- 2. From $S_x \equiv a^x + b^x + ... + k^x$,
 - (iii) $\left(\frac{a^x + b^x + \ldots + k^z}{n}\right)^{\frac{1}{x}}$ constantly increases as x increases from $-\infty$ to $+\infty$, and has the limiting value $(a.b...k)^{\frac{1}{n}}$ when x = 0.

3. From $\cos x$,

(ii) $(\cos x)^{y-z} \cdot (\cos y)^{z-x} \cdot (\cos z)^{x-y} < 1$, if $\frac{\pi}{2} > x > y > z > 0$.

(iii) $(\cos x)^{\frac{1}{x}}$ constantly decreases as x increases from 0 to $\frac{\pi}{2}$ and has the limiting value 1, when x = 0.

(iv)
$$(\cos x)^{p} \cdot (\cos y)^{q} \cdot < \left(\cos \frac{px+qy}{p+q}\right)^{p+q}, \ \frac{\pi}{2} > x > y > 0$$

and p and q positive.]

On Mathematical Instruments and the accuracy to be obtained with them in some elementary practical problems.

By J. H. A. M'INTYRE.