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Vorticity amplification in wavy viscoelastic
channel flow
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Surface distortions to an otherwise planar channel flow introduce vorticity perturbations.
In Newtonian fluids, the vorticity induced by small surface undulations on the lower wall is
advected by the background flow and diffuses into the fluid. When the fluid is viscoelastic,
we identify new mechanisms by which significant vorticity perturbations can be generated
in both inertialess and elasto-inertial channel flows. We focus on the case where the
lengthscale of the surface distortion is much longer than the channel depth, where we
find significant departure from plane shear (Page & Zaki, J. Fluid Mech., vol. 901, 2016,
pp. 392–429) due to the non-monotonic base-flow streamwise-normal elastic stress. In
inertialess flows, a purely elastic response results in streamlines deforming to match the
bottom topography in the lower half the channel. However, the vanishing stress at the
centreline introduces a blocking effect, and the associated O(1) jump in normal velocity is
balanced by a large-amplitude streamwise-oscillating ‘jet’ in a boundary layer, resulting in
a localised, chevron-shaped vorticity perturbation field. In elasto-inertial flows, resonance
between the frequency of elasto-inertial ‘Alfvén’ waves and the frequency apparent to an
observer moving with the fluid results in vorticity amplification in a pair of critical layers
on either side of the channel. The vorticity in both layers is equal in magnitude, to leading
order in Weissenberg number, and as such the perturbation vorticity field penetrates the
full channel depth even when inertia is dominant. The results demonstrate that long-wave
distortions, which are relatively innocuous in Newtonian fluids, can drive a significant flow
distortion in viscoelastic fluids for a wide range of parameter values.
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1. Introduction

Viscoelastic shear flows exhibit a range of chaotic dynamics depending on the flow
parameters, from inertialess elastic turbulence (Groisman & Steinberg 2000) to a modified,
drag-reduced, quasi-Newtonian turbulence when inertia dominates (White & Mungal
2008). Between these two extremes, a further chaotic flow state, elasto-inertial turbulence
(EIT), can be sustained (Dubief, Terrapon & Soria 2013; Samanta et al. 2013). The area
of the parameter space where EIT is found overlaps with various exact coherent states
which connect to either Newtonian Tollmien–Schlichting (TS) waves (Lee & Zaki 2017;
Shekar et al. 2020) or to a newly discovered centre-mode instability (Garg et al. 2018;
Page, Dubief & Kerswell 2020). This raises the intriguing question as to whether the
self-sustaining mechanism of EIT is rooted in purely Newtonian or elastic dynamics,
given recent evidence that the centre mode instability persists in the inertialess limit for
extremely dilute solutions (Buza, Page & Kerswell 2021; Khalid, Shankar & Subramanian
2021).

In planar flows, both elastic turbulence and EIT exist at subcritical parameter settings,
which is in agreement with the known characteristics of the finite-amplitude travelling
wave solutions which connect to TS waves and the centre mode (Page et al. 2020; Shekar
et al. 2020; Buza et al. 2021). Earlier work has also sought to connect elastic turbulence
to linear instabilities in other configurations with streamline curvature in the basic state
(e.g. Taylor–Couette flow Shaqfeh 1996). In this scenario, elastic turbulence in parallel
flows would always require a finite amplitude perturbation since these instabilities vanish
in the absence of an elastic ‘hoop’ stress (Meulenbroek et al. 2004; Morozov & Saarloos
2005). The need for a finite-amplitude perturbation is supported by experimental results
(see e.g. Pan et al. 2013; Jha & Steinberg 2020; Choueiri et al. 2021). In the original
experiments by Pan et al. (2013), a chaotic flow state was triggered with a sequence
of cylindrical obstacles, though intriguingly at least n ≥ 2 cylinders were required.
Inertialess viscoelastic flows also feature new linear transient growth mechanisms, the
most significant being an inertialess version of ‘lift-up’ driven by polymer forces
(Jovanovic & Kumar 2010, 2011). Given this subcritical picture, we focus here on a
problem related to receptivity: how is streamline curvature in the bulk of a channel flow
induced by surface roughness at the boundaries? We identify new mechanisms by which
significant vorticity fluctuations can be established in the flow in both purely elastic and
elasto-inertial regimes. Beyond the inherent interest in these flow patterns as a platform
for secondary instability, we believe that the amplification mechanisms and associated
asymptotic solutions will be of use in the study of the aforementioned instability waves,
where the underlying mechanisms are unknown.

In earlier work (Page & Zaki 2016) we studied the analogous problem in a Couette
geometry, a viscoelastic version of the Newtonian analysis by Charru & Hinch (2000). In
viscoelastic Couette flow, the vortical response to a monochromatic boundary perturbation
depends on the value of two dimensionless parameters: α, the dimensionless wavenumber
of the surface distortions; and Σ , the ratio of a viscoelastic critical layer depth to the
channel height. The viscoelastic critical-layer depth is the point at which the phase speed
of (backward) propagating elasto-inertial waves matches the base-flow velocity. These
elasto-inertial waves have a speed proportional to the square root of the streamwise normal
elastic stress, analogous to Alfvén waves in magnetohydrodynamics (Chandrasekhar
1961). Across the layers in the flow where the base-flow speed matches the elastic wave
speed the equations change type (a transition from sub- to supersonic, see Yoo & Joseph
1985); at these points a resonance exists between the apparent frequency of oscillation
of the wall to an observer moving with the base flow and the frequency associated with
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Wavy viscoelastic channel flow

the elastic waves. This resonance results in a significant vorticity amplification in a thin
region (Page & Zaki 2016) driven by a kinematic reverse-Orr mechanism in the polymer
torque (Page & Zaki 2015), and the location of this layer delineates three regimes of
vortical response in the Couette flow. (i) In shallow elastic flow, the channel depth is small
compared with the roughness length scale, and the critical layer is outside of the flow
domain; vortical perturbations fill the channel and the vorticity amplifies at the top wall.
(ii) In elasto-inertial flows (referred to as ‘transcritical’ in Page & Zaki 2016), the elastic
critical layer is inside the flow domain and within a wavelength of the lower wall, leading
to large vorticity amplification at that location via the resonance mechanism. (iii) In deep
elastic flows the critical layer is far from the lower wall and the vorticity perturbation
decays monotonically with height.

The three flow regimes were subsequently confirmed in experiments with real polymer
solutions (Haward et al. 2017, 2018a,b) in a pressure-driven channel flow. In deeper
channels (where the wall disturbance wavelength is much smaller than the channel depth),
there is a near-exact correspondence with the Couette case, because on the length scale of
the roughness the base flow looks like simple shear. However, in shallow channels, notably
where experimental data are challenging to obtain, this will no longer be the case because
the perturbation will feel the effect of the non-monotonic background velocity profile at
leading order, even in the absence of inertia (where the Newtonian response would be
insensitive to background velocity profile). These deviations are driven largely by the base
streamwise normal polymer stress which is proportional to the local shear rate and, hence,
vanishes at the centreline. This base-flow stress provides a mechanism for elasto-inertial
wave propagation in flows with inertia and leads to a purely elastic response otherwise.
Therefore, in shallow channels we must account for the fact that (i) there will be two
critical layers in the flow domain where the base velocity matches the elastic wave speed
and (ii) the vanishing elastic stresses at the centreline may disrupt the dominant balance
that leads to vorticity amplification in the shallow elastic Couette flow. In this paper, we
examine both of these effects in detail, where we show that both provide new mechanisms
for significant vorticity amplification in shallow channels.

The remainder of this paper is structured as follows. In § 2, we introduce the governing
equations and show numerically the new regimes in the flow over a long Gaussian bump.
In § 3, we derive matched asymptotic expansions for the two new behaviours which appear
in a viscoelastic channel under the joint assumption of long-wave disturbances and high
Weissenberg numbers; we also discuss the amplification mechanisms. Finally, conclusions
are provided in § 4.

2. Vortical response to wall roughness in viscoelastic channel flows

2.1. Set-up
We consider the pressure-driven, steady flow of an Oldroyd-B fluid in a two-dimensional,
planar channel. The governing equations are

∇ · u = 0, (2.1a)

u · ∇u = −∇p + β

R
∇2u + (1 − β)

R
∇ · T , (2.1b)

u · ∇C + T = C · ∇u + (∇u)� · C, (2.1c)

where T = W−1(C − I) relates the polymeric stress and conformation tensor. The
equations have been non-dimensionalised by the wall shear rate, γ̇ , and channel
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half-height, d, which defines the Reynolds and Weissenberg numbers as R := γ̇ d2/ν
and W := γ̇ ς , respectively, where ς is the relaxation time of the polymer chains and
ν is the total kinematic viscosity of the fluid; the parameter β := νs/ν is the ratio of
solvent-to-total viscosity.

In the absence of fluctuations, the streamwise-independent solution of (2.1) is the
standard Poiseuille velocity profile with associated polymeric stresses

U(z) = 1
2
(1 − z2), T11(z) = 2W(U′)2 = 2Wz2, T13(z) = U′ = −z, (2.2a–c)

where z ∈ [−1, 1] is the vertical coordinate, and primes denote derivatives of base-state
variables. The linear scaling of the streamwise normal stress, T11, with W is the
leading cause of deviations from a standard ‘Newtonian’ response, both in the channel
configuration considered here and in the simpler Couette configuration (Page & Zaki
2016).

We are interested in the steady perturbation field induced by the addition of a
small-amplitude surface roughness to the lower wall of the channel, z = −1 + εh(x),
where ε � 1. A schematic of the configuration is shown in figure 1. Non-trivial vortical
perturbations arise at O(ε) via a slip condition on the perturbation velocity at the lower
wall, u(x, z = −1) = −h(x) (in dimensional variables, u∗(x∗, z∗ = −d) = −γ̇ h∗(x)),
which results from the requirement that the total velocity vanishes on the solid boundary.
The no-penetration condition, w(x, z = −1) = 0, is unchanged in the linearised problem.
Assuming it is suitably well behaved, we write our surface-roughness function as a Fourier
series:

h(x) =
∑
α

ĥαeiαx, (2.3)

and solve for the monochromatic linear response to each individual surface wavenumber
α,

iαû + Dŵ = 0, (2.4a)

iαUû + ŵU′ = −iαp̂ + β

R

(
D2 − α2

)
û + (1 − β)

R

(
iατ̂11 + Dτ̂13

)
, (2.4b)

iαUŵ = −Dp̂ + β

R

(
D2 − α2

)
ŵ + (1 − β)

R

(
iατ̂13 + Dτ̂33

)
, (2.4c)

iαUτ̂11 + ŵT ′
11 + 1

W
τ̂11 = 2iαT11û + 2T13Dû + 2U′τ̂13 + 2iα

W
û, (2.4d)

iαUτ̂13 + ŵT ′
13 + 1

W
τ̂13 = iαT11ŵ + U′τ̂33 + 1

W

(
iαŵ + Dû

)
, (2.4e)

iαUτ̂33 + 1
W

τ̂33 = 2iαT13ŵ + 2
W

Dû, (2.4f )

where the slip condition on the full velocity is scaled appropriately for each component
wave, û(z = −1) = −ĥα , and D is the wall-normal derivative.

We are interested in both the response to localised roughness, which we explore
numerically, and the vortical perturbations induced by monochromatic surface waves,
which we examine with matched asymptotic expansions. For the numerics, we solve
(2.4), and other similar systems appearing in this paper, using an expansion in Chebyshev
polynomials in z. Typically Nc ≈ 200 polynomials is sufficient. The localised bumps
considered in the following, for which (2.3) approximates a Fourier integral, require
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z∗

x∗
2d

2πd/α
z∗ = –d + εh∗ (x∗)

Figure 1. Schematic of the flow configuration considered in this paper, with variables shown in their
dimensional form. The problem is non-dimensionalised by the channel half-height, d, and the wall shear rate,
γ̇ , of the base-flow velocity. A monochromatic surface topography is shown for illustration.

very long domains due to a significant long-wave response. In the calculations we set
L∗/l∗x = 400 (where L∗ and l∗x are the dimensional computation domain and bump lengths,
respectively) which defines the lowest wavenumber α1 = 2πl∗x/L∗. A total of Nx = 1024
Fourier modes are used to construct the response.

2.2. Response to local roughness
In the Couette configuration studied by Page & Zaki (2016), significant vorticity
amplification at high-W occurred either at the top wall or at a critical layer in the bulk
of the flow (where the base-flow speed is equal to the elastic wave speed; see discussion in
§ 1). New mechanisms for vorticity amplification are possible in the channel flow studied
here, and will be shown to be associated with the non-monotonic base-flow velocity profile
and the variation of the normal stress T11 with depth z. Intuitively, these differences only
manifest in shallow channels, where the characteristic length scale of the roughness,
l∗x , is comparable to or longer than the channel half-height, d. Small-scale roughness
sees a background flow that locally is a close approximation to simple shear, and the
corresponding Couette behaviour is recovered for the vorticity field.

The new regimes of vorticity amplification in a viscoelastic channel flow are
summarised in figure 2, where the spanwise vorticity perturbations induced by a long
Gaussian bump, h(x) = exp(−x2/l2x), where lx := l∗x/d = 2, are examined for a particular
set of viscoelastic parameters and three Reynolds numbers, R ∈ {1, 200, 2000}, alongside
the response in a Newtonian fluid.

For all three values of R in the Newtonian fluid, the response is a straightforward
modification of the response in Couette flow to a channel geometry. At low-R, the
perturbation field is a Stokes flow solution and is independent of the details of the
background flow due to the absence of advection, a response which is identical to ‘shallow
viscous’ flow in a simple shear (Charru & Hinch 2000). At higher Reynolds numbers, a
shallow-channel version of the ‘inviscid’ regime of Charru & Hinch (2000) is found, where
the vorticity response at the lower wall is confined to a thin layer of thickness δ ∼ R−1/3.
There is a larger, irrotational flow response which fills the domain, and a weak vorticity
perturbation is established in a thin wall layer around z = 1 by adjustment to the no-slip
boundary condition.

In contrast, the viscoelastic flow response is strikingly different to both the Newtonian
flow fields and the response in a viscoelastic Couette flow at the same parameter settings
for all three values of R. In the near-inertialess flow at R = 1, the vorticity is amplified
around the channel centreline directly above the bump, with the elongated stripes of
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Figure 2. Response to Gaussian bump with lx = 2 in (a,c,e) Newtonian and (b,d, f ) viscoelastic flows with
W = 200 and β = 0.5. The Reynolds number is matched between the Newtonian and viscoelastic calculations
and increases from top to bottom, R = {1, 200, 1000}. Colours show the spanwise vorticity perturbation, lines
are the perturbation streamfunction (solid black positive, dashed white negative).

vorticity extending significantly upstream of the bump. This shallow elastic behaviour
is markedly different from the same regime in Couette flow, where vorticity amplification
occurs at the top wall.

At the largest value of R, the perturbation vorticity is amplified in stripes which sit
some distance from the lower wall. This shallow elasto-inertial response is familiar
from the Couette configuration, where vorticity is amplified in a viscoelastic critical
layer at which the base-flow velocity matches the elastic wave speed. In contrast to
that behaviour, vorticity perturbations of a similar magnitude are also established on
the opposite, smooth-walled side of the channel, presumably at a second critical layer.
Therefore, although the penetration depth of the vorticity in an elasto-inertial Couette flow
is proportional to the critical layer depth, here the vortical perturbations fill the channel.
Finally, the intermediate value of R = 200 shows a mixture of these two behaviours and
occurs in a transition between these two distinct regimes.

In all cases, the vorticity is amplified relative to its Newtonian counterpart, and our
goal now is to identify the mechanics underpinning each of the new regimes by the
construction of asymptotic solutions of the flow response to a single wavenumber α in
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Figure 3. Vortical response to monochromatic surface roughness h(x) = cos αx, with α = 0.5: (a) W = 200,
β = 0.2, R = 1; (b) β = 0.5, R = 100, W = 100; (c) W = 200, β = 0.5, R = 2000. Colours are spanwise
vorticity perturbations, lines the perturbation streamfunction.

the long-wave (α � 1) but high-Weissenberg-number (αW � 1) limit. In both cases, we
identify the relevant physical mechanisms and use the solutions to estimate the level of
vorticity amplification in each flow type. We also discuss the transition between the two
regimes, which can be understood in terms of the dependence of the z-location(s) of the
elasto-inertial critical layers on the fluid elasticity, W/R.

3. Asymptotics for monochromatic wall roughness

Both the shallow elastic and shallow elasto-inertial behaviours, and an intermediate state,
are recovered in figure 3 for monochromatic wall roughness, h(x) = cos αx. In the shallow
elastic case, the flow response is clearly confined to the lower part of the channel, with
vorticity amplifying in a chevron pattern about z = 0. In the shallow elasto-inertial regime,
vorticity is generated in two rows of tilted stripes, on either side of the channel and aligned
with the background shear.

In this section, we construct asymptotic solutions for both the shallow elastic and
shallow elasto-inertial regimes. We first derive the leading-order equations in the
long-wave limit, which are slightly different between the two cases owing to the exclusion
or inclusion of inertia, before finding approximate solutions of these systems in the
(singular) high-Weissenberg-number limit via matched asymptotic expansions.

3.1. The shallow elastic regime
The shallow elastic regime is associated with significant vorticity amplification at the
channel centreline. We have seen this response occurs at high elasticity, i.e. when E =
W/R � 1 (a more careful discussion of when this regime can be expected is provided in
§ 3.3). Assuming α � 1, we adopt a long-wave scaling,

û = u, ŵ = αw, p̂ = Wp/R, (3.1a)

τ̂11 = Wτ11, τ̂13 = αWτ13, τ̂33 = ατ33, (3.1b)
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where we have assumed that the pressure scales with the viscoelastic stresses on account
of the large elasticity in this regime. At leading order in α, our equations are

iu + Dw = 0, (3.2a)

0 = −ip + εβD2u + (1 − β) (iτ11 + Dτ13) , (3.2b)

0 = −Dp, (3.2c)

iUτ11 + wA′
11 + ετ11 = 2iA11u + 2εT13Du + 2U′τ13, (3.2d)

iUτ13 + εwT ′
13 + ετ13 = iA11w + εU′τ33 + ε2Du, (3.2e)

iUτ33 + ετ33 = 2iT13w + 2εDw, (3.2f )

where we have introduced A11 := T11/W = O(1) as the scaled streamwise normal base
stress and ε := 1/(αW), which we will subsequently take to be our small parameter. These
equations remain valid in the inertialess limit, R → 0. We note that alternative choices can
be made consistent with the dual requirements that α � 1 and W � 1, for example that
ε = O(1) or ε � 1. For the former, this requires W ∼ 1/α; for the latter 1 � W � 1/α.
However, both of these regimes result in a response which is unaltered from that of a
Newtonian fluid; the dominant role of the base-state streamwise stress is essential to the
new regimes discovered here and requires ε � 1.

The numerical solution of the shallow elastic system (3.2) is compared with the full
numerical solution of the governing equations for two moderate values of α in figure 4.
The agreement between the true velocities and those found from the long-wave system
remain relatively accurate even when α = 1; the small discrepancy is due to the neglected
polymer stresses in (3.2c) which appear at O(α2/ε) relative to the pressure gradient at
O(1/ε). Notably, the amplitude in the ‘jet’ of u seen at the centreline, which is related to
the spanwise vorticity amplification observed in figures 2 and 3, is fixed by the value of ε.
For very small ε, the vertical velocity response is increasingly confined to the lower half of
the channel, and the jump in w across z = 0 is balanced by the strong streamwise velocity
fluctuations at this location. Given the excellent agreement between solutions of (3.2) and
the full system of (2.4), we explore the mechanics of the shallow elastic regime by finding
asymptotic solutions of (3.2) in the limit ε � 1, and do not seek to compute higher-order
corrections in α.

3.1.1. Outer solution
At leading order in ε, the viscoelastic stresses from (3.2) are

τ 0
11 = iA′

11φ0 + 2iA11Dφ0, (3.3a)

τ 0
13 = A11φ0, (3.3b)

where we have introduced the variable φ := w/U, which is proportional to the streamline
displacement (equal under a phase shift of π/2). The terms contributing to the normal
stress are due to (i) base-state stress maintained on perturbed streamlines and (ii)
compression (or expansion) of streamlines carrying base-state stress (Rallison & Hinch
1995). The polymer shear stress is due to tilting of base-state streamlines. Note that τ33
does not couple to the other equations at this order.

The streamwise momentum equation reduces to the simple requirement that the
streamwise polymer force vanishes everywhere in the channel; no pressure perturbation
is required because the perturbation velocity satisfies continuity automatically (discussed
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Figure 4. Comparison of full equations (grey) and shallow elastic approximation, with (a,d) α = 0.5,
ε = 10−3, (b,e) α = 0.5, ε = 10−5 and (c, f ) α = 1, ε = 10−5. For all cases we have set β = 0.2 and R = 1.
Note the good agreement even at moderate α = 1. Solid and dashed lines indicate the real and imaginary
components of the solution,respectively.

further in the following). The net-zero polymer force can be converted into a condition on
the streamline displacement φ,

0 = (1 − β)
(

iτ 0
11 + Dτ 0

13

)
,

= −(1 − β)A11Dφ0, (3.4)

which simply requires that φ0 = constant, except at z = 0 where the base stress A11(z =
0) = 0. The boundary conditions are that the streamline displacement match the lower
wall topography at z = −1, φ0(z = −1) = ih, and vanish at the upper wall, φ0(z = 1) = 0,
which results in the following solution:

φ+
0 = 0, (3.5a)

φ−
0 = ih, (3.5b)

where φ+ := φ(z > 0) and φ− := φ(z < 0), respectively. Therefore, the streamline
displacement in the lower half of the channel is a purely elastic response which mimics the
lower wall across the full half-depth of the channel, before the vanishing base-state stress
at z = 0 provides a blocking effect resulting in unperturbed streamlines above.

The vertical velocity perturbations at leading order are generated by the tilting of the
mean streamlines to match the lower wall topography, hence w−

0 = ihU(z) in the lower
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half of the channel and w+
0 = 0 above. The vertical velocity therefore experiences an O(1)

jump, [[w0]] = −ih/2, whereas the streamwise velocity is continuous, with u−
0 = −hU′(z)

and u+
0 = 0. The constant streamline displacement is associated with a perturbation

velocity field which satisfies mass conservation automatically, hence explaining the lack of
a leading-order pressure response. However, the jump in streamline displacement requires
a boundary layer of thickness δ at z = 0, in which the O(1) jump in vertical velocity must
be balanced by a streamwise velocity perturbation of magnitude ∼ 1/δ. This streamwise
velocity has associated with it a pressure perturbation of order δ which is constant across
the channel depth (because Dpj = 0 at all orders). Therefore, higher-order corrections to
the outer solution are required and the associated asymptotic expansion takes the form

û = u0 + δu1 + · · · , (3.6a)

ŵ = w0 + δw1 + · · · , (3.6b)

p̂ = δp1 + · · · , (3.6c)

τ̂11 = τ 0
11 + δτ 1

11 + · · · , (3.6d)

τ̂13 = τ 0
13 + δτ 1

13 + · · · , (3.6e)

τ̂33 = τ 0
33 + δτ 1

33 + · · · , (3.6f )

where the boundary layer thickness has not yet been determined, but we assume δ � ε.
At O(δ), we have

iu1 + Dw1 = 0, (3.7a)

0 = −ip1 + (1 − β)
(

iτ 1
11 + Dτ 1

13

)
, (3.7b)

0 = −Dp1, (3.7c)

iUτ 1
11 + w1A′

11 = 2iA11u1 + 2T13Du1 + 2U′τ 1
13, (3.7d)

iUτ 1
13 = iA11w1, (3.7e)

iUτ 1
33 = 2iT13w1. (3.7f )

Again, the vertical normal stress does not couple back to the other variables. Rearranging
the equations for the polymer stresses to obtain τ 1

11 and τ 1
13 yields expressions which

are identical in form to the leading-order solution (3.3). The only difference from the
leading-order solution for streamline displacement is that the polymer force is now
balanced by the pressure correction p1,

0 = −ip1 − (1 − β)A11Dφ1. (3.8)

The pressure p1 is constant across the channel. The constant pressure gradient must be
balanced by the polymer force which implies that Dφ1 ∼ 1/z2 as z → 0: the streamline
displacement must increase as the centreline is approached to balance the decreasing
base-state stress. Solving for the correction to the streamline displacement, our expansion
to O(δ) is

φ+ = δ
ip1

2(1 − β)

(
1
z

− 1
)

+ · · · , (3.9a)

φ− = ih + δ
ip1

2(1 − β)

(
1
z

+ 1
)

+ · · · . (3.9b)
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3.1.2. Inner expansion
We introduce an inner variable, η := z/δ(ε), and considering the inner limit of the outer
solution (3.9) indicates that u ∼ 1/δ when η = O(1). On the other hand, the polymer
stresses (not shown) are weak near the centreline, with τ11 ∼ δ and τ13 ∼ δ2. The full set
of inner variables are defined as follows:

ū = δu, w̄ = w, p̄ = p/δ, (3.10a)

τ̄11 = τ11/δ, τ̄13 = τ13/δ
2, τ̄33 = τ33/δ. (3.10b)

Applying this scaling in the streamwise momentum equation, a dominant balance between
the polymer force, pressure gradient and solvent diffusion implies that δ = ε1/4.

With the new scalings, the continuity and momentum equations read

iū + dw̄
dη

= 0, (3.11a)

0 = −ip̄ + β
d2ū
dη2 + (1 − β)

(
iτ̄11 + dτ̄13

dη

)
, (3.11b)

0 = −dp̄
dη

, (3.11c)

i
2

(
1 − ε1/2η2

)
τ̄11 + 4ηw̄ + ετ̄11 = 4iη2ū + 2ε1/2η

dū
dη

− 2ε1/2ητ̄13, (3.11d)

i
2

(
1 − ε1/2η2

)
τ̄13 − ε1/2w̄ + ετ̄13 = 2iη2w̄ − εητ̄33 + ε

dū
dη

, (3.11e)

i
2

(
1 − ε1/2η2

)
τ̄33 + ετ̄33 = −2iηw̄ + 2ε1/2 dw̄

dη
. (3.11f )

To leading order, the streamwise-normal and polymer shear stresses satisfy

i
2
τ̄ 0

11 = 4iη2ū0 − 4ηw̄0, (3.12a)

i
2
τ̄ 0

13 = 2iη2w̄0. (3.12b)

The streamwise momentum equation can then be written as a second-order equation for
ū0 with constant forcing,

d2ū0

dη2 + g(β)η2ū0 = ip1

β
, (3.13)

where g(β) := 4i(1 − β)/β and we have used the fact that p̄0 = p1.
An exact solution of (3.13) is provided in Appendix A.1 and can be expressed in terms

of modified Bessel functions. The far-field behaviour of this inner solution is

ū0(η → ±∞) ∼ p1

4(1 − β)

(
1
η2 − 6

gη6 + · · ·
)

, (3.14)

which automatically matches with the outer solution for u (not shown). In fact, the full
solution for ū0 is directly proportional to the pressure correction p1 and can be written in
the form ū0(η) = p1Θ̄0(η).
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To determine the dependence of p1 on the wall amplitude h we need to connect the
boundary layer jet in the streamwise velocity to the jump in outer vertical velocity, which
can be done by integrating the continuity equation and matching with the constant w ∼
ih/2 in the bulk,

w̄0(η) = ih
2

− i
∫ η

−∞
ū0(η

′) dη′. (3.15)

The limiting form as η → ±∞ can be determined by using the asymptotic approximation
to ū0 and integrating term by term, yielding

w̄0(η → −∞) ∼ ih
2

+ ip1

4(1 − β)

1
η

+ · · · , and (3.16a)

w̄0(η → +∞) ∼ ih
2

− ip1

∫ ∞

−∞
Θ̄0(η

′) dη′ + ip1

4(1 − β)

1
η

+ · · · . (3.16b)

Our inner solution for the vertical velocity therefore predicts a jump [[w̄0]] =
−ip1

∫∞
−∞ Θ̄0(η

′)dη′, which must match the jump in the outer solution, [[w0]] = −ih/2,
and implies

p1 = h
2
∫∞
−∞ Θ̄0(η′) dη′ . (3.17)

This completes the solution.
A comparison between the composite solution generated from the above matched

asymptotic expansion for the streamwise velocity, u, and the numerical solution of the
shallow elastic system is provided in figure 5. Excellent agreement is observed.

The solution allows us to estimate the vorticity amplitude in the critical layer, because
ω = −dzu in the shallow approximation. As u ∼ 1/δ and the critical layer is of thickness
δ, we have ω = O(δ−2) = O(

√
αW). This scaling is the same as found at the upper wall

in a shallow-elastic Couette flow (Page & Zaki 2016).
Our understanding of the response to monochromatic surface distortions in the shallow

elastic regime also allows us to understand more complex surface topographies. Inspired
by the counter-intuitive finite-amplitude disturbances generated by cylinders in the
experiments of Pan et al. (2013), where n ≥ 2 cylinders were required to trigger elastic
turbulence, we briefly examine here the flow response induced by 2n identical Gaussian
bumps separated by a (dimensional) distance al∗x .

We consider bumps with widths commensurate with the channel half-height, l∗x/D = 1,
with the understanding that a series of these smaller-scale bumps has a long-wave
component which may trigger a shallow-elastic response. This result is due to the fact
that if the Fourier transform of an individual Gaussian bump at the origin is b̂(k), then the
Fourier transform of the sequence of 2n bumps is

ĥ(k) = b̂(k)
n∑

j=1

2 cos
[
(2j + 1)ak

]
, (3.18)

and adding additional bumps places an increasing weight around the wavenumbers
associated with the bump spacing, kj = 2πj/a with j = 0, 1, . . . . Indeed, in the limit
n → ∞ the sum in (3.18) becomes a Dirac comb sampling these wavenumbers.

The response to a series of n ∈ {2, 4, 6} bumps is reported in figure 6 for a fixed value
of a = 5. Above any individual bump, a chevron-shaped pattern similar to response to an
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Figure 5. Composite (black) and numerical (grey) solution in the shallow elastic regime: (a) ε = 10−4; (b)
ε = 10−6. In both cases R = 1 and β = 0.8. Solid and dashed lines indicate the real and imaginary components
of the solution respectively. (c) The vorticity field (colours) and streamfunction (lines) corresponding to the
ε = 10−4 case.

isolated bump (see figure 2) is seen. However, as the number of wall bumps increases,
the long-wave contribution to the roughness increases and an increasing upstream effect
is observed in the flow response. Associated with this upstream vorticity is a weak
opposite-signed vortex, which becomes increasingly pronounced as n is increased further.
This should be contrasted with the Newtonian configuration (not shown) where the
response is not sensitive to the number of bumps.

In summary, strongly elastic fluids in shallow channels with long-wave wall undulations
experience a significant vorticity amplification at the channel centreline (see bottom panel
in figure 5). The vanishing base-state stress provides a blocking effect in which the vortices
above the surface undulations are restricted to the lower half of the domain. The rapid
drop in vertical velocity leads to a strong jet-like response in the streamwise velocity
in a layer of thickness (αW)−1/4, which is the source of the vorticity fluctuations. The
long-wave shallow elastic effects also have interesting consequences for a series of isolated
bumps, which induce a spanwise vorticity far upstream of the roughness and, for increasing
numbers of obstacles, a weak upstream vortex.
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Figure 6. Response to a series of n ∈ {2, 4, 6} Gaussian bumps with lx = 1 in a viscoelastic flow with W =
200, R = 1 and β = 0.5. The bumps are spaced apart by 5lx in the streamwise direction. Colours show the
spanwise vorticity perturbation, lines are the perturbation streamfunction (solid black positive, dashed white
negative).

3.2. The shallow elasto-inertial regime
The shallow elasto-inertial regime is associated with significant vorticity amplification at
a pair of critical layers in the bulk of the fluid (see figure 3). This behaviour requires the
influence of both inertia and elasticity, and hence we assume that E = W/R = O(1) here.
Therefore, the long-wave equations must be modified to account for the fact that pressure
scales with the inertial terms. In the shallow elasto-inertial regime, the long-wave scaling
is

û = u, ŵ = αw, p̂ = p, (3.19a)

τ̂11 = Wτ11, τ̂13 = αWτ13, τ̂33 = ατ33. (3.19b)

The leading-order long-wave equations are now

iu + Dw = 0, (3.20a)

iUu + U′w = −ip + εβED2u + (1 − β)E (iτ11 + Dτ13) , (3.20b)

0 = −Dp, (3.20c)

iUτ11 + wA′
11 + ετ11 = 2iA11u + 2εT13Du + 2U′τ13, (3.20d)
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Figure 7. Comparison of full equations (grey) and shallow elasto-inertial approximation (black), with ε =
10−3 and β = 0.5: (a,d) α = 0.5, E = 0.1; (b,e) α = 0.5, E = 0.5; (c, f ) α = 1, E = 0.5. Solid and dashed
lines indicate the real and imaginary components of the solution, respectively.

iUτ13 + εwT ′
13 + ετ13 = iA11w + εU′τ33 + ε2Du, (3.20e)

iUτ33 + ετ33 = 2iT13w + 2εDw, (3.20f )

where, as before, A11 := T11/W = O(1), and the parameter ε := 1/(αW), which we
subsequently assume to be small.

The numerical solution of the elasto-inertial long-wave equations (3.20) is compared
with the solution of the original linear system (2.4) in figure 7 for modest values of α. Note
there are sharp variations in w and enhanced streamwise velocity fluctuations in two thin
layers on either side of the channel, which corresponds to the strong vorticity fluctuations
observed earlier in figures 2 and 3. There is good correspondence between the solution
of the long-wave equations and the full numerical solution, even for the relatively large
α = 1. Therefore, we again attempt to construct solutions by finding matched asymptotic
expansions in ε within the long-wave system (3.20) without constructing higher-order
corrections in α.

3.2.1. Outer solution
To leading order in ε we find the same expressions for the stress as in the shallow elastic
regime (see (3.3)). Using these expressions in the streamwise momentum equation and
again making use of the streamline displacement, φ := w/U, we find the long-wave form
of the elastic-Rayleigh equation (Azaiez & Homsy 1994; Rallison & Hinch 1995; Ray &
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Zaki 2014), [
U2 − (1 − β)EA11

]
Dφ0 = ip0, (3.21)

where the vertical momentum equation indicates again that p0 = constant. The equation
has regular singular points where (1 − β)EA11(z) = U2(z). These are points where
the vorticity wave speed, cω(z) = √

(1 − β)EA11(z), matches the base-flow speed. The
elasto-inertial vorticity wave speed is of the same form as the wavespeed of Alfvén waves
(Chandrasekhar 1961); here it is the highly tensioned base-flow streamlines that provide a
mechanism for wave propagation.

As noted by Page & Zaki (2016), vorticity amplification at the critical layers is associated
with a resonance between two fundamental frequencies in the problem: The singularities
in (3.21) are points in the flow where an observer travelling at the base-flow velocity would
sees the wavy wall oscillating at a frequency which is equal to the natural frequency of the
elasto-inertial waves. The key differences in the channel are (i) that there are two points
inside the flow domain where the resonance occurs and (ii) the location of the critical
layers does not scale simply with elasticity (the location is z = √

2E(1 − β) in Couette
flow).

In total, there are four values of z where the elastic-Rayleigh equation has singularities,
two inside the flow domain where the base-flow velocity cancels with the velocity of
backward propagating elasto-inertial waves, z = ±√

ξ−, and two outside the flow domain,
z = ±√

ξ+, where the base-flow velocity cancels with the forward propagating wavespeed.
In these expressions,

ξ± = B
2

± 1
2

√
B2 − 4, B := 2 + 8E(1 − β). (3.22)

Note that the critical layer’s distance from the wavy wall can be written in the following
form (we have used the lower critical layer here),

l(E) = (2(1 − β)E)1/2 f (χ), (3.23)

where χ := (2(1 − β)E)−1, and f (χ) = 1 + χ −
√

1 + χ2. In the low elasticity limit,
E � 1, the critical layer depth scales linearly with the vorticity wave speed based on
the wall shear rate, l ∼ √

2(1 − β)E(1 − √
2(1 − β)E /2 + · · · ), which is a recovery of

the result in Couette flow (Page & Zaki 2016). In the opposite limit, E � 1, the critical
layer approaches the channel centreline, l ∼ 1 − (2

√
2(1 − β)E)−1 + · · · . This limit is

not physically relevant to the elasto-inertial regime of interest here, since the scalings used
to derive (3.20) no longer hold. Instead, the approach of the critical layer to the centreline
signals a transition to the shallow elastic regime which was examined in § 3.1.

The solution for the leading order streamline displacement can be written

φk
0(z) = Ck

0 + 2ip0ξ−
ξ2− − 1

(
Φ(z; ξ+) − 1√

ξ−
log

∣∣∣∣
√

ξ− − z√
ξ− + z

∣∣∣∣
)

, (3.24)

where Φ(z; ξ+) := (1/
√

ξ+) log |(√ξ+ − z)/(
√

ξ+ + z)| is analytic in z ∈ [−1, 1], and
the superscript k is used to identify the ‘wall’ (−1 ≤ z <

√
ξ−), ‘bulk’ (−√

ξ− < z <
√

ξ−
and ‘top’ (

√
ξ− < z ≤ 1) layers respectively. We are free to avoid specifying a branch of

the logarithm, since phase jumps can be absorbed into the unknown constants Ck
0.

For a complete solution in this regime, we will need to match the singular outer solution
(3.24) across both critical layers. We will describe only the procedure at the lower critical
layer in detail, noting aspects of the solution that change at the upper layer. At the lower
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layer, we introduce the inner coordinate, η := (z + √
ξ−)/δ, where the boundary layer

thickness δ(ε) has not yet been specified. Assuming η = O(1), the outer vertical velocity
has the form,

w0(η) ∼ (1 − ξ−)Ck
0

2

+ ip0

1 + ξ−

(
Φ(−

√
ξ−) − 1√

ξ−
log |2

√
ξ−| + 1√

ξ−
(log δ + log |η|)

)
+ O(δ).

(3.25)

This suggests that the inner solution will consist of a constant O(log δ) vertical velocity and
an O(1) contribution that jumps [[w0]] = (1/2)(1 − ξ−)(Cb

0 − Cw
0 ) over the critical layer,

a jump that must be balanced by large O(1/δ) streamwise velocity fluctuations. Unlike the
shallow elastic regime, the jump is also associated with significant stress fluctuations, with
τ11 ∼ 1/δ as z → −√

ξ−.

3.2.2. Inner expansion
The appropriate inner scaling in the shallow elasto-inertial regime is

ū = δu, w̄ = w, p̄ = p, (3.26a)

τ̄11 = δτ11, τ̄13 = τ13, τ̄33 = τ33. (3.26b)

The O(log δ) constant vertical velocity will emerge naturally in the outer limit η → ±∞.
We rescale variables following (3.26) and rewrite our governing equations in terms of the
scaled wall-normal variable η := (z + √

ξ−)/δ. Base-flow variables are expanded U(η) =
Ū(−√

ξ−) + Ū′(−√
ξ−)δη + · · · etc. In these expansions, the bar over the base-flow

quantities is to emphasise that they are evaluated at the singular point, z = −√
ξ−, and

are constant.
Assuming δ � ε, approximations to the streamwise and shear polymer stresses in the

vicinity of the critical layer are

τ̄11 ∼ 1
iŪ

(
1 − Ū

Ū′ δη
)(

2iĀ11ū + 2iĀ′
11δηū − δĀ′

11w̄ + 2Ū′Ā11

Ū
δw̄
)

+ · · · , (3.27a)

τ̄13 ∼ Ā11

Ū
w̄ + 1

Ū

(
Ā′

11 − Ū′Ā11

Ū

)
δηw̄ + · · · . (3.27b)

Using these approximations in the streamwise momentum equation, along with the fact
that Ū2 = (1 − β)EĀ11, results in(

2Ū′ − (1 − β)EĀ′
11

Ū

)
︸ ︷︷ ︸

=:ζ

iηū = −ip̄ + βEε

δ3
d2ū
dη2 + O(δ). (3.28)

A dominant balance indicates that δ = (εβE)1/3(= (β/(αR))1/3): the thickness is set by
the solvent diffusion length scale.
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At leading order, the inner equation for the streamwise velocity at the lower critical layer
is

d2ū0

dη2 − iζηū0 = ip0, (3.29)

where we have used the fact that p̄0 = p0 is constant over the channel depth. A similar
approach at the upper critical layer, z = +√

ξ− leads to an inner equation of the form

d2 ¯̄u0

dη2 + iζη ¯̄u0 = ip0, (3.30)

the only difference from the lower critical layer being a change in sign on the second term.
The solution in the upper critical layer can therefore be obtained from a reflection of the
lower layer, ¯̄u0(η) = ū0(−η). A solution to (3.29) in terms of Airy functions is provided
in Appendix A.2. For matching, the far-field expression for the inner streamwise velocity
is found to be

ū0(η → ±∞) ∼ − p0

ζη
+ · · · . (3.31)

Similar to the shallow elastic regime, the inner solution is directly proportional to the
pressure, and can be written in the form ū0 = p0Θ(η).

To match to the outer solution, we integrate with respect to η to obtain an expression for
inner vertical velocity. However, unlike the shallow elastic regime, we are not matching to
a constant, but to a logarithmic term. Therefore, to avoid divergent integrals, we integrate
from some lower limit −σ (to be specified) and consider the outer limit of our inner
equation with σ � |η| � 1 above and below the critical layer (Bender & Orszag 1978).
The vertical velocity is expressed as

w̄0(η) = w̃σ − i
∫ η

−σ

ū0(η
′) dη′, (3.32)

where the constant w̃σ depends on the choice of lower limit σ .
We now adopt the same approach as in the shallow elastic regime, using the approximate

form of ū0 in the far-field to find asymptotic approximations to w̄0,

w̄0(η � 1) ∼ w̃σ − ip̄0

ζ
log |σ | + ip̄0

ζ
log |η| + · · · (3.33a)

w̄0(η � 1) ∼ w̃σ − i
∫ σ

−σ

ū0(η
′)dη′ − ip̄0

ζ
log |σ | + ip̄0

ζ
log |η| + · · · . (3.33b)

Comparing with the inner limit of the outer expansion (3.25), we see that the choice σ =
1/δ leads to the required log δ term for the matching. The integral

∫ σ

−σ
ū0dη′ is independent

of σ when σ � 1 and in fact taking the limit σ → ∞ in this integral is convergent due to
symmetry.

The outer limits of the inner vertical velocity indicates a jump [[w̄0]] = −ip̄0
∫∞
−∞ Θdη′,

which can be compared with predicted outer jumps of w0 to connect the various constants
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Figure 8. Composite (black) and numerical (grey) solution in the shallow elasto-inertial regime: (a) E =
0.2, ε = 10−3, β = 0.5; (b) E = 0.5, ε = 10−3, β = 0.8. Solid and dashed lines indicate the real and
imaginary components of the solution, respectively. (c) The vorticity field (colours) and streamfunction (lines)
corresponding to the E = 0.2 case.

Ck
0 across the two critical layers,

Cb
0 = Cw

0 − 2ip0

1 − ξ−

∫ ∞

−∞
Θ(η′) dη′, (3.34)

Ct
0 = Cb

0 − 2ip0

1 − ξ−

∫ ∞

−∞
Θ(η′) dη′, (3.35)

where we have also used the symmetry at the upper critical layer, ¯̄u0(η) = ū0(−η). Finally,
we apply the boundary conditions on the streamline displacement, φ0(−1) = ih and
φ0(1) = 0, which allows the pressure p0 to be written in terms of the roughness height, h,

−2ip0ξ−
1 − ξ2−

(
Φ(1) − 1√

ξ−
log

∣∣∣∣
√

ξ− − 1√
ξ− + 1

∣∣∣∣
)

= ih − 2ip0ξ−
1 − ξ2−

(
Φ(−1) − 1√

ξ−
log

∣∣∣∣
√

ξ− + 1√
ξ− − 1

∣∣∣∣
)

− 4ip0

1 − ξ−

∫ ∞

−∞
Θ(η′) dη′. (3.36)

Rearranging for p0 completes the solution, and a composite solution for u built from the
inner/outer asymptotic approximations is compared with the full solution of the shallow
system (3.20) in figure 8. Excellent agreement is observed.

Similar to the shallow elastic regime in § 3.1, the vorticity amplification can be estimated
from the critical layer scalings, ω ∼ p0/δ

2. However, note that there is a subtle dependence
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Figure 9. Pressure and vorticity amplification as a function of elasticity, obtained from calculations at
ε = 10−6, β = 0.5. The red lines indicate (a) p ∼ l(E) = √

E and (b) ω ∼ E−1/6.

on the elasticity, because p0 is a function of E via the location of the critical layers (z =
±√

ξ−) in (3.36) and the boundary-layer thickness is itself dependent on E indirectly if we
are examining the scaling as a function of ε.

We examine the dependence of the bulk pressure p0 and the vorticity on the elasticity
numerically in figure 9. The pressure scales linearly with the critical layer distance from
the lower wall p0 ∼ l, which for small elasticity l ≈ √

2(1 − β)E (see earlier discussion
around the elastic-Rayleigh equation (3.21)). For fixed ε, the boundary layer thickness
δ ∝ E1/3, which indicates the ω ∼ E−1/6/ε2/3, a scaling which is confirmed in figure 9
for a wide range of elasticities.

In summary, the shallow elasto-inertial regime is associated with a significant
amplification of spanwise vorticity at two critical layers, where the base velocity matches
an elasto-inertial wavespeed (see the bottom panel in figure 8). The thickness of these
layers is set by a diffusion length scale in the solvent, δ ∼ (αR/β)−1/3. The vorticity
amplification scales with 1/δ2, but has a more complex dependence on the elasticity which
is fixed by the bulk pressure, as detailed previously. Significantly, the response in the
upper critical layer is equal in magnitude to that at the lower layer, hence the perturbation
vorticity fills the depth of the channel.

3.3. Discussion
In the asymptotic solutions given previously we have demonstrated how the change in
geometry from Couette to channel flow has a substantial effect on the vorticity field
generated by surface roughness on the lower channel wall. These differences only manifest
when the channel depth is smaller than the roughness streamwise length scale; otherwise,
the perturbation is exposed to a simple shear (to a leading approximation) before it has
decayed and, therefore, we did not study this case here (see the Couette analysis in Page &
Zaki 2016). However, when the channel is ‘shallow’ (α � 1) the non-monatonic velocity
profile leads to two striking new behaviours: shallow elastic flow (a regime also found
in Couette but with very different phenomenology) and shallow elasto-inertial flow (not
observed in Couette at all).

Some of these differences are summarised in the phase diagrams reported in figure 10,
where the Couette results have also been included for reference. In this image, the various
regimes are classified by the values of surface wavenumber, α, and elasticity, E (assuming
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Elasto-inertial

Shallow elastic

Deep elastic

Shallow
Elasto-inertial

P ~ 1

P ~ 1/α

P ~ 2

(half channel)

P ~ l(E)

~ �2(1 − β)E
+· · ·

log E

log α

Shallow elastic Deep elastic

P ~ 1 P ~ 1/α
(full channel)

log α

log E

Elasto-inertial

P ~ �2(1 − β)E

(b)(a)

Figure 10. Phase diagrams for (a) the wavy channel and (b) wavy Couette flow from Page & Zaki (2016). Also
included is an estimate of the penetration depth, P , of the vorticity perturbation induced at the lower wall. Note
that the diagonal line in the bottom right quadrant indicates 1/α ∼ √

2(1 − β)E.

that the Weissenberg number is large); the ‘shallow’ geometries studied in detail in this
paper are to the left of the vertical α = 1 line. Note that the diagrams are rotated relative to
the one previously reported in Page & Zaki (2016) due to the use of the channel half-height
as the length scale, rather than the inverse wavenumber of the surface wave. The diagonal
line identifies the transition from elasto-inertial to deep elastic flow when the location
of the (lower) critical layer is further than a surface wavelength from the lower wall,√

2(1 − β)E > 1/α (see Page & Zaki 2016, for details of these regimes which occur in
deep channels, and are unchanged from the Couette results). The inertialess limit, R → 0,
can be recovered on the phase diagram via E → ∞; the response being either shallow
elastic or deep elastic depending on the value of α.

An estimate of the vorticity penetration depth, P , is also provided for each regime in
figure 10. This a measure of how far the perturbation vorticity penetrates into the bulk
of the flow above the wavy boundary. There are various ways to define this quantity,
for instance in Page & Zaki (2016) an integral measure is used, and P is defined as the
z-location below which 99 % of the total perturbation enstrophy is contained. In shallow
elastic flow, the vorticity amplification mechanism is essentially due to conservation of
mass, whereby disconnected purely elastic responses in either half of the channel drive a
discontinuity in vertical velocity, which leads to a strong streamwise velocity response at
the centreline in a layer of thickness δ ∼ (αW)−1/4. The penetration depth of the vorticity
is therefore approximately the channel half-height, P ∼ 1, though for the boundary layer
thickness shrinks slowly with increasing Weissenberg number, so a more refined estimate
would be P ∼ 1 + δ.

In shallow elasto-inertial flow, the same resonance between elastic waves and the
frequency of wall oscillations that was found in the Couette flow occurs again, but now at
a pair of critical layers. Consequently, a strong vorticity perturbation is generated over the
entire channel depth, which should be contrasted to the Couette flow where it is limited to
the single critical layer (i.e. near the lower wall only). As such, the penetration depth in
shallow elasto-inertial flows is the full channel depth P ∼ 2, whereas in Couette flow there
is no distinction between shallow and deep elasto-inertial geometries, because the vorticity
penetration depth is set by the height of the single critical layer, P ∼ √

2(1 − β)E.
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Finally, we comment on the transition from shallow elasto-inertial to shallow elastic
flows which can be initiated at fixed α < 1 by increasing the elasticity and is identified
by the thick horizontal black line on E = 1 in figure 10. In the Couette flow (Page &
Zaki 2016), the transition between shallow elastic and elasto-inertial behaviour is relatively
simple: it occurs when the critical layer height crosses the top boundary. The transition is
less straightforward in the channel for two reasons: (1) the critical layers never leave the
flow domain, but instead both move towards the centre of the channel as the elasticity is
increased (see (3.29)), and too large an elasticity breaks the dominant balance assumed in
the elasto-inertial flow; (2) the thickness of the boundary layer at z = 0 in shallow elastic
flow is relatively large, δ ∼ (αW)−1/4, and shrinks very slowly with increasing W. As
such, for a wide range of flow parameters it is possible to find a response which shares
some characteristics of both regimes. For instance, this can be seen for the ‘intermediate’
states reported in figures 2 and 3.

4. Conclusion

In this paper, we have shown how significant vorticity fluctuations can be generated by
long-wave surface undulations in planar viscoelastic channel flows. Unlike Newtonian
flows in the same configuration, the response to the surface displacement can be significant
across a full range of Reynolds numbers. The new regimes of vortical penetration, shallow
elastic and shallow elasto-inertial flows, are both primarily associated with the vertical
dependence of the base-state streamwise normal stress, T11(z), and its symmetry about the
midplane. The vanishing stress at z = 0 confines inertialess, high-elastic responses to the
lower half of the channel, whereas the symmetry in elasto-inertial flows drives a response
at two critical layers in the bulk of the flow.

Future studies should address the influence of finite-amplitude wall roughness on the
behaviours discovered in this work. For instance, in the shallow elastic flow there is a
strong asymmetry in the response, where the perturbation vortices are confined to the lower
half of the channel. It would be of interest to explore at what roughness amplitude this
has an appreciable effect on the velocity and conformation profiles, which can be explored
with the tools developed by Hameduddin et al. (2018) and Hameduddin & Zaki (2019). The
secondary instability of these flows are also of significant interest owing to the possibility
for non-trivial dynamics at low-R; for instance, are the instabilities three-dimensional (e.g.
like elastic ‘Taylor’ rolls, see Larson, Shaqfeh & Muller 1990) or two-dimensional leading
to structures observed in flows with moderate inertia (Page et al. 2020)? It would also be
of interest to explore how some of the effects considered in this paper change for other
non-monotonic background stress fields (e.g. in boundary layers).
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Appendix A. Details of the inner solutions

A.1. The shallow elastic regime
In the shallow elastic regime there is a boundary layer at z = 0, where a dominant balance
between solvent diffusion and the polymer force in the streamwise momentum equation
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Wavy viscoelastic channel flow

yields

d2ū0

dη2 + g(β)η2ū0 = ip1

β
, (A1)

where g(β) := 4i(1 − β)/β. Note there is a reflection symmetry in the equation and
matching conditions, hence ū0(−η) = ū0(η). A numerically satisfactory pair of solutions
to (A1) is

U1(η) = (η2)1/4I−1/4(
√−gη2/2) + η

(η2)1/4 I1/4(
√−gη2/2),

U2(η) = (η2)1/4I−1/4(
√−gη2/2) − η

(η2)1/4 I1/4(
√−gη2/2),

⎫⎪⎬
⎪⎭ (A2)

where the Ik are modified Bessel functions of the first kind. The Wronskian is W =
−4

√
2/π.

Using variation of parameters, we write the complete solution to the inner equation as

ū0(η) = C̄1U1(η) + C̄2U2(η) − iπp1

4
√

2β

(
U2

∫ η

0
U1(η

′)dη′ − U1

∫ η

0
U2(η

′)dη′
)

.

(A3)
Applying boundedness as η → ±∞, we find

C̄1 = − iπp1

4
√

2β

∫ ∞

0
U2(η

′) dη′, (A4)

C̄2 = − iπp1

4
√

2β

∫ 0

−∞
U1(η

′) dη′. (A5)

The inner solution can therefore be written in the form ū0(η) = p1Θ(η), where the
function Θ is independent of the pressure.

To obtain the asymptotic form of the inner streamwise velocity in the far field (i.e.
as η → ±∞), we need large-η asymptotic approximations to integrals of the form∫ η

0 Uj(η
′) dη′. These limiting forms are straightforward to derive by writing Uj =

−(gη2)−1 d2
ηUj in the integrand and using repeated integration by parts (e.g. see Bender

& Orszag 1978). We find

ū0(η → ±∞) ∼ p1

4(1 − β)

(
1
η2 − 6

gη6 + · · ·
)

. (A6)

A.2. The shallow elasto-inertial regime
In the shallow elasto-inertial regime there are critical layers at z = ±√

ξ− (see discussion
in § 3.2). In the lower critical layer, a balance between solvent diffusion, advection and
polymer force reduces the streamwise momentum equation to the form

d2ū0

dη2 − iζηū0 = ip0, (A7)

where the constant, ζ , can be written in terms of the critical layer location ζ ≡ (ξ− +
1)/

√
ξ−. This equation is an inhomogeneous Airy equation; a numerically satisfactory
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pair of solutions is

U1(η) = Ai(eiπ/6ζ 1/3η),

U2(η) = Ai(eiπ/6ζ 1/3η) − i Bi(eiπ/6ζ 1/3η),

}
(A8)

with Wronskian W = (−i/π)eiπ/6ζ 1/3. Note that at the upper critical layer, z = +√
ξ−,

we find the streamwise velocity solves

d2 ¯̄u0

dη2 + iζη ¯̄u0 = ip0, (A9)

and so the solution in the upper critical layer can be obtained from a reflection of the lower
layer solution, ¯̄u0(η) = ū0(−η). Therefore, we discuss only the solution in the lower layer
here.

Using the method of variation of parameters, the inner solution may be written in the
form

ū0(η) = C̄1U1(η) + C̄2U2(η) − πe−iπ/6p0

ζ 1/3

(
U2

∫ η

0
U1(η

′) dη′ − U1

∫ η

0
U2(η

′) dη′
)

.

(A10)
Applying boundedness as η → ±∞, we find

C̄1 = πe−iπ/6p0

ζ 1/3

∫ 0

−∞
U2(η

′) dη′, (A11)

C̄2 = πe−iπ/6p0

ζ 1/3

∫ ∞

0
U1(η

′) dη′. (A12)

Note now that the solution for the inner velocity can be written in the form ū0(η) =
p0Θ(η), where Θ is an O(1) function which is independent of the pressure.

The asymptotic form of ū0(η → ±∞) is straightforward to derive by using integration
by parts in a similar approach to that adopted for the shallow elastic regime. Only the first
term in the expansion is required for the matching with the outer solution,

ū0(η → ±∞) ∼ − p0

ζη
+ · · · . (A13)
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