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Abstract
Hyperhomocysteinaemia (HHcy) is associated with all-cause mortality in some disease states. However, the correlation between HHcy and the
risk of mortality in the general population has rarely been researched. We aimed to evaluate the association between HHcy and all-cause and
cause-specific mortality among adults in the USA. This study analysed data from the National Health and Nutrition Examination Survey database
(1999–2002 survey cycle). A multivariable Cox regression model was built to evaluate the correlation between HHcy and all-cause and cause-
specific mortality. Smooth curve fitting was used to analyse their dose-dependent relationship. A total of 8442 adults aged 18–70 years were
included in this study. After a median follow-up period of 14·7 years, 1007 (11·9 %) deaths occurred including 197 CVD-related deaths, 255
cancer-related deaths and fifty-eight respiratory disease deaths. The participants with HHcy had a 93 % increased risk of all-cause mortality
(hazard ratio (HR) 1·93; 95 % CI (1·48, 2·51)), 160 % increased risk of CVD mortality (HR 2·60; 95 % CI (1·52, 4·45)) and 82 % increased risk
of cancer mortality (HR 1·82; 95 % CI (1·03, 3·21)) compared with those without HHcy. For unmeasured confounding, E-value analysis proved
to be robust. In conclusion, HHcywas associatedwith high risk of all-cause and cause-specific (CVD, cancer)mortality among adults aged below
70 years.
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Homocysteine (Hcy), a sulphur-containing amino acid, is a
metabolite of methionine(1). Over the past 10 years, Hcy has been
described as a well-established risk factor for the development of
arteriosclerotic vascular diseases(2). At present, the generally
accepted reference range forHcy level is 5–15 μmol/l.Hcy concen-
trations greater than 15 μmol/l are considered indicative of hyper-
homocysteinaemia (HHcy), which occurs in 5–7% of the general
population(3,4). The association between total plasma homocys-
teine (tHcy) and the risk of some disease outcomes has been stud-
ied. A growing body of evidence indicates that elevated tHcy is
associated with an increased risk of CVD(2,5,6,7,8). After adjustments
were made for known cardiovascular risk factors, one meta-analy-
sis of twelve prospective studies suggested that a 25% reduction in
Hcy levels can reduce the risk of ischaemic heart disease by 11%
and the risk of stroke by 19%(9). Another recent meta-analysis
showed that participants with higher Hcy levels had a 58%
increased risk of stroke and55% increased risk of ischaemic stroke,

compared with those with lower Hcy levels(10). In addition,
elevated tHcy levels are related to several age-related diseases,
such as essential hypertension(11), Parkinson’s disease(12),
Alzheimer’s disease(13), diabetes(14) and osteoporosis(15).

The relationship between tHcy levels and the risk of all-cause
mortality has also been analysed. Multiple studies have indicated
that HHcy is associated with a higher risk of mortality in popu-
lations with specific chronic diseases, such as coronary artery
disease(16), type 2 diabetes(17) and renal failure(18), as well
as in renal transplant recipients(19) and frail individuals(20).
However, it should be noted that these populations already have
a higher overall risk of mortality due to their underlying disease
conditions. Furthermore, large-scale epidemiological data on the
relationship between tHcy levels and the risk of all-causemortal-
ity are still lacking, especially in the general population.

Considering the results of previous research, some pertinent
questions remain unanswered. First, does a linear or non-linear
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relationship exist between tHcy and the risk of mortality?
Second, is the relationship between tHcy and mortality based
on the independent role of tHcy or on a product of important
confounding factors such as vitamin B12, folate, renal function
or disease susceptibilities? Thus, we conducted this study to
investigate the association between HHcy and the risk of all-
cause and cause-specific mortality in a large, population-based
sample of adults in the USA.

Methods

Study design

In this study, we analysed data extracted from the National
Health and Nutrition Examination Survey (NHANES, 1999–
2002), a complex, stratified, multistage probability survey con-
ducted by the Centers for Disease Control and Prevention
(CDC). The NHANES programme began in the early 1960s
and collected data on the demographics, lifestyle and health sta-
tus of the US population using questionnaires. Biomarker data of
the participants were also collected. This annual cross-sectional
survey examines a nationally representative sample of about
5000 persons from counties across the country. Since NHANES
1999–2000, data for public use have been released almost every
2 years. We pooled data from two 2-year survey cycles of
NHANES (1999–2000 and 2001–2002) for this study. We con-
ducted a prospective secondary analysis by linking NHANES
data with mortality data from the National Death Index. The
National Center for Health Statistics (NCHS) Ethics Review
Board approved the NHANES programme and released its docu-
ments for public use. Written informed consent was obtained
from each participant. More information regarding the methodo-
logical details of the NHANES is available on the NHANES
official website (www.cdc.gov/nchs/nhanes/). We obtained
the NHANES datasets from DataDryad (https://doi.org/10.
5061/dryad.d5h62).

Study population

We conducted a secondary analysis of data from two 2-year
NHANES survey cycles: 1999–2000 and 2001–2002. Given the
possibility of survival bias among old adults, the participants
were limited to adults aged 18–70 years (n 9446). Individuals
without data on tHcy levels (n 996) and all-cause mortality (n
8) were excluded. Finally, 8442 eligible participants were
enrolled in the final analysis (Fig. 1).

Exposure variable and endpoint

The exposure variable was tHcy level (μmol/l) and HHcy. HHcy
was defined as a tHcy level greater than or equal to 15 μmol/l.
Hcy was measured using the Abbott IMX analyser in 1999–
2000, the Abbott Homocysteine IMX in 2001 and the Abbott
Axsym in 2002. The details of the tHcy measurement process
are available at http://cdc.gov/nchs/nhanes.

The primary endpoint was all-cause mortality, and the secon-
dary endpoint was cause-specific mortality including CVD,
cancer and respiratory disease mortality. The mortality informa-
tion including cause and time of death was obtained from the

2015 NCHS Public-Use Linked Mortality Files. Follow-up data
were taken for the period from the date of participation in the
NHANES survey until the date of death or 31 December 2015.
Cause of mortality was ascertained by the NCHS based on the
International Classification of Diseases, 10th revision. CVD mor-
tality was defined as death due to diseases of the heart (Codes:
I00–I09, I11, I13, I20–I51) and cerebrovascular disease (Codes:
I60–I69). Cancermortality was defined as death due tomalignant
neoplasms (Codes: C00–C97), and respiratory disease mortality
was defined as death due to chronic lower respiratory diseases
(Codes: J40–J47), influenza and pneumonia (Codes: J09–J18).

Covariates

Statistical analyses were adjusted for a priori covariates based on
well-known risk factors for mortality(21). The following covari-
ates were included as continuous variables: age, BMI (kg/m2),
mean systolic blood pressure (SBP, mmHg), mean diastolic
blood pressure (mmHg), C-reactive protein (mg/dl) level, glyco-
haemoglobin (%) level, total cholesterol (mg/dl) level, albumin
(g/dl) level, alanine aminotransferase (U/l), aspartate amino-
transferase (U/l), γ-glutamyl transferase (U/l), alkaline phospha-
tase (U/l), uric acid (mg/dl) level, blood urea nitrogen (mg/dl),
estimated glomerular filtration rate (ml/min per 1·73 m2), serum
vitamin B12 (pg/ml) level, serum folate (ng/ml) level, dietary fac-
tors (total monounsaturated fatty acids (g), total polyunsaturated
fatty acids (g), total saturated fatty acids (g), total fat intake (g),
protein intake (g), dietary fibre (g), energy intake (kcal)) and
supplement use (vitamin B12 (mg), folic acid (mg)). The categori-
cal variables included sex, race (grouped as non-HispanicWhite,
Black, Mexican American, other Hispanic or other), education
status (dichotomised as below high school diploma, high school
diploma or any training above high school diploma), smoking
status (grouped as never smoker, current smoker, former
smoker), alcohol consumption (classified as less than 5 g or
more than 5 g drinks/d), physical activity (classified as sedentary,
low, moderate and high level based on the distribution of meta-
bolic equivalent of task (MET)-minute levels in the present
NHANES sample), history of diseases (coronary atherosclerotic
heart disease (CAD), hypertension, diabetes and cancer) and
medication use (lipid-lowering drugs, antihypertensive drugs
and glucose-lowering drugs). CAD was defined as a self-
reported physician diagnosis of CAD. Hypertension was defined
as meeting any of the following criteria: SBP≥ 135 mmHg, dia-
stolic blood pressure≥ 85 mmHg or self-reported physician
diagnosis of hypertension. Diabetes was defined as a self-

Fig. 1. Flow chart of participants.
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reported physician diagnosis of diabetes or a fasting glucose
concentration>126mg/dl. Cancerwas defined as a self-reported
cancer or malignancy (any type).

Statistical analyses

Statistical analyses were performed following the guidelines of
the CDC (https://wwwn.cdc.gov/nchs/nhanes/tutorials/default.
aspx). Each participant in the NHANES survey was assigned a
sample weight(22). The proposed weighting methodology in the
analytical guidelines of the NCHS was adopted. Continuous var-
iables were presented as mean values with their standard error
usingweighted linear regressionmodels, and categorical variables
were presented as proportions ± SE using weighted chi-
square tests.

A generalised additive model and smooth curve fitting
(restricted cubic spline) based on Cox proportional hazards
models were applied to estimate the relationship between
tHcy level andmortality. We utilised four models simultaneously
according to the STROBE guidelines: model 1 (not adjusted for
any covariates), model 2 (adjusted for age (smooth), sex, race),
model 3 (adjusted for all covariates shown in Table 1 except for
dietary factors and supplement use) andmodel 4 (adjusted for all
covariates shown in Table 1). Age covariates were entered into
the equation using smooth curve fitting to account for the poten-
tial non-linear relationship between age and mortality. Hazard
ratios (HR) and 95 % CI were estimated in the four models.
tHcy level was included as a continuous variable and categorical
variable (with and without HHcy). Cumulative survival rate
analysis was performed using Kaplan–Meier curves with log-
rank statistics according to different groups (with and with-
out HHcy).

Subgroup analyses were performed according to age group
(above and below 50 years), sex, race/ethnicity, survey cycles,
lifestyle (smoking status, alcohol consumption and physical
activity), history of chronic disease, medication use, BMI, esti-
mated glomerular filtration rate, vitamin B12 level (tertile group-
ing) and folate level (tertile grouping) using stratified Cox
proportional hazards models.

To confirm the robustness of our results, we quantified
unmeasured confounders betweenHHcy and all-causemortality
by calculating E-values(23), as unmeasured confounding factors
may overturn the observed association between HHcy and all-
cause mortality. E-values can estimate the validity required for
a confounding factor.

All tests were two-sided and statistical significance was
set at P < 0·05. All analyses were performed using the R stat-
istical software package (http://www.R-project.org, The R
Foundation for Statistical Computing), EmpowerStats (http://
www.empowerstats.com, X&Y Solution, Inc.) and Free
Statistics software versions 1.5(24).

Results

Baseline characteristics of the participants

The weighted distribution of the baseline characteristics of the
participants according to the presence or absence of HHcy is

shown in Table 1. There were 235 (2·78 %) participants with
HHcy. Compared with the participants without HHcy, partici-
pants with HHcy were slightly older, to be males andmore likely
to be drinker and former smokers, have a less physically activity,
have a lower education level (below high school diploma), have
a diagnosis of CAD, hypertension and/or diabetes, have a signifi-
cantly higher SBP, C-reactive protein level, aspartate aminotrans-
ferase level, γ-glutamyl transferase level, alkaline phosphatase
level, uric acid level and blood urea nitrogen level, have a lower
estimated glomerular filtration rate, serum vitamin B12 and serum
folate level and take less total monounsaturated fatty acids,
vitamin B12 and folic acid.

Endpoints of mortality

A total of 8442 individuals (1999–2000 survey cycle: 3978 sub-
jects; 2001–2002 survey cycle: 4464 subjects) aged 18–70 years
with 119 364·8 person-years of follow-up (median follow-up
duration, 14·7 years; interquartile range, 13·7–15·8 years) were
included in the final data analysis. We noted that a total of
1007 (11·9 %) deaths occurred including 197 CVD-related
deaths, 255 cancer-related deaths and fifty-eight respiratory dis-
ease deaths during follow-up. The participants with HHcy had a
higher all-cause and cause-specific mortality rate (per 1000 per-
son-years) than those without HHcy. P-values were all less than
0·001 (Table 2).

Association between total plasma homocysteine and
hyperhomocysteinaemia an all-cause and cause-specific
mortality

Four models were constructed using a generalised additive
model to analyse the effect of tHcy levels and HHcy on all-cause
and cause-specific mortality. The HR and 95 % CI for these equa-
tions are shown in Table 3. Inmodel 4 (the fully adjustedmodel),
a 1 μmol/l higher tHcy level was associated with 4 % increased
risk of all-cause mortality (HR 1·04; 95 % CI (1·03, 1·05)), 6 %
increased risk of CVD mortality (HR 1·06; 95 % CI (1·03,
1·09)), 1 % increased risk of cancer mortality (HR 1·01; 95 % CI
(0·98, 1·05)) and an 8 % increased risk of respiratory diseasemor-
tality (HR 1·08; 95 %CI (1·03, 1·14)). The results of the association
between tHcy level and cancer mortality did not reach statistical
significance.

Participants with HHcy had a 93 % increased risk of all-cause
mortality (HR 1·93; 95 %CI (1·48, 2·51)), a 160 % increased risk of
CVD mortality (HR 2·60; 95 % CI (1·52, 4·45)), an 82 % increased
risk of cancer mortality (HR 1·82; 95 % CI (1·03, 3·21)) and a
146 % increased risk of respiratory disease mortality (HR 2·46;
95 % CI (0·89, 6·81)) compared with those without HHcy.
However, the P value was greater than 0·05 (not significant)
for the risk of respiratory disease mortality.

Analyses of the dose–response relationship between total
plasma homocysteine and all-cause and cause-specific
mortality

The association between tHcy level and all-cause and cause-spe-
cific mortality was evaluated on a continuous scale using a gen-
eralised additivemodel and smooth curve fitting (restricted cubic
spline method) based on Cox proportional hazards models. The
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Table 1. Characteristics of study participants
(Mean values and standard errors)

Characteristics

Total (n* 8442) Without HHcy (n 8207) With HHcy (n 235)

PMean/n (%) SE Mean/n (%) SE Mean/n (%) SE

Age, years 41·34 0·29 41·15 0·30 48·6 1·19 <0·001
Male 49·05 0·48 48·7 0·47 62·2 4·04 0·003
Race/ethnicity
Non-Hispanic White 69·44 1·83 69·5 1·81 67·01 3·73 0·406
Black 10·82 1·22 10·71 1·22 14·85 2·26 0·026
Mexican American 7·77 0·92 7·82 0·93 6·01 1·09 0·093
Other Hispanic 7·18 1·6 7·17 1·59 7·58 3·04 0·863
Other race/ethnicity 4·79 0·69 4·8 0·71 4·54 1·11 0·846

Education
< High school 20·68 0·79 20·46 0·79 28·63 3·75 0·025
High school 25·43 1·04 25·46 1·06 24·36 4·36 0·808
> High school 53·89 1·45 54·08 1·48 47·02 4·78 0·168

Alcohol consumption, g/d
<5 83·18 0·7 83·49 0·69 72·24 3·66 0·001
≥5 16·82 0·7 16·51 0·69 27·76 3·66 0·001

Smoking
Never 50·25 1·36 50·71 1·40 33·57 2·88 <0·001
Current 23·53 0·99 23·42 1·03 27·85 3·11 0·182
Former 26·21 0·96 25·87 0·96 38·58 4·47 0·005

Physical activity
Sedentary 19·69 1·08 19·4 1·09 30·56 3·46 0·002
Low 27·33 0·94 27·22 0·97 31·17 3·77 0·320
Moderate 19·52 0·69 19·53 0·72 19 3·39 0·885
High 33·46 0·96 33·85 0·96 19·27 3·4 0·002

Co-morbidities
CAD 4·70 0·34 4·45 0·34 14·13 1·88 <0·001
Hypertension 22·32 0·88 21·75 0·83 43·93 4·6 <0·001
Diabetes 6·70 0·38 6·51 0·36 13·9 2·79 0·001
Cancer 5·79 0·44 5·72 0·46 8·55 2·49 0·216

Medication use
Statin 5·00 0·36 4·96 0·38 6·66 1·49 0·256
ACEi 3·80 0·32 3·54 0·33 13·60 1·81 <0·001

Antidiabetic drugs 2·73 0·26 2·68 0·26 4·53 1·22 0·054
Physical examination
BMI, kg/m2 27·97 0·14 27·96 0·14 28·35 0·51 0·471
Mean systolic, mmHg 117·29 0·35 117·12 0·38 124·49 1·51 0·000
Mean diastolic, mmHg 71·91 0·28 71·85 0·29 74·10 1·17 0·083

Laboratory data
CRP, mg/dl 0·41 0·01 0·40 0·01 0·61 0·09 0·035
Glycohaemoglobin 5·40 0·02 5·40 0·02 5·48 0·07 0·287
Total cholesterol, mg/dl 197·01 0·79 196·87 0·83 202·47 2·88 0·087
Albumin, g/dl 4·39 0·01 4·39 0·01 4·35 0·04 0·277
ALT, U/l 26·51 0·48 26·11 0·30 41·40 13·45 0·264
AST, U/l 24·44 0·25 24·25 0·23 31·78 2·78 0·011
GGT, U/l 30·35 0·52 29·63 0·45 57·14 6·67 0·000
ALP, U/l 73·29 0·78 73·07 0·80 81·63 1·69 0·000
Uric acid, mg/dl 5·31 0·02 5·28 0·02 6·38 0·18 <0·001
BUN, mg/dl 13·36 0·11 13·28 0·11 16·44 0·87 0·001
eGFR, ml/min per 1·73 m2 105·33 0·51 105·83 0·52 86·40 3·16 <0·001
Serum vitamin B12, pg/ml 542·02 21·57 545·77 22·04 398·69 28·68 0·000
Serum folate, ng/ml 14·17 0·22 14·27 0·22 10·20 1·06 0·001

Dietary
TMFA intake, g 31·84 0·26 31·95 0·25 28·05 1·78 0·032
TPFA intake, g 17·34 0·19 17·39 0·18 15·47 1·29 0·145
TSFA intake, g 27·92 0·25 27·99 0·25 25·59 1·24 0·054
Total fat intake, g 84·94 0·66 85·14 0·64 77·19 4·22 0·063
Protein intake, g 84·08 0·68 84·22 0·70 79·11 4·18 0·246
Dietary fibre intake, g 15·95 0·26 16·00 0·26 14·07 0·98 0·053
Energy intake, kcal 2282·68 15·67 2284·02 15·66 2233·11 91·53 0·582

Supplement use
Vitamin B12, mg 14·43 1·14 14·75 1·16 2·75 1·43 <0·001
Folic acid, mg 123·19 4·57 125·51 4·58 37·20 11·51 <0·001

HHcy, hyperhomocysteinaemia; CAD, coronary atherosclerotic heart disease; ACEi, angiotensin-converting enzyme inhibitors; CRP, C-reactive protein; ALT, alanine aminotrans-
ferase; AST, aspartate aminotransferase; GGT, gamma glutamyl transferase; ALP, alkaline phosphatase; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate;
TMFA, total monounsaturated fatty acids; TPFA, total polyunsaturated fatty acids; TSFA, total saturated fatty acids.
* Unweighted number of observations in dataset.
Continuous variables were calculated by weighted linear regression model. Categorical variables were calculated by weighted chi-square test.
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fully adjusted smooth curve fitting showed a linear association
between tHcy level and all-cause and cause-specific mortality
(Fig. 2).

Subgroup analyses

The results of the subgroup analyses of the association between
HHcy and all-cause mortality are presented in Fig. 3. The asso-
ciation between HHcy and all-cause mortality in the stratified
analysis was consistent with that in the multivariable Cox regres-
sion analysis, except for Mexican American.

Survival analyses

Kaplan–Meier analysis showed that the survival probability
among participants withHHcywas significantly lower compared
with those without HHcy (both P< 0·0001) (Fig. 4).

Sensitivity analyses

To test the robustness of the primary results, we calculated an E-
value to assess the effect of unmeasured confounding factors.
The association betweenHHcy and the risk of all-causemortality
was found to be robust, unless the HR of all-cause mortality risk
of an unmeasured confounder was >3·06.

Discussion

Our findings

In this study, we used the generalised additive model to illustrate
the relationship between HHcy and the risk of all-cause and
cause-specific mortality among adults under the age of 70 years
from the general population of the USA. After adjusting for
indicators such as demographics, traditional cardiovascular risk
factors and laboratory test results, we observed that HHcy was
associated with an increased risk of all-cause and cause-specific
mortality after a median follow-up of 14·7 years. However, the
risk of respiratory disease mortality did not reach statistical
significance.

Previous studies

Our results are consistent with the follow-up report of older
Framingham subjects(25) and residents of Jerusalem(26), which
states that tHcy was an effective predictor of all-cause mortality.
There is increasing evidence that elevated Hcy levels are associ-
ated with an increased risk of all-cause mortality(27,28). A meta-
analysis of nineteen studies with 4340 subjects showed that
elevated Hcy levels were associated with a 3·19-fold increased
risk of all-cause mortality(29). Another meta-analysis of ten pro-
spective studies with 11 061 participants found that stroke and
ischaemic stroke risk increases in a dose-dependent manner
with increases in tHcy level(10). This is consistent with the results
of the present study. However, one previous study reported that
a high tHcy level is not associated with the risk of cardiovascular
mortality after 10·3 years of follow-up in healthy individuals aged
20–59 years(30). Nonetheless, that study may have been limited
by the selection of relatively young healthy subjects. In addition,
some important confounding variables, such as folic acid and
vitamin B levels, were not adjusted in that study.

Possible explanations for our findings

HHcy can cause atherosclerosis and promote thrombus forma-
tion. This mechanism may cause endothelial dysfunction
through increased oxidative stress(31,32,33,34). Hcy can also affect
the properties of the extracellular matrix, increase smooth
muscle cell proliferation and induce platelet enrichment(35,36,37).
Studies have shown that Hcy level is positively correlated with
age(38). In the present study, participants with HHcy were older
andmore likely to have complications. Hcy level may be an indi-
rect marker of serious diseases. The association between HHcy
and the risk of all-cause and CVD mortality decreased signifi-
cantly after adjusting for age and sex. Moreover, the subgroup
analysis showed that there is a strong correlation between
HHcy and the risk of all-cause mortality among participants with
risk factors for CVD, such as current smokers, drinkers and those
with a history of hypertension and diabetes. And, the participants
with HHcywere more likely to be drinker, former smokers, have
a less physically activity, have a diagnosis of CAD, hypertension

Table 2. The endpoints in participants without and with HHcy

Endpoints Total Without HHcy With HHcy P

All-cause mortality <0·001
Person-years 119 365 116 671·8 2693
No. of events 1007 905 102
Mortality rate (per 1000 person-years) 8·4 7·8 37·9

CVD mortality <0·001
Person-years 119 365 116 671·8 2693
No. of events 197 171 26
Mortality rate (per 1000 person-years) 1·7 1·5 9·7

Cancer mortality <0·001
Person-years 119 365 116 671·8 2693
No. of events 255 235 20
Mortality rate (per 1000 person-years) 2·1 2·0 7·4

Respiratory disease mortality <0·001
Person-years 119 365 116 671·8 2693
No. of events 58 52 6
Mortality rate (per 1000 person-years) 0·5 0·4 2·2

HHcy, hyperhomocysteinaemia.
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Table 3. Association of HHcy with the risk of all-cause and cause-specific mortality
(Hazards ratios and 95 % confidence intervals)

Homocysteine

Model 1† Model 2‡ Model 3§ Model 4‖

HR 95% CI P HR 95% CI P HR 95% CI P HR 95% CI P

All-cause mortality
Per 1-μmol/l increment 1·08 1·07, 1·09 <0·001 1·06 1·05, 1·07 <0·001 1·04 1·03, 1·05 <0·001 1·04 1·03, 1·05 <0·001

HHcy
No Ref Ref Ref Ref
Yes 5·10 4·15, 6·26 <0·001 2·99 2·43, 3·68 <0·001 1·85 1·44, 2·39 <0·001 1·93 1·48, 2·51 <0·001

CVD mortality
Per 1-μmol/l increment 1·09 1·08, 1·10 <0·001 1·07 1·05, 1·09 <0·001 1·06 1·03, 1·09 <0·001 1·06 1·03, 1·09 <0·001

HHcy
No Ref Ref Ref Ref
Yes 6·90 4·57, 10·44 <0·001 3·29 2·16, 5·00 <0·001 2·27 1·34, 3·84 0·002 2·60 1·52, 4·45 0·001

Cancer mortality
Per 1-μmol/l increment 1·07 1·05, 1·09 <0·001 1·04 1·01, 1·06 0·005 1·02 0·99, 1·05 0·283 1·01 0·98, 1·05 0·410

HHcy
No Ref Ref Ref Ref
Yes 3·82 2·42, 6·03 <0·001 2·29 1·44, 3·63 0·000 1·89 1·10, 3·26 0·021 1·82 1·03, 3·21 0·041

Respiratory disease mortality
Per 1-μmol/l increment 1·09 1·06, 1·12 <0·001 1·07 1·04, 1·11 <0·001 1·08 1·03, 1·13 0·003 1·08 1·03, 1·14 0·003

HHcy
No Ref Ref Ref Ref
Yes 5·34 2·29, 12·43 <0·001 2·84 1·21, 6·69 0·017 2·49 0·91, 6·76 0·074 2·46 0·89, 6·81 0·083

HR, hazards ratio; HHcy, hyperhomocysteinaemia.
* Cox proportional hazards models were used to estimate HR and 95% CI.
†Model 1: no covariates were adjusted.
‡Model 2: adjusted for age (smooth), sex, race/ethnicity.
§ Model 3: adjusted for age (smooth), sex, race/ethnicity, education status, smoking status, alcohol consumption, physical activity, coronary atherosclerotic heart disease, hypertension, diabetes, cancer, glucose-lowering drugs, statin use,
ACEi use, BMI, SBP, DBP, CRP, glycohaemoglobin, total cholesterol, albumin, ALT, AST, GGT, ALP, uric acid, BUN, eGFR, serum vitamin B12, serum folate.

‖Model 4: adjusted for age (smooth), sex, race/ethnicity, education status, smoking status, alcohol consumption, physical activity, coronary atherosclerotic heart disease, hypertension, diabetes, cancer, glucose-lowering drugs, statin use,
ACEi use, BMI, SBP,DBP,CRP, glycohaemoglobin, total cholesterol, albumin, ALT, AST,GGT, ALP, uric acid, BUN, eGFR, serum vitamin B12, serum folate, total monounsaturated fatty acids, total polyunsaturated fatty acids, total saturated
fatty acids, total fat intake, protein intake, dietary fibre, energy intake, and supplement use (vitamin B12, folic acid).
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and diabetes. People who smoke heavily for a long time may be
prone to vitamin deficiency due to less intake of vegetables and
fruits in their diet, which in turn leads to increased tHcy levels.
Chronic alcohol consumption affects post-translational modifi-
cation of hepatic methionine synthase(39). Inhibition of methio-
nine synthase by alcohol reduces re-methylation of Hcy,
resulting in HHcy(40). It may be a combination of multiple factors
such as age, sex, unhealthy lifestyle (smoking and drinking hab-
its, less physically activity) and chronic diseases that may interact
with each other affecting the methionine-homocysteine cycle,
thereby influencing the final adverse outcomes. Azarpazhooh
et al.(41) found the metabolic syndrome, smoking and HHcy

interact with each other and ultimately contribute to increased
cardiovascular risk. Another study also showed that a healthy
lifestyle such as physical activity, intaking of more fruit and quit-
ting smoking can help prevent HHcy(42).

Hypertension and hyperhomocysteinaemia

Subgroup analysis in our study showed that HHcy was associ-
ated with a higher risk of all-cause mortality in participants with
hypertension than thosewithout hypertension,whichwas in line
with our previous study(43). The Hordaland Homocysteine
Study(44) that included 16 176 individuals indicated that tHcy
level was positively correlated with SBP and diastolic blood

Fig. 2. Dose–response associations of homocysteine level with risk of all-cause (a), CVD (b), cancer (c) and respiratory disease mortality (d). The red solid line rep-
resents the estimated risk of all-cause and cause-specific mortality, with cyan dashed lines showing 95% CI. Analyses were adjusted for age (smooth), sex, race/eth-
nicity, education status, smoking status, alcohol consumption, physical activity, coronary atherosclerotic heart disease, hypertension, diabetes, cancer, glucose-
lowering drugs, statin use, ACEi use, BMI, SBP, DBP, CRP, glycohaemoglobin, total cholesterol, albumin, ALT, AST, GGT, ALP, uric acid, BUN, eGFR, serum vitamin
B12, serum folate, total monounsaturated fatty acids, total polyunsaturated fatty acids, total saturated fatty acids, total fat intake, protein intake, dietary fibre, energy
intake, and supplement use (vitamin B12, folic acid). ACEi, angiotensin-converting enzyme inhibitor; SBP, systolic blood pressure; DBP, diastolic blood pressure;
CRP, C-reactive protein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transferase; ALP, alkaline phosphatase; BUN, blood urea
nitrogen; eGFR, estimated glomerular filtration rate.
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Fig. 3. Association between hyperhomocysteinaemia and all-cause mortality according to subgroup. Analyses were adjusted for age (smooth), sex, race/ethnicity,
education status, smoking status, alcohol consumption, physical activity, CAD, hypertension, diabetes, cancer, glucose-lowering drugs, statin use, ACEi use, BMI,
SBP, DBP, CRP, glycohaemoglobin, total cholesterol, albumin, ALT, AST, GGT, ALP, uric acid, BUN, eGFR, serum vitamin B12, serum folate, total monounsaturated
fatty acids, total polyunsaturated fatty acids, total saturated fatty acids, total fat intake, protein intake, dietary fibre, energy intake, and supplement use (vitamin B12, folic
acid), except for the stratification variable. ACEi, angiotensin-converting enzyme inhibitor; SBP, systolic blood pressure; DBP, diastolic blood pressure; CRP, C-reactive
protein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, γ-glutamyl transferase; ALP, alkaline phosphatase; BUN, blood urea nitrogen; eGFR,
estimated glomerular filtration rate; CAD, coronary atherosclerotic heart disease.
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pressure. Results from another NHANES study(45) also suggested
that a 5-μmol/l increase in Hcy levels was associatedwith 0·7 and
0·5 mmHg increases in SBP and diastolic blood pressure, respec-
tively. Zhong et al.(11) found that elevated Hcy levels were associ-
ated with risk of essential hypertension. This may be due to the
destruction of elastic fibres and increased arterial stiffness as a result
of Hcy. Symons et al.(46) observed that the carotid elasticity was less
in hyperhomocysteinemic rats compared with control rats.

Vitamin B12, folate and hyperhomocysteinaemia

Vitamin B12 and folate are important factors in Hcy metabolism
and important determinants of tHcy concentration. Elevated
tHcy levels may reflect a lack of folate and vitamin B12

(47,48).
B-complex vitamins can reduce tHcy levels by promoting Hcy
metabolism(49). Bertoia et al. revealed a negative correlation

between high folate intake and tHcy levels(50). Studies have
shown that two-thirds of patients with HHcy have lower plasma
folate and vitamin B12 concentrations than normal(51). A study of
1041 relatively older adults also showed that vitamin B12 plays an
important role in the pathogenesis of HHcy(38). Similarly, in the
present study, we found that participants with HHcy had lower
vitamin B12 and folate levels. In addition, our subgroup analysis
showed that tHcy levels showed a stronger relationship with the
risk of all-cause mortality in the lower tertile of vitamin B12 than
in the higher tertile, a finding which is consistent with that of pre-
vious studies(52). However, a meta-analysis of a large, rando-
mised trial did not show that vitamin B therapy has a
beneficial effect on the mortality of individuals at risk of CVD
or those suffering from CVD(53). Therefore, further observation
and clinical trials are necessary to develop appropriate primary
prevention strategies.

Fig. 4. Kaplan–Meier curves for all-cause (a), CVD (b), cancer (c) and respiratory disease mortality (d). Unadjusted Kaplan–Meier estimates for all-cause and cause-
specific mortality for HHcy. HHcy, hyperhomocysteinaemia.
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Effects of drugs and hyperhomocysteinaemia

Numerous epidemiological studies have shown that statin use is
significantly associated with a reduction in all-cause and cardio-
vascular mortality(54,55,56) and angiotensin-converting enzyme
inhibitors can significantly reduce the risk of all-cause mortality
in patients with co-morbidities such as hypertension, diabetes,
CHD and chronic kidney disease(57,58). However, in our sub-
group analysis, participants with HHcy who took statins or
angiotensin-converting enzyme inhibitors were associated with
a higher risk of all-cause mortality than those who did not. This
may be because of a higher prevalence of co-existing cardio-
vascular risk factors such as hyperlipidaemia and hypertension
in participants with HHcy as they had a higher percentage of
statin and angiotensin-converting enzyme inhibitor drug usage.
In addition, statins may not reduce tHcy concentrations. A meta-
analysis of seven studies showed no significant alteration in Hcy
levels following treatment with statins(59).

Limitations

The limitations of our study should be noted as well. First, the
prevalence ofHHcy in kidney transplant recipients is higher than
that in the general population(60). Our study data did not include
information on history of kidney transplantation; therefore, we
could not assess the role of kidney transplants in the relationship
between HHcy and the risk of mortality. Second, the possibility
of the residual confounding effect of incomplete adjustment of
some cardiovascular risk factors cannot be excluded.
However, an E-value analysis was conducted to quantify the
potential impact of unmeasured confounders. The results
showed that an unknown confounder was unlikely to explain
the effect of the risk of all-cause mortality. Third, all blood tests
including tHcy levels were based on a single measure, and
regression dilution bias may underestimate the strength of the
association. Therefore, larger-scale studies among the general
population are needed to estimate the strength of the correlation
between tHcy level and mortality more accurately.

Conclusion

Themain finding of this studywas that HHcywas associatedwith
high risk of all-cause and cause-specific (CVD, cancer) mortality
among adults aged below 70 years in the USA, which suggests
that maintaining tHcy at normal levels may be beneficial in
reducing the risk of mortality. Future prospective studies are
needed to evaluate the clinical benefit of a Hcy-lowering
intervention.
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