A MATRIX REPRESENTATION OF A PAIR OF PROJECTIONS IN A HILBERT SPACE

BY

R. GILES AND H. KUMMER(${ }^{1}$)

Let H be a complex Hilbert space and let $K=H \oplus H$. Then K can be identified with the set of all column matrices

$$
\psi=\left[\begin{array}{l}
\psi_{1} \\
\psi_{2}
\end{array}\right], \quad \psi_{\imath} \in H
$$

equipped with componentwise addition and scalar multiplication and the scalar product

$$
(\boldsymbol{\psi} \mid \boldsymbol{\phi})=\left(\psi_{1} \mid \phi_{1}\right)+\left(\psi_{2} \mid \phi_{2}\right)
$$

Using this representation of $K=H \oplus H$ the algebra $L(K)$ of all bounded operators on K may be identified with the algebra $\mathbf{M}_{2}(L(H))$ of all 2×2 matrices over the ring $L(H)$ with the involution

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{*}=\left[\begin{array}{ll}
a_{11}^{*} & a_{21}^{*} \\
a_{12}^{*} & a_{22}^{*}
\end{array}\right]
$$

In the sequel we mean by the word projection an orthogonal projection, i.e. a selfadjoint idempotent. Moreover we use the notation $L(H)^{+}$for the positive part of $L(H)$.

Lemma 1. Let $a, b \in L(H)^{+}$and assume that $a+b, q_{1}, q_{2}$ are projections, such that $a q_{1}=b q_{2}=0$. Then a and b commute and

$$
\mathbf{e}_{ \pm}=\left[\begin{array}{ll}
a+q_{1} & \pm(a b)^{1 / 2} \\
\pm(a b)^{1 / 2} & b+q_{2}
\end{array}\right]
$$

are projections belonging to $L(K)$.
Proof. Since $a, b \leq a+b$ and $a+b$ is a projection, a commutes with $a+b$. Hence a commutes with $(a+b-a)=b$. Moreover $(a+b) a=a$ and $(a+b) b=b$. Therefore

$$
\mathbf{e}_{ \pm}^{2}=\mathbf{e}_{ \pm} .
$$

Finally $\mathbf{e}_{ \pm}$are selfadjoint, since their matrices are invariant under the *-operation in $\mathbf{M}_{\mathbf{2}}(L(H))$,
Q.E.D.

Let $\mathbf{I}(H, K)$ be the set of all isometries of H into K. Then every element $\rho \in \mathbf{I}(H, K)$ induces a ${ }^{*}$-isomorphism ρ^{\prime} of $L(H)$ into $L(K)$ defined by the equations

Received by the editors April 14, 1969 and, in revised form, April 6, 1970.
$\left.{ }^{1}\right)$ This work was supported by a grant from the National Research Council of Canada.

$$
\begin{array}{ll}
\rho^{\prime}(a) \psi=\rho\left(a \rho^{-1}(\psi)\right), & \psi \in \rho(H), \\
\rho^{\prime}(a) \psi=0, & \psi \perp \rho(H) .
\end{array}
$$

Indeed we have

$$
\begin{aligned}
\sup _{\|\psi\| \leq 1}\left\|\rho^{\prime}(a) \psi\right\|=\sup _{\substack{\| \| \leq 1 \\
\psi \in \rho(H)}}\left\|\rho^{\prime}(a) \psi\right\| & =\sup _{\|\rho-1 \psi\| \leq 1}\left\|\rho\left(a \rho^{-1}(\psi)\right)\right\| \\
& =\sup _{\|\rho-1 \psi\| \leq 1}\left\|a \rho^{-1}(\psi)\right\|=\|a\| .
\end{aligned}
$$

That ρ^{\prime} is a *-homomorphism is easily verified. The following theorem asserts that for every pair of projections $e, f \in L(H)$ there exists $\rho \in \mathbf{I}(H, K)$ such that $\rho^{\prime}(e)$ and $\rho^{\prime}(f)$ have the form (1) or alternatively such that

$$
\rho^{\prime}(e)=\left[\begin{array}{ll}
e & 0 \\
0 & 0
\end{array}\right]
$$

while $\rho^{\prime}(f)$ has a representation of the form (1). More explicitly:

Theorem 2. Let e and f be projections in $L(H)$. Then
(i) There is a linear isometry $\rho: H \rightarrow K=H \oplus H$ such that, under the corresponding injection $\rho^{\prime}: L(H) \rightarrow L(K)$,

$$
\begin{aligned}
\rho^{\prime}(e) & =\left[\begin{array}{cc}
e \wedge f+e \wedge f^{\perp}+a & (a b)^{1 / 2} \\
(a b)^{1 / 2} & b
\end{array}\right], \\
\rho^{\prime}(f) & =\left[\begin{array}{cc}
e \wedge f+e^{\perp} \wedge f+a & -(a b)^{1 / 2} \\
-(a b)^{1 / 2} & b
\end{array}\right],
\end{aligned}
$$

where $I \geq a \geq b \geq 0, a+b$ is a projection orthogonal to $e \wedge f+e^{\perp} \wedge f+e \wedge f^{\perp}+e^{\perp} \wedge f^{\perp}$, and $\frac{1}{2}$ and 1 do not belong to the point spectrum of a or b.
(ii) There is a linear isometry $\tau: H \rightarrow K$ such that, under the corresponding injection $\tau^{\prime}: L(H) \rightarrow L(K)$,

$$
\begin{aligned}
\tau^{\prime}(e) & =\left[\begin{array}{ll}
e & 0 \\
0 & 0
\end{array}\right] \\
\tau^{\prime}(f) & =\left[\begin{array}{cc}
e \wedge f+c & (c d)^{1 / 2} \\
(c d)^{1 / 2} & d+e^{\perp} \wedge f
\end{array}\right]
\end{aligned}
$$

where $I \geq c \geq 0, I \geq d \geq 0, c+d$ is the projection $e-e \wedge f-e \wedge f^{\perp}$, and 1 does not belong to the point spectrum of c or d.

Here $e^{\perp}=I-e, f^{\perp}=I-f, e \wedge f$ is the projection corresponding to $e H \cap f H$, and I is the identity in $L(H)$. The virtue of these representations stems from the fact that in each case the elements of $L(H)$ appearing as entries in the matrices all commute. The noncommutativity of e and f is thus embodied entirely in the matrix form of the representations.

Proof of (i). Let $s=e+f, d=e-f$. Since $2 I \geq s \geq 0$ the spectrum of s lies in the closed interval $[0,2]$. Now we have:

Lemma 3. If λ is the spectral measure corresponding to s then
(a) $\lambda(\{2\})=e \wedge f$,
(b) $\lambda(\{1\})=e^{\perp} \wedge f+e \wedge f^{\perp}$,
(c) $\lambda(\{0\})=e^{\perp} \wedge f^{\perp}$.

Proof of Lemma 3. (a) If $\psi \in(e \wedge f) H$ then $s \psi=2 \psi$ so $\psi \in \lambda(\{2\}) H$. Conversely, assume $\psi \in \lambda(\{2\}) H$ and $\|\psi\|=1$. Then $(\psi, e \psi)+(\psi, f \psi)=2$, so that $e \psi=f \psi=\psi$ whence $\psi \in(e \wedge f) H$.
(c) is proved in the same way.
(b) If $\psi \in\left(e^{\perp} \wedge f+e \wedge f^{\perp}\right) H$ then we can write $\psi=\psi_{1}+\psi_{2}$ with $\psi_{1} \in\left(e^{\perp} \wedge f\right) H$ and $\psi_{2} \in\left(e \wedge f^{\perp}\right) H$. But then $(e+f) \psi=\psi_{1}+\psi_{2}=\psi$ so $\psi \in \lambda(\{1\}) H$. Conversely, if $\psi \in \lambda(\{1\}) H$ then $(e+f-I)^{2} \psi=0$. But $(e+f-I)^{2}=I-(e-f)^{2}$ so $(e-f)^{2} \psi=\psi$. It now follows from the spectral theorem that ψ is a linear combination $\psi=\alpha \psi_{1}+\beta \psi_{2}$ with $\left\|\psi_{1}\right\|=\left\|\psi_{2}\right\|=1$ and $(e-f) \psi_{1}=\psi_{1},(e-f) \psi_{2}=-\psi_{2}$. But then $1=\left(\psi_{1},(e-f) \psi_{1}\right)$ $=\left(\psi_{1}, e \psi_{1}\right)-\left(\psi_{1}, f \psi_{1}\right)$ whence $\left(\psi_{1}, e \psi_{1}\right)=1$ and $\left(\psi_{1}, f \psi_{1}\right)=0$ so that $\psi_{1} \in\left(e \wedge f^{\perp}\right) H$. Similarly $\psi_{2} \in\left(e^{\perp} \wedge f\right) H$ so that $\psi \in\left(e^{\perp} \wedge f+e \wedge f^{\perp}\right) H$.

Let $e_{2}, e_{+}, e_{1}, e_{-}, e_{0}$ denote $\lambda(\{2\}), \lambda((1,2)), \lambda(\{1\}), \lambda((0,1)), \lambda(\{0\})$ respectively.
We now examine the structure of d. Since $d^{2}=2 s-s^{2}$ the support of d is $e_{+}+e_{1}$ $+\boldsymbol{e}_{-}$and since d is Hermitian its polar decomposition (see, for instance, [1, p. 334]) takes the form

$$
d=u\left(2 s-s^{2}\right)^{1 / 2}
$$

where u is a partial isometry commuting with $\left(2 s-s^{2}\right)^{1 / 2}$ with $u=u^{*}$ and $u^{2}=e_{+}$ $+e_{1}+e_{\ldots}$. From the identity $s d+d s-2 d=0$ we obtain $s u=u(2 I-s)$. This implies $f(s) u=u f(2 I-s)$ for any polynomial f and hence, by the separate weak continuity of multiplication, for any Borel function f defined on the closed interval [0, 2]. In particular $e_{+} u=u e_{-}$and $e_{1} u=u e_{1}$.

We have directly $d\left(e \wedge f^{\perp}\right)=e \wedge f^{\perp}$ and $d\left(e^{\perp} \wedge f\right)=-\left(e^{\perp} \wedge f\right)$ which, since $d e_{1}=u e_{1}$, gives $u\left(e \wedge f^{\perp}\right)=e \wedge f^{\perp}$ and $u\left(e^{\perp} \wedge f\right)=-\left(e^{\perp} \wedge f\right)$.

Let $v=u\left(e_{+}+e_{-}\right)$. Then v is a partial isometry, $v=v^{*}$, and $v^{2}=e_{+}+e_{-}$.
Let $\rho: H \rightarrow K$ be given by

$$
\rho(\psi)=\left[\begin{array}{c}
\left(I-e_{-}\right) \psi \\
v e_{-} \psi
\end{array}\right]
$$

Then $(\rho(\psi), \rho(\phi))=\left(\psi,\left[\left(I-e_{-}\right)^{2}+e_{-} v^{2} e_{-}\right] \phi\right)=(\psi, \phi)$ so that ρ is a linear isometry. The corresponding map $\rho^{\prime}: L(H) \rightarrow L(K)$ is given by

$$
\rho^{\prime}(x)=\left[\begin{array}{cc}
\left(I-e_{-}\right) x\left(I-e_{-}\right) & \left(I-e_{-}\right) x e_{-} v \\
v e_{-} x\left(I-e_{-}\right) & v e_{-} x e_{-} v
\end{array}\right]=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]
$$

say. We evaluate $\rho^{\prime}(s)$:

$$
\begin{aligned}
& s_{11}=\left(I-e_{-}\right) s\left(I-e_{-}\right)=\left(I-e_{-}\right) s=\left(e_{2}+e_{+}+e_{1}\right) s=2 e_{2}+e_{1}+e_{+} s \\
& s_{12}=s_{21}=0 \\
& s_{22}=v e_{-} s v=e_{+} v^{2}(2 I-s)=e_{+}(2 I-s) .
\end{aligned}
$$

Putting $2 a=e_{+} s, 2 b=e_{+}(2 I-s)$ we have $e_{+} \geq a \geq\left(e_{+} / 2\right) \geq b \geq 0, a+b=e_{+}, \frac{1}{2}$ and 1 do not lie in the point spectrum of a or b, and

$$
\rho^{\prime}(s)=\left[\begin{array}{cc}
2(e \wedge f)+e \wedge f^{\perp}+e^{\perp} \wedge f+2 a & 0 \\
0 & 2 b
\end{array}\right]
$$

Lastly we evaluate $\rho^{\prime}(d)$:

$$
\begin{aligned}
d_{11} & =\left(I-e_{-}\right) u\left(2 s-s^{2}\right)^{1 / 2}\left(I-e_{-}\right)=\left(e_{+}+e_{1}\right) u\left(e_{+}+e_{1}\right)\left(2 s-s^{2}\right)^{1 / 2} \\
& =u e_{1}=e \wedge f^{\perp}-e^{\perp} \wedge f, \\
d_{22} & =v e_{-} u\left(2 s-s^{2}\right)^{1 / 2} e_{-} v=v u e_{+} e_{-}\left(2 s-s^{2}\right)^{1 / 2} v=0, \\
d_{12} & =\left(I-e_{-}\right) u\left(2 s-s^{2}\right)^{1 / 2} e_{-} v=\left(I-e_{-}\right)\left(2 s-s^{2}\right)^{1 / 2} u v e_{+} \\
& =\left(2 s-s^{2}\right)^{1 / 2}\left(I-e_{-}\right) e_{+}=2(a b)^{1 / 2} .
\end{aligned}
$$

Similarly $d_{21}=2(a b)^{1 / 2}$. Thus

$$
\rho^{\prime}(d)=\left[\begin{array}{cc}
e \wedge f^{\perp}-e^{\perp} \wedge f & 2(a b)^{1 / 2} \\
2(a b)^{1 / 2} & 0
\end{array}\right]
$$

It now follows from the linearity of ρ^{\prime} that $\rho^{\prime}(e)$ and $\rho^{\prime}(f)$ are as stated in the theorem.

Proof of (ii). Let $p=e f e, q=e^{\perp} f e, r=e^{\perp} f e^{\perp}$. Then $q q^{*}+r^{2}=r, q^{*} q+p^{2}=p$, $r q+q p=q$. We first examine the spectrum of p which, since $I \geq p \geq 0$, lies in the closed interval $[0,1]$.

Lemma 4. If μ is the spectral measure corresponding to $p=$ efe then
(a) $\mu(\{1\})=e \wedge f$,
(b) $\mu(\{0\})=e \wedge f^{\perp}+e^{\perp}$.

Proof of Lemma 4. (a) If $\psi \in(e \wedge f) H$ then $e f e \psi=\psi$ so $\psi \in \mu(\{1\}) H$. Conversely, suppose $\psi \in \mu(\{1\}) H$ and $\|\psi\|=1$. Then $1=\|e f e \psi\| \leq\|f e \psi\| \leq\|e \psi\| \leq 1$. This means $e \psi=\psi$ and so $\|f \psi\|=1$ implying $f \psi=\psi$ so that $\psi \in(e \wedge f) H$.
(b) If $\psi \in\left(e \wedge f^{\perp}+e^{\perp}\right) H$ then $e f e \psi=0$. Thus $\mu(\{0\}) H \supseteq\left(e \wedge f^{\perp}+e^{\perp}\right) H$. Conversely, suppose efe $\psi=0$. Let $\psi_{1}=e \psi, \psi_{2}=e^{\perp} \psi$. Then $\left(\psi_{1}, f \psi_{1}\right)=0$ so $f \psi_{1}=0$, whence $\psi_{1} \in\left(e \wedge f^{\perp}\right) H$. Since $\psi_{2} \in e^{\perp} H$ this means $\psi \in\left(e \wedge f^{\perp}+e^{\perp}\right) H$.

Replacing e by e^{\perp} in Lemma 2 we obtain $\nu(\{1\})=e^{\perp} \wedge f$ and $\nu(\{0\})=e^{\perp} \wedge f^{\perp}+e$ where ν denotes the spectral projection corresponding to r. Let $e_{\mu}=\mu((0,1))$,
$e_{\nu}=\nu((0,1))$. Since $p r=0$ the projections $e \wedge f, e_{u}, e \wedge f^{\perp}, e^{\perp} \wedge f, e_{\nu}, e^{\perp} \wedge f^{\perp}$ are mutually orthogonal.
We now examine q. Since $q^{*} q=p-p^{2}$ the polar decomposition of q takes the form $q=u\left(p-p^{2}\right)^{1 / 2}$, where u is a partial isometry and q, u, and $\left(p-p^{2}\right)^{1 / 2}$ have the common support e_{μ}. Moreover, $q q^{*}=\left(r-r^{2}\right)^{1 / 2}$ so that q^{*} and u have the support e_{v}. Directly from the definition of the polar decomposition we have also $u u^{*}=e_{v}, u^{*} u=e_{\mu}$, and $u e_{\mu}=u=e_{\nu} u$. Lastly, the identity $r q+q p=q$ gives

$$
r u\left(p-p^{2}\right)^{1 / 2}-u\left(p-p^{2}\right)^{1 / 2}(I-p)=0
$$

whence $r u-u(I-p)=0$.
Now let $v=u+u^{*}+\left(I-e_{\mu}-e_{v}\right)$. Then v is unitary, indeed $v=v^{*}$ and $v^{2}=I$. Let $\tau: H \rightarrow H \oplus H=K$ be given by

$$
\tau(\psi)=\left[\begin{array}{c}
e \psi \\
v e^{\perp} \psi
\end{array}\right]
$$

Clearly, τ is an isometry. The corresponding map $\tau^{\prime}: L(H) \rightarrow L(K)$ is given by

$$
\tau^{\prime}(x)=\left[\begin{array}{lr}
\text { exe } & e x e^{\perp} v \\
v e^{\perp} x e & v e^{\perp} x e^{\perp} v
\end{array}\right] .
$$

Clearly $\tau^{\prime}(e)=\left[\begin{array}{ll}e & 0 \\ 0 & 0\end{array}\right]$. We compute $\tau^{\prime}(f)$:

$$
\begin{aligned}
e f e & =p=e \wedge f+e_{\mu} p, \\
v e^{\perp} f e^{\perp} v & =e^{\perp} \wedge f+u^{*} r u=e^{\perp} \wedge f+u^{*} u(I-p)=e^{\perp} \wedge f+e_{\mu}(I-p), \\
v e^{\perp} f e & =v q=v u\left(p-p^{2}\right)^{1 / 2}=e_{\mu}\left(p-p^{2}\right)^{1 / 2} .
\end{aligned}
$$

This gives

$$
\tau^{\prime}(f)=\left[\begin{array}{lc}
e \wedge f+c & (c d)^{1 / 2} \\
(c d)^{1 / 2} & d+e^{\perp} \wedge f
\end{array}\right]
$$

where $c=e_{\mu} p, d=e_{\mu}(I-p)$. Here $c+d=e_{\mu}$ and 1 does not belong to the point spectrum of c or d.

Corollary 5. Let e, f be two projections in a Hilbert space \hat{H}, such that

$$
e \wedge f=e^{\perp} \wedge f=e \wedge f^{\perp}=e^{\perp} \wedge f^{\perp}=0
$$

Then there is a subspace $H \subseteq \hat{H}$ and an isomorphism ρ^{\prime} of \hat{H} into $K=H \oplus H$, such that

$$
\begin{aligned}
& \rho^{\prime}(e)=\left[\begin{array}{cc}
a & (a(I-a))^{1 / 2} \\
(a(I-a))^{1 / 2} & I-a
\end{array}\right] \\
& \rho^{\prime}(f)=\left[\begin{array}{cc}
a & -(a(I-a))^{1 / 2} \\
-(a(I-a))^{1 / 2} & I-a
\end{array}\right],
\end{aligned}
$$

where $a \in L(H), I / 2 \leq a \leq I$ and $\frac{1}{2}$ and 1 are not eigenvalues of a.

Proof. Let e_{+}, e_{-}and u be defined as in the proof of Lemma 3. Let $H=e_{+} \hat{H}$ and

$$
\rho(\psi)=\left[\begin{array}{ll}
e_{+} & \psi \\
u e_{-} & \psi
\end{array}\right]
$$

From this equation it follows that:

$$
\rho^{\prime}(x)=\left[\begin{array}{cc}
e_{+} x e_{+} & e_{+} x e_{-} u \\
u e_{-} x e_{+} & u e_{-} x e_{+} u
\end{array}\right]
$$

and in particular

$$
\rho^{\prime}(s)=\left[\begin{array}{cc}
2 a & 0 \\
0 & 2(I-a)
\end{array}\right]
$$

since $u e_{-} s e_{-} u=e_{+} u s u e_{+}=e_{+}(2 I-s) e_{+}=2 e_{+}-2 a$ and e_{+}coincides with the identity in $H=e_{+} \hat{H}$.
Q.E.D.

We are indebted to the referee for indicating the following applications of Theorem 2.

Theorem 6. Let e, f, \hat{e}, \hat{f}, be projections in $L(H)$, let λ and $\hat{\lambda}$ be the spectral measures determined by the selfadjoint elements $s=e+f$ and $\hat{s}=\hat{e}+\hat{f}$ respectively, and let:

$$
a=s \lambda((1,2)) \quad \text { and } \quad \hat{a}=\hat{s} \hat{\lambda}((1,2)) .
$$

In order that there exists a unitary element $u \in L(H)$, such that simultaneously:

$$
\hat{e}=u e u^{*}
$$

and

$$
\hat{f}=u f u^{*}
$$

it is necessary and sufficient that a and \hat{a} are unitarily equivalent and in addition

$$
\begin{aligned}
\operatorname{dim}(e \wedge f) & =\operatorname{dim}(\hat{e} \wedge \hat{f}) \\
\operatorname{dim}\left(e^{\perp} \wedge f\right) & =\operatorname{dim}\left(\hat{e}^{\perp} \wedge \hat{f}\right) \\
\operatorname{dim}\left(e \wedge f^{\perp}\right) & =\operatorname{dim}\left(\hat{e} \wedge \hat{f}^{\perp}\right) \\
\operatorname{dim}\left(e^{\perp} \wedge f^{\perp}\right) & =\operatorname{dim}\left(\hat{e}^{\perp} \wedge \hat{f}^{\perp}\right)
\end{aligned}
$$

Proof. (i) The condition is necessary. Indeed let $u \in L(H)$ such that

$$
\begin{aligned}
& \hat{e}=u e u^{*} \\
& \hat{f}=u f u^{*}
\end{aligned}
$$

From $e \wedge f \leq e, f$ it follows that

$$
u(e \wedge f) u^{*} \leq \hat{e} \text { and } u(e \wedge f) u^{*} \leq \hat{f}
$$

and thus:

$$
u(e \wedge f) u^{*} \leq \hat{e} \wedge \hat{f}
$$

Similarly:

$$
u^{*}(\hat{e} \wedge \hat{f}) u \leq e \wedge f
$$

and hence

$$
u(e \wedge f) u^{*}=\hat{e} \wedge \hat{f}
$$

which implies $\operatorname{dim}(\hat{e} \wedge \hat{f})=\operatorname{dim}(e \wedge f)$. Similarly for $e^{\perp} \wedge f$, etc.
Moreover:

$$
\hat{s}=\hat{e}+\hat{f}=u e u^{*}+u f u^{*}=u(e+f) u^{*}=u s u^{*}
$$

Therefore:

$$
\hat{e}_{+}=u e_{+} u^{*} \quad \text { and } \quad \hat{a}=\frac{1}{2} \hat{s} \hat{e}_{+}=\frac{1}{2} u s u^{*} u e_{+} u^{*}=u a u^{*}
$$

(ii) The condition is sufficient. Assume it to be satisfied. Then there exists a unitary $u_{0} \in L(H)$, such that

$$
\hat{a}=u_{0} a u_{0}^{*}
$$

We define a partial isometry u_{+}by:

$$
u_{+}=u_{0} e_{+}
$$

Then

$$
u_{+}^{*} u_{+}=e_{+} u_{0}^{*} u_{0} e_{+}=e_{+}
$$

and

$$
u_{+} u_{+}^{*}=u_{0} e_{+} u_{0}^{*}=u_{0} e(a) u_{0}^{*}=e(\hat{a})=\hat{e}_{+} .
$$

Here we mean by $e(a)$ the projection onto the closure of the range of a which coincides with e_{+}, since $e_{+} \leq a \leq 2 e_{+}$.
Thus u_{+}is a partial isometry from $e_{+} H$ onto $\hat{e}_{+} H$. Now, as in the proof of Theorem 2, let v be the partial isometry obtained by multiplying the partial isometry occurring in the polar decomposition of $d=e-f$ by ($e_{+}+e_{-}$) (from the left or from the right), and let \hat{v} be the analogous element of $L(H)$ associated with the pair \hat{e}, \hat{f}.

Define

$$
u_{-}=\hat{v} u_{+} v
$$

Then, using the fact that $v=v^{*}$ and $\hat{v}=\hat{v}^{*}$, we obtain:

$$
\begin{aligned}
u_{-}^{*} u_{-} & =v u_{+}^{*} \hat{v} u_{+} v=v u_{+}^{*} \hat{e}_{+} u_{+} v \\
& =v u_{+}^{*}\left(u_{+} u_{+}^{*}\right) u_{+} v=v e_{+} v=e_{-}
\end{aligned}
$$

and

$$
\begin{aligned}
u_{-} u_{-}^{*} & =\hat{v} u_{+} v v u_{+}^{*} \hat{v}=\hat{v} u_{+} e_{+} u_{+}^{*} \hat{v}^{\prime} \\
& =v u_{+} u_{+}^{*} u_{+} u_{+}^{*} \hat{v}=\hat{v} \hat{e}_{+} \hat{v}=\hat{e}_{-}
\end{aligned}
$$

Finally let us make use of the second part of the condition in Theorem 6: let $u_{1}, u_{2}, u_{3}, u_{4}$, be partial isometries such that

$$
\begin{array}{ll}
u_{1}^{*} u_{1}=e \wedge f, & u_{1} u_{1}^{*}=\hat{e} \wedge \hat{f} \\
u_{2}^{*} u_{2}=e^{\perp} \wedge f, & u_{2} u_{2}^{*}=\hat{e}^{\perp} \wedge \hat{f} \\
u_{3}^{*} u_{3}=e \wedge f^{\perp}, & u_{3} u_{3}^{*}=\hat{e} \wedge \hat{f}^{\perp} \\
u_{4}^{*} u_{4}=e^{\perp} \wedge f^{\perp}, & u_{4} u_{4}^{*}=\hat{e}^{\perp} \wedge \hat{f}^{\perp}
\end{array}
$$

and define

$$
w=u_{+}+u_{-}+u_{1}+u_{2}+u_{3}+u_{4} .
$$

w is obviously unitary. Now applying Theorem 2, we obtain:

$$
\begin{aligned}
\hat{e}= & \hat{e} \wedge \hat{f}+\hat{e} \wedge \hat{f}^{\perp}+\hat{a}+(\hat{a} \hat{b})^{1 / 2} \hat{v}+\hat{v}(\hat{a} \hat{b})^{1 / 2}+\hat{v} \hat{b} \hat{v} \\
= & u_{1}(e \wedge f) u_{1}^{*}+u_{3}\left(e \wedge f^{\perp}\right) u_{3}^{*}+u_{+}(a b)^{1 / 2} u_{+}^{*} \hat{v} \\
& +\hat{v} u_{+}(a b)^{1 / 2} u_{+}^{*}+\hat{v} u_{+} b u_{+}^{*} \hat{v} .
\end{aligned}
$$

Since $\hat{v} u_{+}=u_{-} v$, the last expression can be rewritten as:

$$
\begin{aligned}
\hat{e}= & u_{1}(e \wedge f) u_{1}^{*}+u_{3}\left(e \wedge f^{\perp}\right) u_{3}^{*}+u_{+}(a b)^{1 / 2} v u_{-}^{*} \\
& +u_{-} v(a b)^{1 / 2} u_{+}^{*}+u_{-} v b v u_{-}^{*} \\
= & w\left[(e \wedge f)+\left(e \wedge f^{\perp}\right)+(a b)^{1 / 2} v+v(a b)^{1 / 2}+v b v\right] w^{*} \\
= & w e w^{*} .
\end{aligned}
$$

In a similar way we obtain:

$$
\hat{f}=w f w^{*} .
$$

Q.E.D.

Corollary 7. Let $b \in L(H)$ be an operator of the form $b=e+i f$, where e and f are projections. Let λ be the spectral measure of $e+f$ and $e_{+}=\lambda(1,2)$. Define:

$$
a=\frac{1}{2}(e+f) e_{+} .
$$

Then the multiplicity function of the spectral measure determined by a (cf. Halmos [2]) together with the cardinal numbers $\operatorname{dim}(e \wedge f), \operatorname{dim}\left(e^{\perp} \wedge f\right), \operatorname{dim}\left(e \wedge f^{\perp}\right)$, $\operatorname{dim}\left(e^{\perp} \wedge f^{\perp}\right)$ constitute a complete set of unitary invariants for b.

For the formulation and proof of Theorem 8 we shall make use of the following terminology and notation:
(i) Let $\sigma \subseteq L(H)$ be a subset. By the W^{*}-algebra $\{\sigma\}$ generated by σ we mean the smallest selfadjoint, weakly closed subalgebra of $L(H)$ containing σ. By the von Neumann algebra $N(\sigma)$ generated by σ we mean the W^{*}-algebra generated by σ
and the identity I. In [1] it is shown that $N(\sigma)=\left(\sigma \cup \sigma^{*}\right)^{\prime \prime}$ where ' denotes the formation of the commutant. The relation between $\{\sigma\}$ and $N(\sigma)$ is simple and can be described by the equations:

$$
N(\sigma)=\{a \in L(H) \mid a=\mu I+b, \mu \in \mathbf{C}, b \in\{\sigma\}\}
$$

and

$$
\{\sigma\}=\{a \in N(\sigma) \mid e(a) \leq e(\sigma)\}
$$

where for any subset $\sigma \subseteq L(H)$, the support $e(\sigma)$ of σ is defined by:

$$
e(\sigma)=\inf \{e \mid e=\text { projection, } e b=b e=b \text { for all } b \text { in } \sigma\} .
$$

(ii) \mathbf{M}_{n} denotes the matrix algebra of order n over the complex field \mathbf{C}. If $a \in L(H)$ then $\mathbf{M}_{n}(\{a\})$ denotes the matrix algebra over the W^{*}-algebra $\{a\}$ generated by the element a.

Theorem 8. Let H be a Hilbert space, e, $f \in L(H)$ two projections. Then the von Neumann algebra $N(e, f)$ generated by e and f is a direct sum of two subalgebras:

$$
N(e, f)=W_{0} \oplus W
$$

where W_{0} consists of all linear combinations of the orthogonal projections $e \wedge f$, $e^{\perp} \wedge f, e \wedge f^{\perp}, e^{\perp} \wedge f^{\perp}$ and W is isomorphic to $\mathbf{M}_{2}(\{a\})$. Here $a=(e+f) \lambda(1,2)$ where λ is the spectral measure of $e+f$, and \{a\} stands for the abelian W^{*}-algebra generated by a.

The proof depends on two Lemmas:
Lemma 9. An alternative set of generators for $N(e, f)$ is given by:

$$
e \wedge f ; \quad e^{\perp} \wedge f ; \quad e \wedge f^{\perp} ; \quad e^{\perp} \wedge f^{\perp} ; \hat{e} ; \hat{f}
$$

where

$$
\begin{aligned}
& \hat{e}=e-e \wedge f-e \wedge f^{\perp} \\
& \hat{f}=f-e \wedge f-e^{\perp} \wedge f
\end{aligned}
$$

the products of two generators being zero with the exception of $\hat{e} \hat{f}$.
Proof of Lemma 9. The lemma is a consequence of the fact that the projections in a von Neumann algebra are closed under intersection and orthocomplementation.

From Lemma 9 it follows immediately that $N(e, f)$ decomposes according to:

$$
N(e, f)=W_{0} \oplus W
$$

where W_{0} consists of all linear combinations of

$$
e \wedge f, \quad e^{\perp} \wedge f, \quad e \wedge f^{\perp}, \quad e^{\perp} \wedge f^{\perp}, \quad \text { and } \quad W=\{\hat{e}, \hat{f}\}
$$

Let $g=I-e \wedge f-e^{\perp} \wedge f-e \wedge f^{\perp}-e^{\perp} \wedge f^{\perp}$ and let $\hat{H}=g H$. We have $g \in N(e, f)$ and $\hat{e}=e g$ and $\hat{f}=f g$.

Lemma 10. An alternative set of generators for W is given by:

$$
\begin{align*}
& a=(e+f) e_{+}=(e+f) e_{+}, \\
& w=u e_{+}, \tag{1}
\end{align*}
$$

where $e_{+}=\lambda(1,2)$ and λ stands for the spectral measure defined by $e+f$ and u is the unitary operator in H occurring in the polar decomposition of $\hat{d}=\hat{e}-\hat{f}(\hat{d}=u|\hat{d}|)$.

Proof of Lemma 10. It is clear from (1), that $a, w \in W$. Conversely using the isomorphism ρ^{\prime} of Corollary 5 we obtain:

$$
\begin{cases}\text { (i) } & \rho^{\prime}(a)=\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right] \tag{2}\\
\text { (ii) } & \rho^{\prime}(w)=\left[\begin{array}{ll}
0 & 0 \\
e_{+} & 0
\end{array}\right]\end{cases}
$$

and hence it follows from Corollary 5 that

$$
\begin{gathered}
\hat{e}=a+w(a(I-a))^{1 / 2}+(a(I-a))^{1 / 2} w^{*}+w(I-a) w^{*} \\
\hat{f}=a-\left[w(a(I-a))^{1 / 2}+(a(I-a))^{1 / 2} w^{*}\right]+w(I-a) w^{*}
\end{gathered}
$$

This proves the lemma.
Since $a w=w^{2}=0$ and $w^{*} w=e_{+}$, the most general element $x \in W$ has the form

$$
x=b_{11}+w b_{12}+b_{21} w^{*}+w b_{22} w^{*},
$$

where $b_{i k} \in\{a\}$ for $i, k=1,2$.
Using equations (2) we obtain the desired isomorphisms.

$$
x \mapsto\left[\begin{array}{ll}
b_{11} & b_{21} \\
b_{12} & b_{22}
\end{array}\right]
$$

of W onto $\mathbf{M}_{2}(\{a\})$.

References

1. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
2. P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, Chelsea, New York.

Queen's University, Kingston, Ontario

