2. From $\mathrm{S}_{x} \equiv a^{x}+b^{x}+\ldots+k^{x}$,
(iii) $\left(\frac{a^{x}+b^{x}+\ldots+k^{x}}{n}\right)^{\frac{1}{x}}$ constantly increases as x increases from $-\infty$ to $+\infty$, and has the limiting value $(a, b, \ldots k)^{\frac{1}{4 \prime}}$ when $x=0$.
3. From $\cos x$,
(ii) $(\cos x)^{y-z} \cdot(\cos y)^{:-x} \cdot(\cos z)^{x-y}<1$, if $\frac{\pi}{\underline{2}}>x>y>z>0$.
(iii) $(\cos x)^{\frac{1}{x}}$ constantly decreases as x increases from 0 to $\frac{\pi}{2}$ and has the limiting value 1 , when $x=0$.
(iv) $(\cos x)^{\mu} \cdot(\cos y)^{\mu} \cdot<\left(\cos \frac{p x+q y}{p+q}\right)^{p+q}, \frac{\pi}{2}>x>y>0$ and p and q positive.]

On Mathematical Instruments and the accuracy to be obtained with them in some elementary practical problems.

By J. H. A. M•Intyre.

