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SUMMARY

in this paper the authors remind of the known formulas for the double
Laplace-Stieltjes transforms of the ruin probabilities <\>(u, t), where u is the
initial risk reserve and t stands for the operational time, in the case of in-
dependent interoccurence times and claim amounts such that the inter-
occurrence times are identically distributed K(t), t > o, K(o) = o, and the
claim amounts are identically distributed P(y), — oo < y < <x>. For some
cases, where i — P(y) and i — K(t) are exponential polynomials, numerical
inversions of the said Laplace-Stieltjes transforms are made for a selection
of u- and i-values in combination with safety loadings of various sizes and
signs. Moreover, some values are given when i — P{y) or I — K(t) are of
Pareto type and comparisons are made with the results when the Pareto
distributions are approximated by suitable exponential polynomials.

i. INTRODUCTION

The risk model considered is as follows:
The interclaim times h, W, . . . and the claim amounts Yi, Yz, ...

are assumed to be mutually independent stochastic variables such
that the tj's are identically distributed K(t), t > o, K(o) = o, and
the Yj's are identically distributed P(y), — GO <cy < oo. This
model is due to Sparre Andersen who presented it at the New York
Congress, 1957. An important particular case is the Poisson process
generated by the choice K{t) = 1 — e~w where we without real loss
of generality may take (3 = 1.

In the following we mostly restrict the distribution functions
K(t) and P(y) to belong to the classes

* Seminar presentation at the 19th International Congress of Actuaries,
Oslo, 1972.
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I38 NUMERICAL EVALUATION OF RUIN PROBABILITIES

y = 0 (I)

o, y < 0

(o, t < o

respectively where V(a) and W($) are distribution functions such
that F(o) = W{6) = 0.

The class (1) was considered by Hilary L. Seal in his paper in
TSA 1969: "Simulation of the ruin potential of nonlife insurance
companies". The following particular cases were pointed out by
him:

i) F(a) = e(a — 1) giving P(y) = 1 — e~v, y ^ 0 (3)

ii) F'(a) = -I— a""1 e~ra, a > o, i.e. a T-distribution
T( )

/ r \
g i v i n g P(y) = 1 — i + - , x > o , y > o , 3 / ^ 0 , i .e . a

\ y /
P a r e t o d i s t r i b u t i o n . (4)

Immediate generalizations of (3) and (4) are

iii) F(oc) = S a,j s(a — a;), a; > o, 2 a; = 1

giving P(y) = 1 — S a^-0^, y £ o (5)

iv) F'(a) > 0 and continuous for a. > o (6)

Of course, it is easy to construct intermediate forms between
(5) and (6). A case related to (6) though not belonging to it is:

F(a) = 0, a ^ - , 6 > 1
b

sin —

F'(a) = -a'1 (6a— I)"1 '6 , a > -
6
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NUMERICAL EVALUATION OF RUIN PROBABILITIES 139

i.e. a Pareto like distribution, giving

1 • - - 1

P(y) = —- J ** e'x dx (7)

i.e. a F-distribution with parameter ijb < I.

(This P(y) was considered by Bohman and Grandell & Segerdahl
in papers to appear in Skandinavisk Aktuarietidskrift.)

The case (4) i.e. P(y) = 1— [1 +-L)
\ YJ

h a s t h e m e a n v a l u e one if we choose y = x — I , X > I , t h u s

P(y) = 1 - 11 + y

y. — I

It is interesting—though trivial—to note that, if we here let
x —> 00, we get

that is, the simple exponential distribution is obtained as a limiting
case of a Pareto distribution. Of course, this fact is not surprising
since the "dangerousness" of the Pareto distribution tends to die
out when x becomes very large. (Usually one defines a Pareto
distribution by

I
' O

1 — — x ^ xo
P{x) = I W

X < Xo

If so, we must apply a simple translation before the limiting
process. Indeed letting x = xo + y, y > 0 we get

( 1 — (1 + - ) * y ^ o
P(x0 + y) = I \ xol

(0 y <o . )

However, generalizing the above observation of the simple ex-
ponential distribution as a limiting case of a Pareto distribution, it
is easy to see that we may choose F'(oc) in (6) such that we get a
distribution function P(y) which closely approximates an arbitrary
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140 NUMERICAL EVALUATION OF RUIN PROBABILITIES

member of (5). Conversely, it is obvious that an arbitrary member
of the class (1) may be arbitrarily well (in the sense of weak con-
vergence of probability laws) approximated by members of (5).

What we now have said about the class (1) is, mutatis mutandis,
true for the class (2) of interclaim time distributions.

From these observations the following conjecture seems natural.
Once we have mastered the numerical solution of the ruin problem

(P(y) = i - 2 V"»iV
for ) '" ' (8)

then it is not too difficult to go further to the numerical solution of
the ruin problem for

(9)

where F(a) and W{$) are not both just staircase functions.
Two lines of approach offer themselves. The, first one means that

we develop the formulas for (9) in a similar manner as for (8) and
then, as far as possible, use the same numerical tools as for (8). The
second approach would mean that we approximate the members of
(9) by suitable members of (8) and use the ruin probabilities for the
latter as approximations of the ruin probabilities for the former.
However, if we use the second approach we must be aware that the
asymptotic behaviors of the ruin probabilities may be entirely dif-
ferent from the ones obtained by the first approach (See section 5).

2. THE FORMULA APPARATUS FOR THE RUIN PROBLEM IN CASE THE

MODEL PRESENTED AT THE OUTSET OF THE INTRODUCTION IS USED

2.1 Generalities(See Thorin: Astin Bulletin VI: 1 and 2 or Skan-
dinavisk Aktuarietidskrift 1970: 1-2 and 1971: 1-2, 3-4.)

Notations
<\i(u) = <\/{u, 00) = ruin probability for an infinite period
ty(u, t) = ruin probability for a finite period, t, <\i(u, o) = 0
u = initial risk reserve
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NUMERICAL EVALUATION OF RUIN PROBABILITIES I4I

c = gross risk premium per unit of time (c > o)

t\i(u, z) = J ezt dt ty(u, t), u S: o, Re(z) S o; <\i{u, z) = o, u < o

ty(u) = fy(u, o)
<p(s, z) = 1 — J eSM rf« $(w, 2), i?e(s) ^ o Re(z) < o

A(s, z) = exp [ J e*« duM(u, z) + \ AM(o, 2)], i?e(s) ^ o,
0 +

< O
0 -

B(s, z) = exp [— J esuduM{u,z) — J AM(o, 2)], Re{s) ^ 0,

< 0

where

M(x, z) = S (I/OT) J ez"(PK*(x + cw) — 1) iXw*(w)
n - 1 0

AM(o, z) = M(o +,2) — M(o—, 2). (In the cases treated in
this paper we have AM(o, 2) = o.)

With these notations we may write down the following funda-
mental formula [Note that 1 — <p(s, 2) is the double Laplace-
Stieltjes tran:/orm of <\i(u, t)]

9(s, z) = A(S> Zl, Re(s) ^ o, Re{z) < 0 (10)
A{o,z)

By continuity we also get <p(s, o) [Note that 1 — <|>(s, o) is the
simple Laplace-Stieltjes transform of <\i(u) = <\i(u, 0)].

From formula (10) it is, in principle, possible to get <\i(u, t) by two
successive inversions. However, for the classes of distribution
functions characterized by (8) and (9) it is, in general, possible to
perform the innermost inversion analytically to such an extent that
the outer inversion is the only one which must be performed by an
inversion algorithm.

2.2 Simplifications if P{y) = 1 — £ aje~aiy but K(t) general
1-1

In this case (see Thorin: Skandinavisk Aktuarietidskrift 1971:
1-2) we have the simple formula
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142 NUMERICAL EVALUATION OF RUIN PROBABILITIES

m

s, *)=n S2j
Z)

where SZJ(Z), j = 1, .. ., m denote the m roots in the right halfplane
of the equation

k(z — cs) p(s) = 1.

Here

k{z) = ]e*dK{t),

p{s)=

Herefrom we get, by expanding A (s, z)\A (o, z) in partial fractions,
that

m

where

g}(z) = '-IT , ; = i, . . . , w (13)
II (1 — sej(z)ls2V{z))

An equivalent formula for gj(z) is

(0, Z) [k(z CSs](z))p'(S2j(z)) Ck'(z CS2j(z)) p(S2j{z)J] S2j{z) '

j = 1, ...,m (14)

Note that if Kit) = 1 — V 5.6"%*, we have k(z) = V 1—[z$v)
l-i v-l

and the s2^(2)'s may be found as the m roots in the right halfplane
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of a polynomial equation of the (m + n):th degree. Note also that
in this case

n
n

where sij(z), j = i, . . . , « , are the n roots in the left halfplane of
i — k{z — cs) p(s) = o.

2.3 The ruin formulas if P(y) = 1 — J e~ay dV{a) where V'(oi) is
0

strictly positive and continuous for a. > 0, but K(t) general

First, we observe that

p(s) = — which represents a Stieltjes transform.
J a — s
0

Known properties of this transform (see Widder: The Laplace
Transform, Princeton 1946) ensure that p(s) is regular and analytic
in the entire s-plane if we exclude the non-negative real axis. If
we denote the boundary values of p(s) on the two sides of the
positive real axis by p+(x) and p'(x) we have p+(x) —p~{x) =
2TC ix V'(x) for almost all x > 0. Thus Im p+(x) = TU XV'(X).

As a generalization of formula (12) we get—provided certain
rather mild conditions on p(s) and k(z)—the following formula

<\)(u, z) =

_ 1 - B{x,z)V'(x)e-xu dx ,

V ' J klZ CA

+ Z g,{z) e-«**» (17)
1

where s2/(z) are the roots in the right halfplane excluding the
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144 NUMERICAL EVALUATION OF RUIN PROBABILITIES

positive real axis of the equation i — k(z — cs) p(s) = o. The said
roots constitute at most a countable set. Here

_ B(s2j(z), z)

A(O, Z) [k(z CS2j(z)) p'{S2j{z)) Ck'(z CS2j(z)) P{S2j(z))] S2j{z)

Note that for z negative real there are no S2j(z)'s so in this case only
the integral in (IJ) appears. This is also true for a subregion of the
left z-halfplane enclosing the negative real axis. Sometimes this
subregion coincides with the entire left z-halfplane. We shall meet
such cases in our numerical examples. Note also that for z negative
real the denominator of the integrand cannot vanish for x > o
since Imp+(x) = iz xV'(x) > o. For a general z, however, the
denominator sometimes vanishes. In these cases a certain caution is
needed. Generally speaking, the vanishing denominator indicates
that the actual z lies on a curve in the z-plane such that the crossing
of it either entails the generation of a new term in the S-expression
of (17) or entails the suppression of such a term depending on in
which direction the crossing is made.

2.4 Numerical observations
Of course, for numerical purposes the formula (17) is only

manageable when we have simple expressions for B(s, z) and
A (o, z). Since this is the case when

K{t) = i — 2 V M

j - x

as formulas (15) and (16) show we restrict ourselves to such K(t)'s
when we exploit formula (17).

However, the formula (12) may be used even if K{t) has a more
general appearance, but then we must restrict P(y) to the form

m

In particular, for P(y) = 1 — c~y the formula (12) gives

irrespective of the shape of K(t). (Needless to say, the value of
s2(z) depends on K{t).)
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NUMERICAL EVALUATION OF RUIN PROBABILITIES 145

Note the following simple formula

i]J(o, z) = 1 —
A (0, z)

which may be used as a check formula. In particular it is useful
when the formula (17) is applied. (In the case, not treated here,
when both K(t) and P(y) are discontinuous it is advisable to use the
following modified formula

$(o,*) = i - f^! i !> . )
A(o,z)

3. APPROXIMATION OF A MEMBER OF THE CLASS (I) NOT BELONGING

TO THE CLASS (5) BY A SUITABLE MEMBER OF THE CLASS (5)

For numerical purposes it seems advisable not to use more than
five terms in the approximant from the class (5). We then have at
most 10 parameters to determine. It seems appropriate to assume
the mean value to be one for the distribution function, P(y), to be
approximated as well as for the approximant, Pa(y). A pragmatic
way to determine the approximant is then the following.

We choose five ^-points, y0, yu . . ., yA, among them y0 = 0 and
yi = 1, in a suitable way and require the following equalities to be
fulfilled.

v, y ,

j = 0,1, .. .,4

(The equations for j = o only mean that the total probability
mass and the total mean value coincide for Pa(y) and P{y). For
j = i, . . ., 4 the equations imply that not only the distribution
functions coincide in yj but also the parts of the mean values
relating to (yj, 00).)

Of course, the procedure may also be used to approximate a
member of class (5) with too many terms by a member of class (5)
with at most five terms.
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146 NUMERICAL EVALUATION OF RUIN PROBABILITIES

4. EXAMPLES CHOSEN FOR THE NUMERICAL ILLUSTRATION

For P(y) we choose
I) the simple exponential 1 — e~y

II) Seal's Pareto example 1 — (1 -f- 2y)~312

III) a five terms exponential approximant of II by the use of
y0 = o,y1 = 1, y2 = 10, y3 = 100, y4 = 1000.

For K(t) we choose
A) the Poisson choice 1 •— e't

B) the Sparre Andersen choice 1 — o.25e~°-4f— o.j$e~2t

C) the analogue of Seal's Pareto example 1 — (1 -f- 2t)~312

D) the five terms exponential approximant of C, analogous to
III.

All the distribution functions listed have mean values equal to
one. In the case II we have

x/i

3/2 /• / r \ 3 / 2

l2 \ h l \ !2= 1 + x — 2 (-) e~xl2 \ \

For c we choose 0.90, 0.95, . . . , 1.25, 1.30, 2.00
For u we choose 0, 100, 1000, 10.000
For t we choose 100, 1000, 10.000, 00.

We do not illustrate all the possible combinations of our choices.
In particular we only illustrate the choices of c :S 1.10 for the d.f.
pairs IA, IB, III A, IIIB and c ^ 1.05 for the d.f. pairs IC, ID,
IIA, IIB.

In a special table, proposed by Mr. Bohman, we also illustrate
IIIA in combination with c = 0.98, 0.99, 1.00, 1.01, 1.02, 1.03, 1.04
for some values of u and t.

5. ASYMPTOTIC BEHAVIOR OF <\I(U) FOR U —*• 00

If we choose III for P(y) then we know that there are a strictly
positive value R and a constant o < C < 1 such that for c > 1

~Rw 00
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On the contrary if we choose II for P(y) then we know that
f or c > 1

00

T /* T

Mu) ~ [1 — P{y)] dy = (1 +
c — 1 J c — 1

2u)

The asymptotic behavior of <\>(u) for u -> co is thus entirely
different for II and III though III otherwise is a good approximant
t o l l .

6. NUMERICAL METHODS

The calculations are carried out in two main steps, first the
calculation of <\/(u, z) from the formulas given above and then the
evaluation of i?[u, t) from ty(u, z) by a numerical inversion.

As stated earlier the formulas make use of the roots of the
equation i — k{z — cs) p(s) = o. If both the d.f. of claims and
the d.f. of interclaim times are of the exponential type this equation
becomes polynomial with complex coefficients. To solve it an
algorithm is used, which is based on the Newton-Raphson method,
generalized by K. Nickel in "Die numerische Berechnung der
Wurzeln eines Polynoms", Numerische Mathematik, 1966, pp. 80-
98. It must be observed that the algorithm is operating well only if
the starting value is fairly good. It is therefore convenient to use the
roots rv(z) (v = 1, 2, . .., n)—obtained for a fixed value of the
parameter c and a certain value of the argument z—as the
starting values when solving the equation for a succeeding value
z -\- Az, where | Az | is not too large.

If at least one of the d.f. 's involved is of the Pareto type, the
equation is non-polynomial and a special generalization of the
Newton-Raphson method is used. The method is described by
Froberg: "Introduction to Numerical Analysis", Addison-Wesley,
1965, pp. 23-24, and makes use of the function and its first four
derivatives. Even in this case a starting value has to be carefully
chosen.

The inversion of "§(u, z) into <\i(u, t) is performed with a method
given by Piessens in "New quadrature formulas for the numerical
inversion of the Laplace transform", BIT, vol. 9, 1969, pp. 351-361.
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The quadrature is based on 25 points in the complex plane. As
pointed out by Piessens in Journal of engineering mathematics
5:1, January 1971, his method in the form used here may be ex-
pected to be successful only if the function to be inverted is regular
at infinity. This condition is satisfied in the present cases.

In general the number of correct decimals are four but in most
cases even five.

Some results presented here have already been published by
Wikstad in Astin Bulletin VI: 2, and some in a mimeographed
paper by Thorin and Wikstad presented at the Conference on
capitalization of risk ventures in Madison, Wisconsin, in Oct. 1971.
Some of the present figures differ slightly from those earlier pub-
lished due to improvements in the methods.

The computer programs used here are written in "full" FOR-
TRAN. The calculations have been performed on a CDC 6600. The
execution time is about one minute or less per table.

7. NUMERICAL RESULTS

The (av, a.v)\ in III have been found to be

1 0.6635948 3.675472

2 0.3114878 0.7116063

3 0.02405664 0.09447445

4 0.0008425574 0.009322980

5 0.00001823254 0.0004965620

All other results are presented in the tables 1-9.

8. CONCLUDING REMARKS

Of the two authors Thorin is responsible for the sections 1-5 and
Wikstad for the sections 6-7 including the attached tables. The
paper has been written as a part of the work carried out by the
Swedish committee for the practical applications of the risk theory
mentioned in Thorin's paper in Astin Bulletin VI: 1. The detailed
derivation of the main new formulas in sections 1-5 will appear in a
forthcoming paper in Skandinavisk Aktuarietidskrift by Thorin.
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TABLE I

149

Claim d.t.:P(y) = i — e-«

Interclaim time d.f.: K(t) = i

0 = 0.90 0.95

,-t

1.00 1.05

T = 100

T = 1000

T = 10000

T = 00

0

100

0

100

1000

0

100

1000
10000

0

100

1000
IOOOO

.97908

.00000

.99976

.57207

.00000

1.00000
1.00000
•52380

.00000

1.00000
1.00000
1.00000
1.00000

.96398

.00000

•99695
.18715
.00000

.99997
•99933
.00031
.00000

1.00000
1.00000
1.00000
1.00000

.94360

.00000

.98210

.02749

.00000

•99433
.47622
.00000
.00000

1.00000
1.00000
1.00000
1.00000

.91852

.00000

•94939
.00186
.00000

•95235
.00814
.00000
.00000

•95238
.00814
.00000
.00000

.88997

.00000

.90882

.00007

.00000

.90906

.00010

.00000

.00000

.90909

.00010

.00000

.00000

TABLE 2

Claim d.f.: P(y) = 1 — e~v
Interclaim time d.f.: K(t) = 1

c = 0.90 0 9 5 1.05

T —

T =

T =

T =

IOO

IOOO

IOOOO

00

o
IOO

IOOO

0

IOO

IOOO

o
IOO

IOOO
IOOOO

o
IOO

IOOO
IOOOO

.97917

.00001

.00000

•99932

.59911

.00000

1.00000
1.00000

•53359
.00000

1.00000
1.00000
1.00000
1.00000

.96944

.00001

.00000

.99614

.29176

.00000

.99996

•99543
•00539
.00000

1.00000
1.00000
1.00000
1.00000

•95737
.00000
.00000

.98646

.09321

.00000

•99571

•58994
.00000
.00000

1.00000
1.00000
1.00000
1.00000

.94316

.00000

.00000

.96862

.01962

.00000

•97234
.06110
.00000
.00000

•97237
.06139
.00000
.00000

.92714

.00000

.00000

•94578
.00290
.00000

.94646

.00448

.00000

.00000

.94648

.00448

.00000

.00000
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T A B L E 3

Claim d.f.: P{y) = 1 — e'y

Interclaim time d.f.: K[t) = 1 — (1 + 2t)~312

T — 100

T = 1000

T = 10000

T =

u

o
100

1000

o
100

1000

o
100

1000

10000

o
100

1000

10000

c = 1.05 1.10 115 1.20 1-25 1.30

.98158 .97739 .97247 .96680 .96036 .95317

.00214 .00125 .00072 .00040 .00022 .00012

.00000 .00000 .00000 .00000 .00000 .00000

.99460 .99129 .98653

.47194 .32876 .20382

.00000 .00000 .00000

.99782 .99439 .98872

.79521 .56403 .32031

.02222 .00076 .00001

.00000 .00000 .00000

.98020 .97242 .96347

.11145 -°5372 -02304

.00000 .00000 .00000

.98143 .97299 .96370
06546 .02560

.00000 .00000 .00000

.00000 .00000 .00000

.99854 .99460 .98876 .98145 .97301 .96372

.86266 .57976 .32132 .15352 .06546 .02560

.23126 .00450 .00001 .00000 .00000 .00000

.00000 .00000 .00000 .00000 .00000 .00000

TABLE 4

Claim d.f.: P(y) = i — e~y

Interclaim time d.f.: K{t) = S av{i — e-"'v)

c = 1.05 1.10 1.20 1-25 1.30

T = ioo

T = iooo

T = ioooo

T = oo

o
IOO

IOOO

o
IOO

IOOO

o
IOO

IOOO

IOOOO

o
IOO

IOOO

IOOOO

.98091

.00245

.00000

•99445
.46060
.00000

•99769
.78401
.01832
.00000

.99841

.85126

.20271

.00000

.97664

.00181

.00000

.99096

•3H99
.00000

•994O3
•544OI
.00053
.00000

.99422
•55805
.00309

.00000

•97163
.00126

.00000

•98590
.19036
.00000

.98805

.29920

.00000

.00000

.98808

•29999
.00001

.00000

.96586

.00083

.00000

.97920

.10093

.00000

.98036

.13780

.00000

.00000

.98038

.13781

.00000

.00000

•95932

.00051

.00000

.97104

•O47O5
.00000

.97154

.05651

.00000

.00000

.97156

•05651
.00000

.00000

.95200

.00030

.00000

.96176

.01952

.00000

.96193

.02139

.00000

.00000

.96194

.02139

.00000

.00000
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T = 100

T = 1000

T = 10000

T = 00

TABLE 5

Claim d.i.:P(y) = 1 — (1 + zy)"3/2

Interclaim time d.f.: K(t) = 1 — e~f

u c = 1.05 1.10 1 1 5

o .79920 .77388 .74925
IOO .03805 .03639 .03488

IOOO .00114 .00113 .00113
10000 .00004 -OOOO4 -OOOO4

o .88563 .85434 -82348
100 .23248 .19599 .16855

1000 .01169 .01117 -°i°7O
10000 .00036 .00035 OOO35

o .92605 .88950 .85390
100 .47161 .36553 .29369
1000 .09197 .07112 .05824
10000 .00354 .00339 .00327

I.2O 1.25

.72548 .70265
•O3351 -03226
.00112 .00112
.00004 .00004

•79372 -76534
•I4747 •I3°94
.01029 .00992
.00035 -00035

.82023 .78871

.24364 .20740

.04952 .04321

.00315 .00304

1.30

.68080

.03112

.00111

.00004

•73848
.11769
.00957
.00035

•75930
.18021
•03841
.00295

2.00

.46511

.02130

.00105

.00004

•ii

.04938

.00665

.00033

•49645
.06280
.01571
.00208

o .95238 .90909 .86957 -83333 .80000 .76923 .50000
100 .65777 47654 36842 .29808 .24925 .21363 .06935

1000 .36209 .20754 .14349 .10921 .08801 .07365 .02232
10000 .13710 .07010 .04695 .03527 .02824 -O2354 .00707

TABLE 6

Claim d.f.: P(y) = 1 — (1 + 2y)~312

Interclaim time d.f.: K(t) = 1 — o.2^e"0At — o.

u c — 1.05 1.10 1.15 I.2O 1.25 1.30 2.00

T = 100 0
IOO

IOOO
IOOOO

T — 1000 0
IOO

IOOO
IOOOO

T = 10000 0
IOO

IOOO
IOOOO

T = co 0
IOO

IOOO
IOOOO

.85141
•04057
.00115
.00004

.91698
•24550
.01181
.00036

.94674

.48584

•09345
•00355

.96578

.66784

•36467
.13729

.83197 .81267

.03870 .03702

.00114 .00114

.00004 -00004

•89355 .86994
.20648 .17702
.01127 .01079
.00035 -OOOSS

.91964 .89266
•37749 -30329
.07197 .05879
.00340 .00327

•93393 90420
.48682 .37720
.20881 .14421
.07016 .04697

.79366 .77505
•O3549 -O3411

.00113 .00113

.00004 .00004

.84668 .82408
•15439 .13667
.01037 .00999
.00035 OOO35

.86663 -84178

•25134 -21367
.04990 .04348
.00315 .00305

.87637 .85025

•3O533 25524
.10967 .08834
.03528 .02825

.75692

.03284

.00112

.00004

.80230

.12251

.00964

.00035

.81817

.18540

.03862

.00295

.82569

.21865

.07390
•02355

.56026

.02219

.00106

.00004

•58004
.05065
.00668
.00033

•58633
.06408

•OI575
.00208

•58925
.07062
.02236
.00707
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TABLE 7

Claim d.f.: P{y) = S at

Interclaim time d.f.:
(See also Table 9)

= 1 — e-t

T = 100

T = 1000

T = 10000

T = 00

M

O

IOO

IOOO
IOOOO

O

IOO

IOOO

IOOOO

0

IOO

IOOO

IOOOO

0

IOO

IOOO

IOOOO

Claim d.f.: P{y)

Interclaim time

T = 100

T = 1000

T = 10000

T = 00

u

0

IOO

IOOO

IOOOO

0

IOO

IOOO

IOOOO

0

IOO

IOOO

IOOOO

0

IOO

IOOO

IOOOO

c = 0.90

.87986

.04172

.00113

.OOOOI

.96941

•43451
.01241
.00014

•99837
.96048
.37068
.00251

1.00000

1.00000

1.00000

1.00000

0.95

•85466
.03992
.00113

.00001

•94596
.34602
.01202

.00014

•98754
.81950

•19754
.00208

1.00000

1.00000

1.00000

1.00000

TABLE 8

= 2 av(i

d.f.: K { t ) ••
c = 0.90

.91089

•04457
.00114

.OOOOI

•97730
•45557
.01251

.00014

.99870

.96036
•37962
.00253

1.00000

1.00000

1.00000

1.00000

= 1 — 0.:

0.95

.89272

•04245
.00114

.00001

.96081
•36502
.01210

.00014

.99094

.82709

.20346

.00209

1.00000

1.00000

1.00000

1.00000

1.00

.82900

•03835
.00113

.00001

.91786

.28170
. 01169
.00013

.96167
• 62563

.12747

.00176

1.00000

1.00000

1.00000

1.00000

2Hg-0.4<_

1.00

•87387
.04060
.00114
.00001

•94074
•29719
.01176
.00013

.97261

.63980
•13005
.00177

1.00000

1.00000

1.00000

1.00000

1.05
•80331
.03694
.00112

.00001

.88742

•23479
.01141

.00013

.92684

.46802
•09938
.00152

•95238
.65168
•35372
.02890

-o.75<r2'
I 05

•85462
.03898
.00113

.00001

•91853
•24697
.01147
.00013

.94748

.48228

.10045

.00152

.96589

.66184

•35613
.02921

I.IO

•77794
•03569
.00112

.00001

•85634
.19972
.01118

.00013

.89043

•36353
.08487
.00133

.90909

.47017

.20301

.00801

I.IO

•83524

•03753
.00113

.00001

•89532
.20929
.01123
.00013

.92057
•37519
.08540
.00133

•93414
.48026
.20414
.00807
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TABLE 9

Claim d.f.: P[y) = 2 av(i — g-"*)
1

Interclaim time d.f.: K{t) = 1 — e'f

(See also Table 7)

153

U = IOOO

T
500

IOOO

2000

00

U = IOOOO

T
50000

IO000O

2OOOOO

00

u = 100000

r
5000000

I0000000

2O0OOOO0

00

c = 0.98

.00576

.01181

.02482

1.00000

c = 0.98

.02008

.06379

.19062
1.00000

c = 0.98

.52496

•99557
.99985
1.00000

0.99

•o°575
.01175
.02448

1.00000

0.99

.01751

.05089

.13802
1.00000

0.99

.06436
•55615
•97234

1.00000

1.00

•00573

.01169

.02417

1.00000

1.00

•OI534
.04090
.09998

1.00000

1.00

.00160

.01994

.09227
1.00000

I.OI

.00572

.01163

.02388

•75745

I.OI

.01350

.03311

.07276

.31822

I.OI

.00001

.00004

.00005

.00006

1.02

.00571

.01157

.02361

•59904

1.02

.01194

.02701

•05339
•13727

1.02

.00000

.00000

.00000

.00000

1.03

.00570

.01152
•02335

•49013

1.03

.01061

.02220

•03963
.07226

1.03

.00000

.00000

.00000

.00000

1.04

.00569

.01147

.02311

•4"93

1.04

.00946

.01838

.02984
•O4357

1.04

.00000

.00000

.00000

.00000
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