcia-Mayoral et al. 2019; Ibrahim et al. 2021). As the mean-flow
offset can be accurately captured by the longitudinal protrusion height of Luchini et al.
(1991), hﬂL = Ez; (figure 7a), the present model solely predicts the turbulence offset, £,
which the spanwise protrusion height is unable to accurately predict near the optimal riblet
size, that is hlr < EJTF, as shown in figure 7(b).

As transpiration effects are negligible for vanishingly small riblets, the protrusion-height
model can accurately predict the limiting gradient of the drag reduction. However,
transpiration is relevant once the quasi-streamwise vortex can induce flow that penetrates
the grooves of larger riblets. We show that transpiration is crucial at non-vanishing
riblet sizes by evaluating an empirical fit for EJTF (3.3) that includes transpiration effects
(Ibrahim et al. 2021) and that agrees with EJTF from the present DNSs of riblets (figure 8b).
However, the empirical fit (3.3) requires a posteriori measurements from the riblet DNS
r.m.s. velocities. To predict EJTF without DNS, here we take another approach in the spirit
of the protrusion-height model by introducing a wall-normal velocity component due to a
quasi-streamwise vortex.

The present model, which we term the viscous vortex model, represents an averaged
near-wall response from the overlying quasi-streamwise vortex (representing turbulence)
in the cross-plane. It allows for a given turbulent scale to interact with a non-vanishing
riblet size, as opposed to previous homogenisation strategies that require vanishingly small
textures. Furthermore, an explicit model of the self-sustenance of the quasi-streamwise
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vortex is not needed, since we only model the region dominated by viscosity near the
wall. As such, the viscous vortex model is governed by the Stokes equations (4.1) with the
appropriate domain size and boundary conditions (figure 11). By exposing the riblets to a
vortical flow structure, modelled by spanwise-varying sinusoidal waves for the spanwise
and wall-normal velocities (4.2) at the top of the domain, the crucial crest-transpiration
effect is readily induced (figure 15b). The amplitudes and the phase shift of (4.2) are
determined from a Fourier analysis of the cross-flow velocities in the DNS. As riblets
exhibit smooth-wall-like flows, these amplitudes and phase shift are the same as that of
the smooth wall at matched height relative to the turbulence virtual origin (figure 13d—f),
demonstrating that DNSs of riblets are not required to formulate (4.2). Additionally,
we uniformly average the solutions across spanwise shifts of the riblet wall to account
for the unpinned character of quasi-streamwise vortices above riblet grooves, which is
corroborated by uniform p.d.f.s of DNS cross-flow velocity phase shifts for riblets below
the optimal size (figure 14). By incorporating these effects, the viscous vortex model is
able to accurately predict EJT“ for riblets up to the optimal size (figure 16). We further
propose an expression for ZJTF for a given riblet shape in (4.9) to determine the drag
prediction as a function of size, E;‘, in (4.10). The present model accurately predicts the

drag performance of riblets up to the optimal size, E; < 10.7 (figure 18b) and alleviates the
aforementioned 40 % discrepancy for optimal drag prediction that arises from assuming
that ¢ = h.

Beyond the optimal size (E; 2 10.7), the present drag prediction, AU%, does not
capture the breakdown of the drag curve (figure 17). In this post-optimal region (Z; pe
10.7), Garcia-Mayoral & Jiménez (20115) observed a rapid increase in the near-wall
Reynolds stress, which departs from smooth-wall-like turbulence and contributes to
the further increase in drag. The viscous vortex model, which only accounts for
smooth-wall-like turbulence, does not capture this increase in Reynolds stress. Here,
non-smooth-wall-like modifications such as Kelvin—Helmholtz rollers (Garcia-Mayoral &
Jiménez 2011b) have been proposed, but other mechanisms are also active (Endrikat et al.
2021a; Modesti et al. 2021). Resolvent-based models for riblets (Chavarin & Luhar 2020;
Ran, Zare & Jovanovi¢ 2021) have also been shown to capture these non-smooth-wall-like
mechanisms, which may provide avenues to model the full drag performance curve of
riblets.
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Appendix A. Measurement of Clauser-Hama roughness function at mismatched
Reynolds number

The roughness function AU™ is the vertical shift in the velocity profile between riblet
and smooth walls in the log and wake regions at matched Re,. Since we do not have an
infinitely large Re; for our DNS, the Reynolds number effect on the log region may be
significant if Re; is not exactly matched with the smooth wall (figure 19), which leads to
an inaccurate measurement of AU (Gémez-de-Segura et al. 2018a). We demonstrate the
analytical calculation of AU™ by first deriving the velocity profiles of riblet and smooth
wall using the mean turbulent momentum balance equation for fully developed channel
flow
1dP d*U  du'w

p dx v dz2 dzs
where (z,) refers to the respective wall-normal coordinate for smooth wall (z) or riblet
wall (z7), (-) denotes plane and time mean and U is the plane and time mean streamwise
velocity. The relationship between the imposed pressure gradient, dP/dx and the drag per
plan area, 7,, can be found through a force balance of the control volume containing the
channel fluid

0=

(AD)

_llef_w>o’ (A2)
pdx p 3§
where § is the half-channel height measured from smooth wall, §; or mean riblet height, 5,
(see figure 19). For a smooth wall, (A1) is valid from z = 0 to §,, whilst for a riblet wall,
the equation is valid from z7 = £r to &/, supposing that the origin of turbulence, 7, is
known for the moment. Combining (A1) and (A2), and separating the analysis to smooth
(s subscript) and riblet (r subscript)

d du. 1 d dUp — Tyr 1
— <vs—s — u/w/s> _ e O (v,—R — u’w’R> =—_, (A3a,b)
dz dz ps 8 dzp dzr Or O

where the drag per plan area t,y, fluid density p,, half-channel height §; and kinematic
viscosity vy are for the smooth-wall simulation; 7., p, 8, and v, are for the
riblet-wall simulation. These simulations are independent of each other, hence we perform
the mathematical analysis separately. First, we can obtain the total stress profile by
integrating (A3) once with respect to z or zz. Using the imposed free-slip boundary
condition at the top domain (figure 19), we

integrate both sides of (A3a)
from z = z to §;:

dU.
B.C. (vs—s - u/w/5>
dz 7=0g

=0 B.C.: (v,d—R — u/w/R>

integrate both sides of (A3b)
from z7 = z7 to 8.

dU

=0

2r=94,

T

(Ada,b)

dzr Pr Sy

dUs — =t z du, Tyr 8. — 2
ivsd—s—u’w/gzls(l——) = v —uwp = T
Z

In order to obtain profiles at similar scales, we normalise (A4) using the imposed kinematic
viscosity, vy or v, and the effective friction velocity. The effective friction velocity
squared, u%, can be derived from the left-hand side of (A4a,b) where the total stress,
vdU/dz, — u'w s fully dominated by the viscous stress, vdU/dz,, i.e. zero Reynolds
stress. For the smooth wall, this location is non-arbitrary (i.e. at z = 0) where we recover
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vy dUs/dz = 1,5/ ps from the right-hand side. For riblets, the location of the virtual wall
perceived by the turbulence is at the origin of turbulence, where virtually, the Reynolds
stresses vanishes (Gémez-de-Segura et al. 2018a; Fairhall et al. 2019; Ibrahim et al. 2021).
Hence, the effective friction velocity of riblet walls is found by extrapolating the total
stress line (A4b) to the origin of turbulence (z7 = 0), i.e. evaluating the right-hand side of
(A4D) at zr = 0 even though (A4b) is not defined there. The effective friction velocities
for smooth and riblet walls are defined as

8/
Urs = ,/ Upy = TW’ (AS5a,b)

where (A5b) is consistent with Ibrahim ef al. (2021). Now we normalise (A4) into viscous
units

d (ﬂ) o Uy (ﬂ) Zrlter

Mesf _ ”/”ZV/S =1 Yor/ ”/VZV/R —1— 2 (Abab)
d Urg Uz, sUts d ZTUzy uz, 8,u”

Vs Vs Vr Vr

where we observe the similarity in the total stress profiles when scaled with the appropriate
friction velocity and kinematic viscosity. We integrate (A6) once more to obtain the
velocity profiles. For a smooth wall, one may be inclined to integrate from the wall
ZUrs/Vs = 0 to an arbitrary wall-normal location, zu.s/vs. However, the lower limit for the
riblet wall, zu;,/v = £ru,/v, is different, since the equation is only valid from the crest
(refer to figure 19 to locate the crest relative to z). We integrate (A6) using similar limits
of integration, to simplify cancellations when taking the difference between the profiles.
We first integrate the smooth profile starting from an arbitrary position, zu;s/vs = C,

integrate both sides of (A6a) integrate both sides of (A6b)
zu zu ru Lru Zru
from Ts —Cto TS | from TUzr _ TUzr to T tr:
Vg Vg vy vy vy
U U U U
B.C. = =€ Bc: £ gy = 2
Uts | zupy vs=C Uy Uer | zpugy /o= 2 Uy
Vr
Us Usc 1 :>UR_UR0 1
urs Urs 2 Uy Ury 2
Zurs ITUzy 2 Lrug, 2 (A7a,b)
o Vg (C)2 o vy vy
d; urv Ssltrg 8 gy 8;1/1”
vy vy
Zurv _C (ZTurr _ ZT’/‘rr)
Vg vy vy
Qs /Vs il U arter/Vr gyl Zru
+/ 2Sd< rs) +/ 2Rd(Trr>'
C Uz Vs Crugr /vy, UTy Vr

Equation (A7) is the analytical velocity profile given the boundary conditions of the top
domain in figure 19 and the boundary condition at the lower limit, i.e. at zu,;/vs = C for
smooth wall or z7u;,/v, = £1u.,/v, for riblet wall.
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(a) Free-slip boundary:
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Figure 19. The streamwise uniform cross-plane for (a) riblets and (b) smooth wall with their boundary
conditions and half-channel height measured from turbulence origin, §. (known after simulation) or mean
height, 8, (prior-simulation input) and from smooth wall & (also set prior to simulation). The effective friction
velocity, u,, measured from the origin of turbulence, zr = 0, where /. is unknown prior to the simulation,
causes a slight difference in the effective Re, between riblet and smooth walls (i.e. 8.uzr /vy 7 Sstirs/Vs).

Now, we let C = £7u;,/v, so that Usc/u;s can be found by evaluating (A7a) at
zu,s/vs = 0, i.e. at the wall where Ug/u;y = 0

/e 2
( Turr) L
Use _ gTurr_l v, N /ETurr/vr M/V;/S q Zui ' (AS)
Urs v, 2 Sslrg 0 u, Vs
Vs

Therefore, the difference between smooth and riblet profiles at matched wall-normal
height, 2}, = zutz/vs = 271z, /vy, i

€A
AUT
2
U Ur  (Ur Usc L 1 (Lruey 1 1
Ues  Uer B To |t T Ssttrs &
U Uy Urr Urs Vy sUts Uz
Vs vy
+ —_ + —_
3 ww'g Zu 9\ Ww'g U
+/ S )—/ R ), (A9)
Lrugy /vy uts v Lrigy/vr u‘L’r Vr

~ 0 for smooth-wall-like riblets

If we assume that the Reynolds stress profiles collapse when scaled to viscous units,
1.e. u/w’s/u%s = u’w’R/u%r for zz between L7, /v, and 8’ iy, /vy, then the last term in (A9)
vanishes. This only happens at matched Re; as well. So the sources of error are from the
normalised —dP/dx and from the —u/w’ term. And if we assume that the friction Reynolds
numbers are matched between the riblet and smooth wall, such that 8/.ur,/v, = Ssurs/vs,
then ez = 0. Therefore, from (A9), we have AU = — (Ugo/utrr — Usc/urs), where the
roughness function is irrespective of zz. For Ugo/u+,, evaluating the mean velocity at
the crest may not be accurate because the effect due to the texture (inhomogeneity) is
still present at the crest. Figure 20 illustrates the method used to determine Ugo/ury.
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Wall-normal coordinate, z
Non-homogenised Homogenised

/

Crest . .
= Mean velocity, Uy
ty 1

Valley —|

Figure 20. The mean velocity profiles above the riblet crest and the valley are homogenised (collapse) above
the riblet crest. We measure £y as the distance relative to the crest of the origin of the linearly extrapolated
homogenised mean velocity (depicted as the dashed line) with a gradient measured locally at zu, /v, ~ 1.

Here, the homogenised mean flow perceives a virtual origin at £yu;,/v, below the crest
when linearly extrapolated to Uz = 0 with a gradient measured locally at zu.,/v, = 1.
For small, smooth-wall-like riblets, the viscous-scaled gradient is close to 1, and thereby,
Ugro/urr = Lytyr /vy For Usc /u;r, we assume from (AS8) that £7u;,/v, is small such that
the second and third term can be neglected (i.e. unity gradient), such that Usc/u.s =
L7u,/v,. Hence, we have

AUT = — (EU”” = KT””) . (A10)
vy Vy
Equation (A10) is an idealistic equation assuming collapsed Reynolds stress and friction
Reynolds number. However, this condition is not true from the DNS because the channel
height is measured from the riblet mean height, and not the turbulence origin. Based on
the simulations performed as per figure 19, the friction Reynolds number is not matched,

SsUtrs/Vs #8.urr/vy so the error ez in (A9) remains. Another error arises from the

inequality of Reynolds stresses —u/w’s/ u%s #=—u'wp /u%,, typically for larger £gu,/vy
riblets. And finally, a statistical error, ¢ (2.2) due to the minimal channel exist in (A7a,b),
prior to the subtraction in (A9). The error, ¢ can be minimised by increasing the sampling
time. By removing the error due to unmatched Re., we can recover the actual AU, plus
minor errors due to the aforementioned sources.

Appendix B. Calibration of model parameters
B.1. Domain height
We demonstrate that the predictions of the viscous vortex model (EJTr yy) remain nearly

constant when a domain height in the range of 10 < H' < 15 is selected. Table 3
summarises the corresponding Z T.vv values based on prescrlbed parameters (B /A and @)
extracted from the DN Ss of smooth walls at various heights ranging from 10 < z7 < 15.

Here, we observe that E 7.yy varies by approximately 3 % among the prescnbed domam
heights, indicating that any of these parameters would be suitable. For our analysis, we
select the parameters corresponding to z+ = 12, with the respective ET vy (and AU v)

reported in figures 16—18. Furthermore, the modelled £+ 7.y Values closely align with £+
values from DNSs. The riblets listed in table 3 are matched with the optimal riblet cases
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zt B/A @ Gy

A A A
10 1.70 0.35m 0.88213 1.46590
11 1.50 0.337 0.88956 1.47656
12 1.40 0.317 0.89928 1.49131
13 1.30 0.297 0.90435 149855
14 125 0.26m 0.90979 1.50669
15 1.20 0.24n 0.91120 150818

Table 3. Summary of the viscous vortex model turbulence origin predictions £7 yy, calculated using various
domain heights zT, alongside the corresponding prescribed parameters B/A and @ extracted from DNS. Riblet

size is £§ ~ 10: 57 = 15.6 for blade riblets (M) and st = 14.7 for trapezoidal riblets (_A_A_). The
calculated E}'_W are virtually insensitive to the domain height (varying by less than 3 % for 10 < z+ < 15), and
are close to that from the DNS: E;“ ~ (.95 for the blade riblet (J_l_) and IZ}' ~ 1.49 for the trapezoidal
riblet (LA_AL).

at E; ~ 10, where the DNS results for blade riblets (LML) yield EJTF ~ 0.95 and the
trapezoidal riblets (LA_A_) yield £ & 1.49, resulting in a difference of 1 %-8 %.

B.2. Wavelength and amplitude
We also demonstrate that, by setting /l;r = 50 (along with the corresponding A, B and

@ at 7+ = 12), the viscous vortex model provides the most accurate prediction of Z“TL,
compared with the (sub)harmonics, A7 = 25 and 100. Comparisons with the measured
virtual origins from DNSs of both trapezoidal riblets and slip/transpiration surfaces
(Ibrahim et al. 2021; Habibi Khorasani et al. 2022) allow us to calibrate the model with
diverse wall conditions and with a larger E}L range of 0.5 < Z}’ < 5. The spanwise slip
and transpiration lengths (E;r , 1) are applied through the same Robin boundary condition
as the DNSs of Ibrahim et al. (2021), v|,—o = ¢,0v/dz|,—0 and w|,—g = £,0w/0z|;—0.
From the DNSs conducted by Habibi Khorasani et al. (2022), the wall-normal velocity
at z = 01s wl;=0 = —my0u/0x|;=0 — mydv/dy|,—o, where m, and m, are the prescribed
constants. When m, = m,, this condition is equivalent to Ibrahim et al. (2021), leading
to £, = my = my by continuity. Figure 21 compares the values of ZJTF’VV obtained from
the viscous vortex model (using the parameters corresponding to the respective /l;r ) with

the turbulence virtual origins EJTF measured from the DNSs. The slip/transpiration DNS
cases correspond to the regime where ¢;” ~ ¢}, ensuring that the DNS /" matches
well with the smooth-wall data from at least the local minimum (i.e. at z™ &~ 5) and
above, as observed by GoOmez-de-Segura & Garcia-Mayoral (2020). This allows for
direct comparison with viscous vortex predictions. The results for A7 = 50, as shown
in figure 21(b), demonstrate that the viscous vortex model provides a more accurate
prediction of ZJTF compared with A7 = 25 or 100.

The amplitude ratio of the boundary condition B/A = 1.4 is obtained by averaging
the segmented Fourier signals (see §4.2). Note that the model turbulence offset KJTF’VV
is invariant of the magnitudes of A and B, as long as their ratio B/A remains the same,
due to the linearity of the Stokes equations. When we compute A and B by averaging the
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Figure 21. Comparison of the DNS turbulence virtual origins K*T' of trapezoidal riblets (_LA__A_) and slip
surfaces of Ibrahim et al. (2021) and Habibi Khorasani et al. (2022) with the results obtained from the viscous
vortex model, denoted as é;“_’ v The parameters used in the model are extracted from the smooth-wall DNSs

at a height of z© A~ 12 and wavelengths of (a) /lj = 25 using B/A = 0.86 and @ = 0.24m, (b) /l;r = 50 using
B/A =1.4and @ = 0.317 and (¢) /13,L = 100 using B/A = 2.5 and @ = 0.34w. Black markers (e) in (b) show
model prediction using B/A = 1.1.

wider, non-segmented Fourier signals instead, we obtain a slightly smaller B/A ~ 1.1 but
the same @ ~ 0.31m.

We can use the viscous vortex model to check the consistency between these two
DNS-obtained B/A. In terms of the prediction of £}, the ratio B/A = 1.1 (with the same
Af =50,z" = 12.and @ = 0.317) results in insignificant changes to €7 1, (e, figure 21).
However, in terms of the model r.m.s. vorticity profile, we observe a local minimum at
zt ~ 4.9 when B/A = 1.4and 7" ~ 5.5 when B/A = 1.1. The local minimum of

Wy, Mmin Wy, Min
the DNS r.m.s. vorticity profile is at 7 ~ 5 (e.g. Kim et al. 1987), highlighting the

Wy, min
advantage of segmenting the signals when obtaining B/A.

Appendix C. Analytical viscous vortex solutions at various spanwise shifts of the wall
using Floquet-Bloch decomposition

In the viscous vortex model, we account for the spanwise shifts (A) of the vortex above
riblet walls based on the unpinned character of quasi-streamwise vortices (see figure 11).
This step requires multiple solutions between 0 < A < s, which may be time consuming
depending on the interval sizes of A. Following from the Floquet—Bloch decomposition,
we can instead analytically find the solution field for any A from two linearly independent
solutions

{va, wo, @0} ©.1,2) = CO) [vg. w5, 0,5} @ = 0.1.2)
+ D(9) {v(;, W5 a)x,g} 6 = 60,1, 2), (CD

where 6 =2mA/A, is a variable associated with the desired solution and 6 is a
chosen constant associated with the independent solutions. For the first independent
solution, we choose 6 = 0, whilst for the second independent solution, we choose
0 =60)=C2n /Ay)(s/2) (half-riblet spacing). We find C and D by substituting the left-hand
side of (C1) with the boundary velocity at the top (see figure 11) to find

ino ino
C=cosf— 27 p= 7 (C2a.b)
tan 0y sin By
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where 6y #=nm for any integer n to avoid a zero division. To ensure that the second
solution is independent, we choose the aforementioned 6y = (21/4,)(s/2), i.e. shift of
half a riblet period. Because 6y # n, our choice of 6y = (2m/A,)(s/2) gives A, #s/n,
which means A, > s. Since we use /1;? = 50 for the viscous vortex model, the spacings

for small riblets (¢f < 10.7) are all smaller than A} (s < 20, see table 2) and hence,
our choice of 6y = (21/4y)(s/2) will work for all small riblets. Using (C1) and (C2a.b),
we can analytically compute the solution for any A. The uniform average can then be
computed using (4.8) by substituting 1 with y, i.e. changing the reference frame from the
riblets () to the top velocity boundary condition (y).
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