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Abstract
The starting point of our research is the inadequacy of assuming, in the construction of amodel
of mortality, that frailty is constant for the individuals comprising a demographic population.
This assumption is implicitly made by standard life table techniques. The substantial
differences in the individual susceptibility to specific causes of death lead to heterogeneity in
frailty, and this can have a material effect on mortality models and projections—specifically
a bias due to the underestimation of longevity improvements. Given these considerations, in
order to overcome the misrepresentation of the future mortality evolution, we develop a
stochastic model based on a stratification weighting mechanism, which takes into account
heterogeneity in frailty. Furthermore, the stratified stochastic model has been adapted also
to capture COVID-19 frailty heterogeneity, that is a frailty worsening due to the COVID-19
virus. Based on different frailty levels characterizing a population, which affect mortality
differentials, the analysis allows for forecasting the temporary excess of deaths by the
stratification schemes in a stochastic environment.
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1. Introduction

Mortality improvement trends have been mainly studied by means of stochastic
mortality models [Carter and Lee (1992), Cairns et al. (2006)] and affine models
[Schrager (2006), Luciano and Vigna (2008), Blackburn and Sherris (2013)].
Nevertheless, the analysis of the changes in the mortality trend as the underlying risk
factors vary remains relatively unexplored, as pointed out by Xu et al. (2019): the
main risk factors affecting older adults that have been codified in the literature
include high blood pressure, cancer, and heart problems.

As noted by Fried et al. (2004), the terms comorbidities (or multiple chronic
conditions), frailty, and disability are often used interchangeably in the identification
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of the vulnerable elderly. For example, poorer physical health has been defined in terms
of frailty [Fried et al. (2001), Jones et al. (2004)]. There is now a growing consensus that
comorbidities, frailty, and disability are distinct entities in clinical terms but there is as
yet no consensus on definitions in geriatric medicine. Focusing on the concept of frailty,
we find in the medical literature, relevant approaches include the phenotype model and
the cumulative-deficit model [Clegg et al. (2013), Rodríguez-Mañas et al. (2013), Chen
et al. (2014)]. Further, Chen et al. (2014) and Clegg et al. (2013) argue that frailty is a
measure of physical health and is associated with a considerably increased risk of
adverse health outcomes such as falls, hospitalization, long-term care,
institutionalization, and mortality [Ahrenfeldt et al. (2020)].

In demography and actuarial science, a different approach to frailty has been
pursued. Thus, Vaupel et al. (1979) have introduced frailty models based on a risk
factor representing an individual’s susceptibility to death. Some authors, such as
Fong et al. (2017), describe the frailty as an individual’s relative susceptibility to
death compared to a standard and connect it to the different health status that
emerges from disability surveys. As an individual’s disability level increases, so a
higher level of frailty develops. Traditional frailty models generally assume that frailty
is fixed throughout a person’s lifetime [Haberman and Butt (2004), Su and Sherris
(2012)]. Conversely, stochastic aging models represent the process of deterioration in
terms of the human body’s physiological capacity and the status of an individual’s
physiological capacity is called “physiological age” [Fong et al. (2017)] allowing for
randomly changing frailty. Then, susceptibility to death depends on the physiological
changes and environmental influences [Yashin et al. (1994), Lin and Liu (2007)]. As
pointed out by Vaupel et al. (1979), Xu et al. (2019), and others, frailty is an
unobserved risk factor in these demographic and actuarial models of frailty.
According to this line of research, frailty represents an unobserved covariate that
impacts mortality heterogeneity.

Systematic mortality improvement trends vary with the risk characteristics of
individuals in a population (including by age and gender) and this variation
determines the degree of mortality heterogeneity within a population [Vaupel et al.
(1979), Meyricke and Sherris (2013)]. Further, some authors have shown that
population heterogeneity can impact population dynamics and aggregate mortality
trends [Kaakai et al. (2019)] Our paper relies on the assumption that mortality
improvement trends differ due to different health status across individuals with the
same age and gender, based on evidence that health status (especially chronic illness)
is significantly correlated with disability [Sherris and Wei (2021)] and mortality
[Brown and Warshawsky (2013), Koijen et al. (2016), Yogo (2016)].

In this paper, we investigate the systematic effects on mortality rates due to the
COVID-19 pandemic. Based on the intrinsic connection among frailty and mortality
which impacts the future evolution of mortality rates, we propose a more accurate
estimate of the mortality differentials on the basis of the different frailty levels of a
population. Indeed, the main underlying assumption of our study consists in
detecting the material effect of frailty heterogeneity on mortality projections. It does
not seem plausible to assume that frailty is constant in a demographic population.
As is emphasized by Vaupel et al. (1979), if heterogeneity in frailty is substantial in a
population, then the analysis of population mortality needs to take it into account in
terms of its impact on age-specific mortality measures including life tables.

We also assume that the mortality rates in a population may experience sudden
jumps, due to a critical change in living conditions, such as recently it occurred with
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the COVID-19 pandemic, where the SARS-CoV-2 virus has amplified the excess of
deaths in the presence of the pre-existing comorbidities, by leading to a worsening of
the health status of individuals [Carannante et al. (2022a, 2022b)]. The acceleration
of mortality represents the underlying insight whereby deaths are “accelerated” ahead
of schedule (or brought forward in time) due to COVID-19 [Cairns et al. (2020)].

Another main assumption underlying our study relies on the effects of the
COVID-19 vaccination measures. These medical treatments produce temporary
effects, not providing a structural immunity against the virus, so that we consider a
normal virus spread by neglecting the vaccination effects.

Since the structure of a population is composite, characterized by different
segments with different levels of comorbidities, we propose a stratified sampling
stochastic model, in order to take into account the different frailty levels in
projecting the future mortality rates. In our approach, we use two different versions
of the concept of the frailty.

As discussed earlier, the classical actuarial literature has defined a frailty measure
that includes all unobservable factors affecting individual mortality [Pitacco et al.
(2009)]. According to Carannante et al. (2022a), the concept of implied frailty
represents an adaptation of the standard actuarial concept of frailty which takes into
account all indistinct unobservable risk factors determining the mortality deviations
between the expected baseline mortality and the aggregate observed mortality
including COVID-19 mortality. In this context, we provide a stratified approach to
frailty, with the mortality heterogeneity being affected by the comorbidities instead of
indistinct unobservable risk factors. Our main empirical findings show that the
implied frailty concept tends to overestimate the actual mortality for all classes of
age, except for young ages, in the case of the countries that we consider, i.e., England
and Wales, Northern Ireland, and Scotland. This is probably due to the all
unobservable risk factors embedded in this measure. The stratified frailty concept
that we develop for modeling mortality trends accurately captures the frailty
heterogeneity in the population, allowing us to obtain more consistent forecasts.

The layout of the paper is as follows. Section 2 explains the rationale of the research.
Section 3 introduces the concept of frailty in the actuarial literature. We illustrate the
implied frailty approach in section 4. Section 5 introduces the stratified weighting
frailty for the two different schemes. The approach to modeling and forecasting
mortality is described in section 6. The main empirical outcomes are presented in
section 7. Section 8 concludes.

2. Motivation

In general terms, “a stochastic mortality model should allow for the several types of
possible deviations in the frequency of death in respect of the forecasted mortality
rate” [Pitacco et al. (2009)]. In particular, the systematic deviations from expected
values may come from “a misspecification of the relevant mortality model, namely
model risk (e.g. because the time-pattern of actual mortality differs from that implied
by the adopted mortality table) or a biased assessment of the relevant parameters
(e.g. due to a lack of data),” i.e., the parameter risk [Pitacco et al. (2009)]. The
uncertainty risk refers to model and parameter risk jointly, meaning uncertainty in
the description of the evolution of future mortality.

The deviations due to the shocks caused by period effects (i.e., catastrophe risk),
involve the risk of a sudden and short-term rise in the frequency of deaths. Mortality
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rates in a population may experience sudden jumps, due to adverse living conditions,
such as an influenza epidemic, or other severe environmental conditions, such as
natural disasters.

Embedding the sources of randomness in the mortality model is a critical task, in
order to accurately represent the mortality phenomenon. In our study, we address
the uncertainty risk, in its systematic long-run component by providing a
stratification scheme based on the introduction of different levels of population
frailty (i.e., the frailty heterogeneity). Moreover, we address the catastrophe risk that
has recently appeared through the short-term excess of deaths caused by the
COVID-19 pandemic, by providing a stratification scheme based on frailty related to
COVID-19.

Broadly speaking, different levels of comorbidities that vary by age give rise to frailty
heterogeneity. Some studies [Shepard and Zeckhauser (1975, 1977), Tolley et al. (1978),
Manton and Stallard (1979)] have analyzed the differences in individual susceptibility
to specific causes of death and their effects on mortality heterogeneity in the trends
[Meyricke and Sherris (2013), Xu et al. (2019)]. Thus, they implicitly explore the
impact of frailty heterogeneity on mortality heterogeneity. Vaupel et al. (1979) show
that by ignoring the heterogeneity in frailty according to the standard life table
methods leads to an underestimation of the future progress in reducing mortality
rates, with an impact on differentials in mortality. For a general approach to
heterogeneity models in the actuarial field, we refer readers to the monograph of
Cummins et al. (1983).

In order to manage the heterogeneity by capturing any prior information on the
frailty of a population, we develop a stratified weighting which allows us to obtain
higher efficiency by reducing the forecasting errors for mortality projections. The
forecasts of future mortality evolution would then be based on homogeneous groups
such as those that are identified by a specified level of frailty, with the assumption
that frailty within a group is homogeneous. One of the main advantages due to the
stratification comes from the sample size of the strata which is under the analyst’s
control.

We propose two different stratified weighting schemes for the partition of the
population into distinct subpopulations, so that each subpopulation is more
homogeneous than in the original population. One scheme is based on the age
structure of the population characterized by different levels of the comorbidities that
correspond to general frailty of the individuals in the sample (general frailty
scheme). The other scheme is based on the COVID-19 infection rate by age, so that
frailty is specifically related to the virus which leads to a deterioration in the
comorbidity conditions (specific frailty scheme due to the COVID-19 impairment of
a frail population). In order to embed the systematic and accidental sources of
randomness in the mortality projections, we define two multiplicative models, the
former being the General Frailty Stochastic Model (GFSM) based on the general
frailty scheme and the latter is the Specific Frailty Stochastic Model (SFSM) based on
the specific frailty scheme due to COVID-19.

3. Frailty

The literature has considered observable and unobservable factors explaining the
heterogeneity of a population in respect of its mortality experience. The concept of
“frailty” denotes an unobservable factor. In the actuarial literature, the concept of
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“frailty” represents a tool to describe heterogeneity in populations, due to unobservable
risk factors, based on a non-negative real-valued variable, i.e., the frailty, whose role is
to include all unobservable factors affecting an individual’s mortality rate [Pitacco et al.
(2009)]. According to the observable risk factors, the population is instead assumed to
be homogeneous. The idea that individuals with higher frailty die on average earlier
than others dates back to Beard (1959, 1971) and it has been extensively explored by
Vaupel et al. (1979).

The literature assumes the invariance of the specific value of the frailty of an
individual in respect of time. We denote Zx to be the continuous random frailty at
age x, with a continuous probability density function, gx(z). Let μx(z) denote the
conditional force of mortality for an individual in a population group at age x, and
with a frailty level of z:

mx(z) = lim
t�0

P(Tx ≤ t|Zx = z)
t

(1)

where Tx being the remaining lifetime and Zx = z for simplicity z.
According to Vaupel et al. (1979), the force of mortality depends on a multiplicative

frailty factor which refers to the force of mortality at frailty level z = 1 for of an
individual at age x, as in the following formula:

mx(z) = zmx (2)

Let us consider a person at age 0. The survival function up to age x for a person with
frailty z is

S(x|z) = e−
�x

1
mt(Z)dt = e−zH(x) (3)

with H(x) the cumulative standard force of mortality in the interval (0, x).

4. Implied frailty

According to the traditional strand of literature on frailty [Beard (1959, 1971), Vaupel
et al. (1979), Pitacco et al. (2009)], referring to a generic individual in a given
(heterogeneous) cohort, we would assume that his/her frailty remains constant
throughout the whole life span.

A more complex model would recognize that frailty probably changes as time passes and
depends on a large number of factors, such as the comorbidities of an individual at age x.

In the following discussion in sections 4 and 5, we introduce other definitions of
frailty.

According to Carannante et al. (2022b), implied frailty is a tool to measure the
sensitivity of a population to an exogenous shift of mortality. The idea of implied
frailty (in the context of COVID-19) is that the pandemic did not affect the entire
population without distinction, but the mortality shocks depend on the presence of
previous conditions that the infection has aggravated. We begin with formula (1) of
Cairns et al. (2020):

A(x, t) = q(x, t)× pS(x, t) (4)
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where A(x, t) are the accelerated deaths due to COVID-19 infection at age x and time t,
q(x, t) represents the deaths for age x at time t for all-cause mortality, and πS(x, t) is the
stochastic acceleration factor. Following Cairns et al. (2020), we regard πS(x, t) as the
product of two elements: the first is λ(x, t), which represents the infection rate, and
the second is the implied relative frailty, or IRf (x, t), which represents the effects of
comorbidity at COVID-19 diagnosis for age x at time t.

We know that IRf (x, t)≥ 0 the greater the IRf value, the greater the impact of
COVID-19 on mortality and, consequently, the greater the accelerated deaths.
However, it is an unknown term that includes a number of accidental factors
affecting changes in mortality. In this sense, it is possible to give a frailty score
starting from the known terms of formula (4). Letting t = 2,020, the implied frailty at
age x is estimated as follows:

IRf (x, 2, 020) = A(x, 2, 020)
q(x, 2, 020) × l(x, 2, 020)

(5)

In this case, as can be seen from formulas (4)–(5), the frailty is closely linked to deaths
caused by the COVID-19 infection. Implied frailty is an immediate approach for
detecting the effects of an accidental component on mortality, even if it only
includes unspecified factors that affect COVID-19 mortality.

5. General and specific frailties based on stratified weighting schemes

In this section, we propose other frailty measures based on a stratified weighting
scheme, in order to capture the a priori information on the frailty heterogeneity
of a population, allowing us to obtain higher efficiency by reducing the
sampling errors for mortality projections. The forecasts of future mortality
evolution are based on homogeneous groups, such as the strata that represent in
some measure frailty cohorts, it being assumed that the frailty intra-group is
homogeneous.

Starting from a generic population frailty index, in particular an indicator of
disability prevalence, we design a weighted indicator by using two different
approaches. Disability prevalence is an important indicator related to the concept of
healthy life expectancy, which is often estimated by the Sullivan method [Jagger et al.
(2006)]. The basic idea is that the health status affects the mortality behavior in a
certain population, and it is necessary to define an indicator that reflects the current
state of health of a real population, adjusted for mortality levels and independent of
age structure. The method consists of computing (indirectly) the number of person
years lived in the healthy state from that age at the particular time, without using
data from individual longitudinal studies. Following this approach, we use disability
prevalence as an indicator that allows measuring a time-invariant health-based frailty
status by age. The disability prevalence is the unweighted measure of frailty used to
build the two stratified frailty measures defined below.

The first approach concerns the definition of a general frailty, the second a specific
frailty due to COVID-19 infection. The underlying idea is the same as that of
post-stratification, which is widely used in survey analysis, to avoid some bias that
could be affecting the data [Holt and Smith (1979), Little (1993)]. In a similar way,
we consider an estimator of the frailty of a country’s population on the basis of some
variables that could correct the bias from the use of the original indicator. In this
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sense, we define stratified frailty Sfi(x) as a function of a measure of frailty fi(x) and two
different weighting schemes wi,k(x), for including in the general frailty or the specified
frailty approaches. A general formula for stratified frailty for an age x is defined by (6):

Sf i(x) =
∑K

k=1

wi,k(x)f (x, k) (6)

where
wi,k(x) are the weights assigned according to one of the two weighting schemes;
f(x, k) is a health-based measure of frailty, that is the disability prevalence; and
i is an index defining the general or the specified frailty measurement approach.
The general frailty approach is defined by a weighting scheme that depends on the

age structure of the population. Let x be the age and k the UK region of residence of a
certain individual. The weight based on the general frailty wGFSM,k(x) is defined as
follows:

wGFSM,k(x) = Nk(x)
N(x)

(7)

where Nk(x) is the number of individuals at age x in region k and
N(x) is the number of total individuals at age x.
The COVID-19-specific frailty approach is defined by a weighting scheme that

depends on the infection numbers by age in the population. The weight based on
the COVID-19-specific frailty wSFSM,k(x) is defined as follows:

wSFSM,k(x) = Ik(x)
I(x)

(8)

where Ik(x) is the number of COVID-19 infected at age x in region k and
I(x) is the number of total COVID-19 infected at age x.
The comparison between implied frailty and stratified frailty allows us to consider

the phenomenon from two different points of view. Thus, we can compare the frailty
at COVID-19 diagnosis (implied), with the frailty of the overall population ignoring
the pandemic effects (stratified with wGFSM,k(x)) and the frailty of all those positive
with COVID-19 for all infection conditions, without symptoms, with non-severe
symptoms or hospitalized (stratified with scheme wSFSM,k(x)).

6. Mortality projections allowing for stratified weighting of frailty

Equations (6)–(8) allow us to define mortality projection models including the
frailty-effect in a multiplicative way. Let consider mx,t denote the force of mortality
for age x and time t. We estimate a log-bilinear model assuming a Poisson
distribution of deaths with a log-link function (in a generalized linear model setting).
In particular, considering the maximum-likelihood estimates (MLEs) of the central
mortality rates. The general formula of a standard Lee–Carter model [Carter and Lee
(1992)] defines the force of mortality as follows:

mx,t = exp(ax + bxkt + 1x,t) (9)
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To estimate parameters, we follow the approach based on heteroskedastic Poisson error
structures, that is the Poisson log-bilinear version of the LC model [Renshaw and
Haberman (2003)]. In this approach, the number of deaths dx,t follows a Poisson
distribution:

dx,t ≈ Poisson(1x,t , mx,t) with mx,t = exp(ax + bxkt) (10)

mx,t has a log-bilinear form:

log(mx,t) = ax + bxkt (11)

where the parameters αx, βx, and κt have the same meaning as in the standard Lee–
Carter model, but estimated using the MLE method assuming a Poisson random
distribution of the random part of the model.

Starting from ṁx,t+s projections, we define two multiplicative models, on the basis of
the multiplicative effects of the frailty on the force of mortality, as defined by equation
(2). The first is the GFSM obtained by the product of the projected aggregate central
mortality rate and the general frailty indicator (obtained from (6) and (7)), obtaining
projections ṁGFSM

x,t+s :

ṁGFSM
x,t+s = SfGFSM(x) · ṁx,t+s (12)

The second model is the SFSM obtained by the product of the projected central
mortality rate and the specific frailty indicator (obtained from (6) and (8)), obtaining
projections ṁSFSM

x,t+s :

ṁSFSM
x,t+s = Sf SFSM(x) · ṁx,t+s (13)

7. Numerical applications: UK mortality

In this section, we apply the above methodology to data for the countries of the UK. For
COVID-19 and all-causes of deaths by country and age, we consider the following
sources of weekly data: Office for National Statistics for England and Wales [ONS
(2020)], Northern Ireland Statistics and Research Agency for Northern Ireland
[NISRA (2020)], and National Records of Scotland for Scotland [NRS (2020)]. The
daily infection rates by country and age are collected by Public Health of England
[PHE (2020)], Public Health of Wales [PHW (2020)], Public Health of Scotland
[PHS (2020)], and Department of Health of Northern Ireland [DOH (2020)]. For
disability prevalence rates and the population by age, the source is the Office for
National Statistics for all of the countries [ONS (2017)].

The various sources provide very inhomogeneous data, so that a phase of data
pre-processing is required to be able to calculate the indexes. In particular, for the
implied frailty calculation, the steps listed below have been followed:

(1) Harmonization of age groups for England and Wales;
(2) Aggregation of mortality data from weekly to annual levels of granularity;
(3) Combining rows of the country datasets;
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(4) Computing of annual infection rate as the mean of log-difference of daily
infections;

(5) Combining of mortality and infections datasets using country and age as a key
variable.

And for the stratified sampling method, the steps listed below are followed:

(1) Harmonization of age rates for England and Wales;
(2) Aggregation of infection data from daily to annual;
(3) Weights construction, as defined by formulas (4)–(5);
(4) Computing of the stratified frailty index;
(5) Combining of implied frailty and stratified frailty index datasets using age as a

key variable.

Figure 1 shows the weights according to the different two schemes by country and age:
As shown in Figure 1, the weighting schemes differ in a marked way. In particular,

we can observe that for the age structure of the population, England and Wales
represent the most important area (about 0.90) of the UK population for all the age
classes. In contrast, the weights of the infection rate are much more balanced and
show an infection rate that also changes depending on the area and age. In
particular, for England and Wales, the rate is higher than 0.5 of the total for the
60–79 age group, while for Northern Ireland the infection rate is always higher than
that for Scotland, with the exception of the age group, 40–59. It can also be observed
that for the 80+ age group the infection rates tend to be more similar for all
countries, while there is more variability for the other age groups. If we consider that
the different rates of contagion strongly depend on the mobility of people and on
compliance with the rules for social mixing and interpersonal distancing, differences
by age are expected. It is also important to take into account that the number of

Figure 1. Weights of stratified frailty by country and age.
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infections and, consequently, the number of persons who are COVID-positive per
country is influenced by the number of tests performed.

Figure 2 shows the different estimates of frailty: the frailty without stratification
(pink), the frailty stratified by age structure of population (purple), the frailty
stratified by infections (blue), and the implied frailty (green).

As shown in Figure 2, implied frailty and stratified frailty differ both in functional
form and in terms of age. While implied frailty has much higher values except for
the 0–19 class, the various indicators based on disability prevalence have rather
similar values. Furthermore, the functional form remains the same and is similar to
a logistic curve, while the implied frailty appears as a function with downward
concavity with respect to age. While the differences with the method used to assess
frailty seem marked, there are not huge differences with the weighting scheme used,
even if the population age structure scheme assumes slightly higher values for the
older population. The basic idea that justifies the considerable differences between
the two methods of estimation lies in the concept of frailty that they intend to
measure. Implied frailty measures the excess of mortality by COVID-19 without any
consideration about the possible underlying phenomena causing the excess deaths. In
this sense, implied frailty respects the definition of equation (4), where frailty is a
series of accidental unknown causes that create discrepancies with mortality
projections. In contrast, stratified frailty focuses our attention on the effects of
COVID-19 on the deterioration in disability status, that could adversely affect
mortality experience.

Comparing the different approaches of stratified frailty measures, we can observe
that the differences with the disability prevalence index are in the extreme ages only,
with the general frailty index showing a lower difference with respect to the specific
COVID-19 index. In this sense, a health-based co-morbidity index allows us to
correct the excess of mortality for younger and older ages, both considering general
condition and a specific event as a pandemic.

Figure 2. Frailty estimation by age.
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7.1. COVID-19 mortality rate projections

Mortality projection rates by age x and time t are obtained on the basis of stochastic
modeling of general mortality of the population, using the Renshaw and Haberman
(2003) model. The mortality data for the UK countries’ populations are downloaded
from the Human Mortality Database ranging from 1950 to 2018, aggregated by
gender for all the ages from 0 to 100. Figures 3–5 show the projections of the
accelerated mortality by age and country, considering the three estimation methods
of frailty,

Overall, Figures 3–5 show that the COVID-19-projected mortality rates are the
lowest for England and Wales for all age groups, while it is the highest for Northern
Ireland in the short term. However, for the 20–39 and 40–59 age groups there is a
trend reversal whereby mortality rates seem to be higher in England and Wales in
the long term, reaching the values of Northern Ireland in the first case and
exceeding them in the second one. We note that the mortality rates obtained with
implied frailty (Figure 3) are higher than those obtained with the two approaches
based on stratified frailty (Figures 4 and 5), which are similar to each other.

Figures 6–8 show mortality rate projections by frailty estimation method, for each
country and age group: Figure 6 considers England and Wales, Figure 7 considers
Northern Ireland, and Figure 8 considers Scotland.

As observed from Figures 6–8, the projected mortality rates for each country change
with age in ways that depend on the frailty estimation method used. In particular, for age
group 0–19, the implied frailty method estimates a much lower mortality rate than the
stratified frailty methods. In addition, the decreasing trend over time of the mortality
rate (for age group 0–19) obtained with implied frailty is much less marked than the
others. For the adult age groups, on the other hand, the opposite trend is observed,
that is the implied frailty method tends to lead to a higher estimate of the mortality
rate compared to the stratified frailty methods, although with very similar trends over
time. Regarding the two stratification methods, they are quite similar for the central
age groups, while for ages up to 19, the estimate is higher if stratification per
population is used, and for over 80 higher if stratification per infection is used. For
England and Wales, there are also higher projected COVID-19 mortality rates using
the stratification per population method for the 20–39 age group. These results reflect
the different age profiles of the frailty estimates (shown in Figure 2) and the different
patterns of weights used in the two stratification schemes.

8. Concluding remarks

The paper focused on the heterogeneity in frailty of a demographic population that
determines differentials in mortality. In particular, the literature shows that
neglecting this feature leads to a bias in projecting the longevity phenomenon.
Accordingly, to avoid a misrepresentation of the longevity, we develop a stochastic
model based on a stratification weighting mechanism, which allows taking into
account the different levels of the population frailty.

Basically, in our paper we introduced the concepts of the general and specific frailty.
The former corresponds to the general frailty of the individuals in the sample, the latter
being caused by the COVID-19 infection rate by age, so that frailty is specifically related
to the virus which leads to a deterioration in the comorbidity conditions. The idea
underlying the research is that the general frailty causes structural, long-run deviations
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Figure 3. Projection of COVID-19 mortality rates by age and country: implied frailty method.
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Figure 4. Projection of COVID-19 mortality rates by age and country: stratified infection frailty method.
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Figure 5. Projection of COVID-19 mortality rates by age and country: stratified population frailty method.
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Figure 6. Projection of COVID-19 mortality rates by frailty estimation method and age group: England and Wales.
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Figure 7. Projection of mortality rates by frailty estimation method and age group: Northern Ireland.
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Figure 8. Projection of mortality rates by frailty estimation method and age group: Scotland.
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in the baseline of the mortality, where the specific frailty determines period effects shocks,
i.e., the risk of a sudden and short-term rise in the frequency of deaths.

In our study, we address these systematic long-run and short-run components of
mortality by providing the stratification schemes based on the introduction of
different levels of population frailty (i.e., the frailty heterogeneity).

In terms of limitations, this study takes into account only the snapshot of frailty
observed cross-sectionally in a period, and a possible improvement in research would
involve allowing for dynamic changes over time in frailty in order to obtain more
stable projections in the long run.
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