INEQUALITIES ASSOCIATED WITH THE TRIANGLE
W.J. Blundon

(received December 14, 1964)

1. Introduction. Let R, r, s represent respectively
the circumradius, the inradius and the semiperimeter of a
triangle with sides a, b, c. Let f(R, r) and F(R, r) be
homogeneous real functions. Let q(R, r) and Q(R, r) be
real quadratic forms. The latter functions are thus a special
case of the former. Our main result is to derive the strongest
possible inequalities of the form

(1) a(R, r) <f(R, )< s° < F(R, r) < QR, 1),

with equality only for the equilateral triangle. Various appli-
cations are considered including a graphical representation of
relations involving R, r, s. We prove the following theorems.

THEOREM 1. Let f(R, r) and F(R, r) be homogeneous
real functions. Then the strongest possible inequalities of the
form

2
f(R, r)<s < F(R, r),

with equality only for the equilateral triangle, occur when

(2) f(R, r) = ZRZ + 10Rr - r2 - 2(R - 2r)'\/_(R2 - 2Rr) ,
and

2 2 2
(3) F(R, r) = 2R+ 10Rr - r + 2(R - 2r)N(R~ - 2Rr) .
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THEOREM 2. Let q(R, r) and Q(R, r) be quadratic
forms with real coefficients. Then the strongest possible
inequalities of the form

2
CL(R, I')i 5 __<_ Q(R, r),

with equality only for the equilateral triangle, occur when

(4) q(R, r) = 16Rr - 5r2 ,
and

2 2
(5) Q(R, r) = 4R” + 4Rr + 3r

2. A graphical representation. It is well known that
a, b, c are the roots of the cubic equation

2 2 2
(6) x3-st + (s +4Rr+ r )x - 4Rrs = 0.

A brief treatment of this equation is given in Blundon [1]. Let
2 2 2
D=(a-b) (b-c) (c-a) bethe discriminant of the equation
(6). The fact that a, b, c are real gives D> 0, with equality
only for isosceles triangles (see Marsh [6]). It is known that
2 3 2 2 22
D = 4r [4R(R-2r) - (s +r -10Rr - 2R ) ],
whence

2 2 22 3
(7) (s +r - 10Rr - 2R) <4R(R - 2r) ,

with equality only for isosceles triangles. We may replace (7)
by the simultaneous inequalities

2 2 2 2
(8) s >2R +10Rr - r - 2(R - 2r)W(R" - 2Rr),
2 2 2 2
(9) s <2R +10Rr - r + 2(R - 2r)N(R™ - 2Rr) .
We establish in the following lemma a representation in
graphical form of relations involving R, r, s. This is conven-
ient but not essential for the proof of Theorem 1. Further, it is

hoped that such a representation may be a useful tool in the
solution of related problems.
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LEMMA. To within similarity, there is a one-one corres-
pondence between all triangles and all points (R/r, s/r) of a set
S of the Cartesian plane.

Proof. The reference to similarity follows at once from

considerations of homogeneity. Consider the set S of points

(%, y) in the Cartesian plane satisfying (10). Let R/r =x and
s/r =y. From (7) it follows that every class of similar triangles
is represented by a unique point in S such that y is positive and

(10) (yz +1-10x - ZXZ)ZE 4x(x - 2)3 .

This inequality is equivalent to the simultaneous inequalities
(11) y2i2x2+10x- 1-2(x-2)'\/_(x2-2x),

(12) yzf 2x% 4 10% - 1 + 2(x - 2)«f(x2 - 2x) ,

and equality holds in (10), (11), (12) only for isosceles triangles.

To complete the proof of the Lemma, we must show that
to every point of the region S there corresponds a class of
similar triangles. Choose an arbitrary point (x, y) in the
region S ; this is equivalent to choosing arbitrary positive
real numbers R, r, s satisfying (7). Form the equation (6)
and call its roots a, b, c. It is sufficient to prove that
a, b, ¢ are real and positive and further that they satisfy the
triangular inequality. Since (7) holds for the numbers chosen,
the discriminant of (6) is non-negative so that a, b, ¢ are all
real. Since the coefficients of (6) are alternately positive and
negative, it follows that a, b, ¢ are all positive. Finally,

a, b, ¢ satisfy the triangular inequality if and only if s - a,
s - b, s- c are all positive, which follows easily since these
numbers are the roots of the equation

3 2 2 2
X -8sx +(4Rr+r )x-r s =0,

and the signs of the coefficients in this equation are alternately
positive and negative. This completes the proof of the Lemma.

3. Proof of Theorem 1. The inequalities of the theorem
have already been established in (8) and (9). That they are best
possible follows at once from the Lemma, since they together
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define the region S with a connected boundary which is the set
of points for which equality holds in (10).

4. Proof of Theorem 2. We have

4R(R - 21‘)3 4(R - 21')2 (R - r)2 - 4r2(R - Zr)2

4R - 28)° (R - )2,

IA

with equality only if R =2r, that is, when the triangle is equi-
lateral. Combine this inequality with (7). Then

2 2 22 2 2
(s +r -10Rr - 2R ) <4R-2r) (R-T1) .

Taking the square root and arranging terms, we have at once
the inequalities of the theorem, namely,

2 2 2 2
(13) 16Rr - 5r <s <4R + 4Rr + 3r ,
with equality only for the equilateral triangle. Various proofs
of these inequalities have been given (see, for example,

Gerretsen [2]).

It remains to be shown, using Theorem 1, that the
inequalities (13) cannot be improved.

First, we have to show that a, 8, y are all zero in the
inequalities

2 2
2x 4+ 10x - 1+ 2(x - 2N(x - 2x)
2 2
<(4-a)x +(4-B)x+(3-y)<4x +4x+ 3.

The case x=2 gives 4a+ 2B + y=0. Henceforth take x > 2.
Then the right hand inequality gives ax? + Bx+ y> 0, thatis,

2
ax +(3x-4a—2(320.
Then, on division by x - 2, which is positive, we have
(14) ax+ 20+ B>0.

The left hand inequality gives
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2
2(x - 2) \/_(x2 -2x)< (2 - a)x - (64 B)x+ (da+ 2R + 4) .
Dividing by x - 2, we have
(15) Z\sz-Zx)S(Z-a)x—(2a+ﬁ+2),
which reduces, on squaring, to
2 2 2
(16) ala - 4)x + (40 + 20p - 40 - 4p)x - (2a+ B +2) > 0.

Secondly, we seek to show that «, 3, y are all zero in
the inequalities

16x - 5§ax2+(16+ B)x+ (v - 5)
2 2
< 2x +10x - 1 - 2(x - 2N (x - 2x) .

These inequalities also reduce to (14) and (15). It remains to
be proved that (14), (15) and (16) together imply a=p =0 .

Since (14) holds for x -+ o, we have a> 0. Now (14)
also holds for x - 2. Therefore 4a + p > 0. " Also, (15) holds
for x -, sothat 2 - @ > 0, thatis, o< 2. Since (16) holds
for x -, we have o« -_4) > 0. The last two inequalities
taken together give o < 0. But we have already proved that
@>0. Hence a=0. The relation 4a + f > 0 then gives
(3; 0. Putting =0 in (16), we obtain -4:_6x + (B + 2)2 >0,
and this inequality holds for x - ©, so that p < 0. Thus
g =0. This completes the proof of Theorem 2.

5. The graph. We now describe in more detail the
graphical representation considered earlier. It was proved in
the Lemma that there is a one-one correspondence between all
triangles and all points of a plane region S defined by (10)
(see the figure).

The boundary consists of two branches, one resembling
roughly a hyperbola, the other a parabola, namely,

2

2 -2
AB : vy 2x + 10x -1+ 2(x - 2)v(x - 2x),

1

2

2 - 2
AC: vy 2x 4+ 10x -1 - 2(x - 2)N(x - 2x).

1l
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By Theorem 2, the best approximations of the form
2 2
s =ax + Px+ vy, withthe curves passing through A, are

2 2 2
AD: vy = 4x +4x+ 3 and AE: y = 16x - 5.

The curves AB, AC form a cusp at A, the common
slope at A being N3. The slopes of AD and AE at A are
1083/9 and 8Y3/9 respectively. FG: y=2x+ 1 is an
asymptote to both AB and AD. Clearly A(Z2, 3\3) represents
the class of equilateral triangles. We have already proved that
the boundary curves AB and AC represent isosceles triangles.

In applications to quadratic forms we replace in our con-
sideration the region S by the region S' which is bounded by
AD and AE.

To interpret another classification of triangles, we recall
that s - 2R - r 1is zero, positive or negative according as the
triangle is right-, acute- or obtuse-angled. Hence all right
triangles are represented by that part of the line y =2x+ 1
which lies in S. This is the ray FG. 1Its terminal point
F(1 + N2, 3+ 242) represents isosceles right triangles. It
follows easily that the region bounded by BA, AF, FG represents
acute-angled triangles and the region bounded by FG, FC
represents obtuse-angled triangles.

6. Applications. To prove a given inequality between
R, r, s, we merely have to show that the region defined by the
inequality contains S (or S', if only quadratic forms are
being considered).

As an example, consider the problem of finding the
strongest possible linear inequalities relating R, r, s. With
reference to the graph, it is clear that the problem is equiva-
lent to finding the intersection of all regions which are bounded
by two rays with a common endpoint and which contains the
region S or the region S'. The required region is bounded
by the ray through A parallel to Ox and the ray through A
parallel to FG. This region is defined by the inequalities

3W3<y<2x+ (3W3 - 4).

Hence, the strongest possible linear inequalities are
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(17) 3W3r<s<2R+ (3W3 - 4)r,

with equality only for the equilateral triangle. The first
inequality of (17), usually given in the form s& > 27r%, s
well known. The second inequality I have not seen elsewhere.
(17) represents the analogue of Theorem 2 when the degree is
one.

The right hand inequality of (17) can now be applied to
improve known inequalities of higher degree than the first
when these are linear in s. For example, if A represents
the area of a triangle, the inequality 4A < 3W3RZ2 is well
known. Steinig [7] has proved the stronger inequality

2
NETN <4Rr + r
By (17), we can state the still stronger inequality
2
A = rsEZRr+(3'\/”3-4)r .

Similarly his inequality (in the same paper)

1/3
\3(abc) / <2(R + r)
can be replaced by the stronger inequality
2 2
abc = 4Rrs< 8R r + (1283 - 16)Rr

To take another simple application of (17), we note that
the relation sin A + sin B + sin C = s/R leads without difficulty
3
to the well known inequality sin A + sin B + sin C <E\f3 :

This can now be replaced by the stronger inequality
sin A + sin B+ sin C< 2 + (3V3 - 4)r/R .
Let us return to inequalities of degree two. The inequalities
(13) have already been used by several authors to strengthen
known inequalities. In addition to the paper of Steinig already

mentioned, see papers by Leuenberger [4], Makowski [5],
Gerretsen [2]. For example, the well known inequalities
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18Rr < ab + bc + ca < 9R2
have been replaced by the stronger inequalities
2 2 2
20Rr - 4r <ab+ bc+ ca<4R + 8Rr + 4r
If we drop the restriction to quadratic forms, we can use
Theorem 1 to derive the rather inelegant but best possible
inequalities
2 2
(18) 2R™ + 14Rr - 2(R - 2r)J(R™ - 2Rr)
< ab + bc + ca

2 2
<2R" + 14Rr + 2(R - 2rN (R~ - 2Rr) .

Any number of such inequalities can now be written down.
Thus

2
(19) 4R + 16Rr - 3r2 - 4R - 2r)~f(R2 - 2Rr)

2 2 2
a +b +c

IA

2 2 2
4R” + 16Rr - 3r + 4(R - 2r)N(R™ - 2Rr) .

IA

The awkward radical in (18) and (19) as well as in (8) and
(9) can be avoided by a parametric representation. Let

R/r:1+—;—(t+ t_i), where t>1. Then R/r =(t+ 1)2/2t.
Since in this context all similar triangles are equivalent, we
may put r =2t and R =(t+ 1)2, whence R - 2r =(t - 1)2 and
'\/—(R2 - 2Rr) = t2 - 4. Then (8) and (9) become

(20) 4(2t + 1)35 s2 < 4t(t + 2)3 .
The inequalities (18) and (19) now read
4(t+ 1)(2t + 1)(5t + 1) < ab + bc + ca
< 4t(t + 1)(t + 2)(t + 5)

and
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2 2 2 2
8(2t + 1)(3t +6t+1)§a +b +c
2
< 8t(t+ 2)(t + 2t + 3) .

We might now use the graph relating s and t to interpret
various relations between R, r, s but we shall not pursue
this here.

We can give t a simple geometrical interpretation.
Hobson [3] gives a proof of Euler's result that the distance
between the circumcenter and the incenter of a triangle is

2
V(R™ - 2Rr). It is easily deduced that t is the ratio of the
larger segment to the smaller segment in which a diameter of
the circumcircle is divided by the incenter.

Since t > 1, with equality only for the equilateral
triangle, we n'Tay use the relative distance from the circum-
center to the incenter as a measure of the ' skewness' or the
'eccentricity' of a triangle. Let t be such a measure. Then
every t> 1 defines an equivalence class of triangles having
the same ' skewness' measure. Thus each equivalence class
of triangles is represented in our graph as the intersection
of S and a line parallel to Oy. The general composition of
classes is as follows:

t =1 the equilateral triangle;

1 <t<1++~2 infinitely many acute-angled triangles,
exactly two of which are isosceles;

t=1+n~2 the right-angled isosceles triangle and
infinitely many acute-angled triangles,
exactly one of which is isosceles;

t>1+ 2 infinitely many acute-angled triangles (one
being isosceles), infinitely many obtuse-angled
triangles (one being isosceles), and exactly
one right triangle.

For the particular case of isosceles triangles, we can
easily create a parametric representation which is rational in
s as well as in R and r. For all triangles we have
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r=2t, R=(1+ t)z. In addition, we have for isosceles triangles
either s2 = 4t(’c+2)3 or s2 = 4(2t+1)3. For the former put

t= (T-i)Z/ZT and the latter put t = (Tz-i)IZ. Then we have for
isosceles triangles either r =4T(T-1)2, R = (T2 + 1)2,

3 2 2 2 3
s =2(T-1)(T+1) or r =4(T -1), R=(T +1) , s =4T .

Finally, the graph may be used to construct any number
of relations. For example, the intersection of the region

2
defined by y > x and the region bounded by FG and FC is
2
the point F. This suggests the problem: If A>R , prove

2
that the triangle must be acute-angled. Also, if A =R and
the triangle is not acute-angled, then it must be both right-
angled and isosceles.

I am grateful to my colleagues in the Mathematics
Department for helpful suggestions and also to Mr. Ross Peters
for preparing the diagram. My thanks are due to the referee

for suggesting improved presentation for the details of the proof
of Theorem 2.
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