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EVEN COVERS AND COLLECTIONWISE NORMAL SPACES 

H. L. SHAPIRO AND F. A. SMITH 

1. I n t r o d u c t i o n . T h e concept of an even cover is introduced early in ele
men ta ry topology courses and is known to be valuable. Among other facts it is 
known tha t X is paracompact if and only if every open cover of X is even. In 
this paper we introduce the concept of an n-even cover and show its usefulness. 
Using n-even we define an embedding tha t on closed subsets is equivalent to 
collectionwise normal. We also give sufficient conditions for a point finite open 
cover to have a locally finite refinement and also sufficient conditions for this 
refinement to be even. Finally we show tha t the collection of all neighborhoods 
of the diagonal of AT is a uniformity if and only if every even cover is normal. 
This last result is part icularly interesting in light of the fact t h a t every normal 
open cover is even. 

In order to prove these theorems we make use of several results as established 
in [1]. In Section 2 we s ta te some of these basic definitions and fundamental 
results. However, throughout the paper we draw heavily from [1]. 

2. Def in i t ions . In general we use the notat ion and terminology as in [1]. 
In part icular if ^ a n d ^ are covers we write J f < CS \iffl refines & ; i.e. if for 
every H G ^ there is a G G CS such tha t H C G. We assume tha t U ^ = 
U ^ if ^ < &. 

If W is a neighborhood of the diagonal of X then we set W(x) = 
[y G X : (x, y) G W). We will usually assume tha t W is open and symmetr ic 
(W = W-1). We define W o W = W2 = {(x, y) G X X X: there exists z G X 
with (x, z) G W and (z, y) G W] and we let Wn = Wn~l o W for n G N, 
n ?± 1. 

A sequence (°?/n)na$ of open covers of a topological space X is normal if for 
all n G N, ^ w + 1 < * <%n (i.e. (st(E/f ^ „ + i ) W n + 1 < ^ „ ) . T h e cover <3 is 
normal if there is a normal sequence (&n)neN of open covers such t ha t %\ < &. 

2.1 If ^ is a normal open cover of a topological space X then there is a 
normal sequence of open covers (&n)n£s such t h a t fy\ refines ^ . Fur the rmore 
there is a cont inuous pseudometric d on X t ha t is associated with ( ^ „ ) „ € N . In 
part icular (B(x, l /2 3 ) ) . r C Y refines &. 

For a proof and discussion of these results the reader is referred to [1]. 

2.2 Definition, If (X, d) is a pseudometric space and if ^ is a cover of X we 
say t ha t ^ is Lebesgue if there is a 5 > 0 such t h a t (B(x, ô))xex refines CS. 
(If ^ is Lebesgue it has an open refinement, hence we will usually assume our 
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covers are open.) If (X, °U) is a uniform space, a cover ^ of X is said to be 

Lebesgue if there is a U G °tt such tha t (U(x))xex refines &. 

Lebesgue covers are studied in [4] and [8] where they are shown to play an 

impor tan t role in covering dimension theory. Our major interest will be in the 

following definition. 

2.3 Definition. If X is a topological space and n Ç N we say tha t a cover & 
is n-even if there exist neighborhoods Wi, . . . , Wn of the diagonal of X such 
tha t Wi2 C Wi-i for i = 2, . . . , n and (M^i(x))x € x refines ^ . If there exists a 
sequence (Wn)n^ of neighborhoods of the diagonal of X such tha t Wn

2 C Wn~\ 
for all n Ç N, w > 1, and (WiG*:))^* refines ^ we say tha t & is Ko-even. 
If ?z = 1 we write even instead of 1-even and note tha t this is the usual defi
nition of even. 

2.4 Suppose tha t X is a topological space and tha t ^ is a cover of X. If c3 is 
Xo-even then & is n-even for any n G N. 

3. Main results. 

3.1 T H E O R E M . Suppose that X is a topological space and that CS is a cover of X. 
If & is either a 

(i) normal open cover, 
(ii) locally finite cozero-set cover, or 

(iii) countable cozero-set cover, 
then %? isKo-even. 

Proof. Suppose tha t CS is a normal open cover of X. By 2.1 there is a con
tinuous pseudometric d associated with CS such tha t (B(x, l/23)). r (EX refines 2/ . 
Let (Wi)i£H be defined by 

Wi = {(x,y) e X XX :d(x,y) < l/2?:+3} 

for i G N. Then W? C WVi for i <E N, i ^ 1, and (Wi{x))x,x refines <$. 
Therefore X is Xo-even. 

Since a locally finite cozero-set cover and a countable cozero-set cover is 
normal [1, 11.1 and 10.10], (b) and (c) hold. 

Actually we can show tha t an Xo-even cover is equivalent to a normal cover 
and furthermore, an Xo-even cover is equivalent to a Lebesgue cover if X is 
completely regular and has the universal uniformity. 

3.2 T H E O R E M . If CS is an open cover of a topological space X then râ is normal 
if and only if CS is Ho-even. 

Proof. By 3.1 if CS is normal then rS is Xo-even. Conversely if rS is Xo-even 
then there is a sequence (IT„)„eN of open symmetric neighborhoods of the 
diagonal of X such tha t W2 C W„-i for all n £ N, n ^ 1, and (Wi{x))x^x 

refines CS. For all « Ç N , \ztWn - (Wn(x)),ex. We assert tha t (^? w ) w € N is a 
normal sequence of open covers such t h a t ' l l refines &. 
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To show that it is a normal sequence of open covers such that IV <in <* 
#/

2„_2 for any n £ N, n ^ 1, we observe that §t(W2n(x), W2n) C W^-iix). 
In [1, 8.4] the existence of a continuous pseudometric d associated with 
C ^ J ^ N was shown. Thus by 2.1, °ti = (B(x, l /23))*€ x refines &. Further
more, in [1, 8.6] it was shown that °tt is normal, thus CS is normal and the 
proof is complete. 

3.3 THEOREM. Suppose that X is a completely regular topological space, that °U 
is the universal uniformity on X and that & is an open cover of X. Then ^ is 
Ho-even if and only if & is Lebesgue relative to {X,°tt). 

Proof. Suppose that ^ is No-even. As in the proof of 3.2 there is a continuous 
pseudometric d such that (B(x, l/2z))xç.x refines &. Thus if we let 

W = {(x, y) e X X X : d(x, y) < 1/23} 

then W is an element of °ti [1, 8.6] and W(x) = B(x, 1/23) so (W(x))xex 

refines &. Therefore ^ is Lebesgue relative to (X} %). 
Conversely if & is Lebesgue relative to (X, °l/) then there exists U £ °tt 

such that (U(x))X£x refines &. Because °lt is a uniformity there exists U\ £ °ll 
such that U\ C U. By induction, for any n £ N we can define Un G 91 such 
that Un

2 C Un-i. It follows that & is No-even. 

The second part of Theorem 3.3 actually proved the following. 

COROLLARY. / / (X, °tt) is a completely regular uniform space and if ^ is a 
Lebesgue cover then ^ is Ho-even. 

We are now ready to prove several results concerning n-even covers. Our 
first result will show that a point-finite even cover has a locally finite refine
ment. This result is interesting in light of results of Michael (see [7] or [1, p. 
132]) as discussed after Theorem 3.5. 

3.4 THEOREM. Suppose that X is a topological space and that CS = {Ga)a^i 
is a point finite even cover. Then there exists a locally finite cover F = (Fa)aei 
such that Fa C Gafor all a £ T 

Proof. Since & is even there exists an open symmetric neighborhood U of 
the diagonal of X such that (U(x))x(zX refines &. For each a £ / let Fa = 
{x £ X : U(x) C G) and l e t ^ = (Fa)ae 7. It is easy to show that IF covers X, 
that Fa C Ga and that F is locally finite. 

If ^ is a point finite open cover then & has a locally finite refinement. We 
now give sufficient conditions for the refinement to be even and hence open. 

3.5 THEOREM. Suppose that X is a topological space and that & = (Ga)aei is 
a 2-even point finite cover of X. Then there exists a locally finite even cover F~ = 
(Fa)af j such that cl Fa C Gafor all a £ / . 
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Proof. By hypothesis there exists W\ and Wi open symmetric neighborhoods 
of the diagonal of X such tha t W2

2 C W\ and {Wi(x))xÇ.x refines ^ . For each 
a G J, let Fa = U {IF2(x) : Wi(x) C G«} and let & = (Fa)a£I. We assert t ha t 
J^~ is a locally finite even cover of X such tha t cl Fa C Ga. 

Clearly J^~ is even since ( ^ f e D i a refines J^". To see thatJ^~is locally finite, 
let x G -X\ Since S^ is point finite there exists a finite subset K of I such tha t 
x G Gai fa (2 X . If y G TF2(x) H F«then (x,y) G IF2 and 3/ G W?(z) such t ha t 
Wi(z) C Ga. But then (y, z) G JF2 so (x, z) G W C Wi whence x G Wx{z) 
C Ga, hence a G X. I t follows tha t W2(x) H Fa = 0 if a £ K. Clearly ^ is 
a cover because (W\(x))xex refines 2^. Finally, if x G cl Fa then TF2(x) is a 
neighborhood of x t ha t meets Fa. By an argument similar to above, one shows 
tha t x G G«. 

Remark. In [7] Michael has an example of a point finite open cover with no 
locally finite open refinement. By 3.5 the original cover is thus not 2-even. 
The following helps clarify 2-even and even. 

3.6 T H E O R E M . Suppose that CS = (Ga)a^i is a point finite open cover. Then 
(1) implies (2) implies (3). 

(1) The cover rS is 2-even. 
(2) There exists a locally finite open cover ^ = (Fa)aC-I such that cl Fa C Ga 

for each a G / . 
(3) The cover & is even. 

Proof. (1) implies (2) is 3.5. To show (2) implies (3) let 

Va = (Ga X Ga) U ((X - Fa) X (X - Fa)) 

and let V = Pu-e/ F a . One can show tha t F is a neighborhood of the diagonal 
of X and tha t (V(x))xCX refines &. 

We next consider countable covers and obtain the following. 

3.7 T H E O R E M . Suppose that X is a topological space and that CS = (GJ„ e N 

is a countable 3-even cover. Then there exists a countable locally finite even cover 
^ = (Tn)nŒ such that Fn C Gnfor all n G N. 

Proof. Suppose tha t CS is a 3-even cover so there exist open symmetric 
neighborhoods Wu W2 and W3 of the diagonal of X such tha t W-/ C W2 C 
W2

2 C Wi and (Wi(x))x£x refines ^ . Let ^ \ = (Wi(x))x€X for i = 1, 2, 3 ; 
and let Hn = {x G X : I F ^ x ) C Gn}. Set 

* ; = G n - Um<wcl (st(Hm,W,)) 

and let J ^ = (Fn)nfx. W7e assert tha t J ^ is a locally finite open cover such tha t 
Fn C Gn for all n G N. 

T o see t ha t J ^ is locally finite let x G ^ and let n be the first integer such 
tha t x G st(Hn,Wz). Then st(HnjW^) is a neighborhood of x and st(ifw, W?) 
C\ Fm = 0 if m > n. To show tha t J^~ is a cover, let x G X and choose the first 
integer n such tha t x G cl (st(//"w, iV^)). One readily shows tha t x G / v 
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Finally, to show that J*~ is even we prove that (JT3(x)).r€X refines J^. Let 
x G X and choose the first integer n such that W^x) H\ d(st(Hn,Yfd)) ^ 0. 
Then JT3(x) (Z X — Um<« c\(st(HnnWz)). A standard argument shows that 
Wz(x) C G/i whence Wz(x) C Pw and the re fo re^ is even. 

Since a countable cozero-set cover of a topological space is normal [1, 11.2] 
it is Xo-even, so we have the following. 

3.8 COROLLARY. If & is a countable cozero-set cover of a topological space X, 
then CS has a locally finite even countable refinement. 

3.9 COROLLARY. If X is Lindelof and if & is a 3-even cover then there exists a 
locally finite even covert such that ^ refines ^ . 

4. Applications. We know that there is a normal space that has a point 
finite open cover that is not 2-even. However since every countable point finite 
open cover of a normal space is a normal cover we have: 

4.1 PROPOSITION. If X is a normal topological space then every countable point 
finite open cover is even 

We can also observe the following 

4.2 PROPOSITION. If every countable point finite open cover is even, then X is 
count ably metacompact if and only if X is countably paracompact. 

Proposition 4.2 apparently generalizes the result that a normal space is 
countably paracompact if and only if it is countably metacompact [5]. Using 
a proof similar to 3.5 one can show that if every binary open cover of a topo
logical space X is 2-even then X is normal. We are now able to show how 
77-even covers related to other topological concepts. But first another definition. 

4.3 Definition. Let 5 be a subset of a topological space X and let n G N. 
We say that 5 is En-embedded in X if every n-even cover of S has a refinement 
that can be extended to an n-even cover of X. We write ^-embedded instead of 
I^-embedded. The subset 5 is £No"-embedded in X if every Xo-even cover of S 
has a refinement that can be extended to an Xo-even cover of X. The subset 5 
is weakly E?>"-embedded in X in case every Xo-even cover of S has a refinement 
that can be extended to an even cover of X. We say that 5 is P-embedded in X 
if every continuous pseudometric on 5 can be extended to a continuous pseudo-
metric on X. 

The reader is referred to [1] for a discussion of P-embedding. In particular 
it is shown that X is collectionwTise normal if and only if every closed subset 
is P-embedded. Similar results hold for P7-embedding and 7-collectionwise 
normal where 7 is an infinite cardinal number. 

Remark. Although we do not have an example it seems unlikely that En-
embedded implies Pm-embedded if n 7^ m. 
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In the next result we show tha t if every closed subset is ^ -embedded in X 

then X is collectionwise normal. T o obtain the converse we need to have 
£No-embeddecl closed subsets (see 4.6). I t is interesting to ask when is an even 
open cover necessarily Xo-even (or equivalently normal) . In 4.7 we give a 
necessary and sufficient condition for this to be true. This condition is stronger 
than collectionwise normality. 

4.4 T H E O R E M . If every closed subset of a topological space X is E-embedded in X, 
then X is collectionwise normal. 

Proof. T o show tha t X is collectionwise normal let (Fa)a^ I be a closed discrete 
collection of subsets of X. Let 5 = U<*G i Fa and note t ha t 5 is a closed subset 
of X. Now set U = Ua£/ (la X Fa) and note t ha t U is a neighborhood of the 
diagonal of S. Moreover, on 5 , (U(x))x^s refines J^~ = (77

a)aG7. Since S is 
^ - embedded in X there is an even cover ^ of X such tha t ^ restricted to S 
refines &~. Since & is even there exists an open symmetric neighborhood W 
of the diagonal of X such tha t (W(x))xex refines @. Clearly W(Fa) is a neigh
borhood of Fa. 

We must show tha t (W(Fa)aei are pairwise disjoint. If v G W(Fai) C\ 
W(Fa2) where a\ ^ a2 then there exist X\ G Fai and x2 G Fa2 such tha t (xi, y) G 
W and (x2, y) G W. Since (W(x))xex refines & there exists G G ^ such tha t 
W(y) C G. Fur thermore on 5 , & refines ^ so G C\ S C Fad for some a3 G / . 
If a3 = a2 then Xi G W(y) H S C G H 5 C Fa2. Therefore Fai H Fa2 ^ 0, a 
contradiction. On the other hand if a2 9e «3 then x2 G W(y) C\ S C F a 3 so 
F a 2 Pi 7^3 F^ 0, a contradiction. Therefore X is collectionwise normal. 

4.5 T H E O R E M . If S is a subset of a topological space X then S is FF *-embedded 
in X if and only if S is P-embedded in X. 

Proof. Since a cover is Xo-even if and only if it is normal, the result follows 
from [1, 14.7]. 

4.6 T H E O R E M . If X is a topological space then the following statements are 
equivalent. 

(1) The space X is collectionwise normal. 
(2) Every closed subset of X is FF*-embedded in X. 
(3) Every closed subset of X is weakly FF*-embedded in X. 

Proof. The equivalence of (1) and (2) follows from 4.5 and the fact tha t À" 
is collectionwise normal if and only if every closed subset is 7^-embedded in X. 

Clearly (2) implies (3). The proof of (3) implies (1) is similar to the proof 
of 4.4 once we note tha t if (Fa)ae /» S and U are as in tha t proof, then U2 C U 
hence e^" is Xo-even. 

A partial converse of 4.4 is the following result. 

4.7 T H E O R E M . / / X is a normal topological space then the following statements 
are equivalent. 
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(1) X is collectionwise normal. 

(2) For every closed subset S of X every point finite 2-even open cover of S has 

a refinement that can be extended to a point finite 2-even open cover of X. 

Proof. The result follows from 3.5 and the fact [1, 11.7] t h a t in a normal 
space every locally finite open cover is normal and therefore Xo-even. 

If ^ is an open cover of a topological space we know tha t 2^ is normal if 
and only if CS is Xo-even (3.2). Hence a normal open cover is always even. 
Our final result gives necessary and sufficient conditions for the converse to be 
true. The condition s ta ted in 4.8(1) lies strictly between paracompact and 
collectionwise normali ty (see [2] and [3]). 

4.8 T H E O R E M . If X is a completely regular topological space then the following 
statements are equivalent. 

(1) The collection of all neighborhoods of the diagonal is a uniformity (and 

therefore the universal uniformity). 

(2) Every even open cover is normal. 

Proof. (1) implies (2): Suppose tha t ^ is an even cover of X. T h u s there 
exists a neighborhood W of the diagonal of X such tha t (W(x))x^x refines &. 
But then CS is a Lebesgue cover relative to the uniformity of all neighborhoods 
of the diagonal and hence by 3.3, rS is Xo-even and therefore by 3.2, 9? is 
normal. 

(2) implies (1): Since every entourage in the universal uniformity is a neigh
borhood of the diagonal we need only show tha t every neighborhood W of 
the diagonal is in the universal uniformity. If W is a neighborhood of the 
diagonal then W = (W(x))xex is an even cover and hence by (2) W is a 
normal cover. By 3.2, 'W is Xo-even, hence in part icular there exists a symmetr ic 
open neighborhood U of the diagonal of X such t ha t U2 C W. Note t h a t 
°i/ = (U(x))x^x is an even cover of X and is therefore normal. Hence by 2.1 
there is a continuous pseudometric d on X such t h a t (B(x, l /2 3 ) ) . r Ç X refines %. 
By [1, 8.6], V = {(x, y) G X X X : d(x, y) < 1/23} is an element of the 
universal uniformity. If (x, y) tz. F then d(x, y) < 1/23. Since (B(x, l / 2 3 ) ) . r t X 

refines <?/ there exists z £ X such t ha t B(x, 1/23) C U(z). T h u s x G U(z) and 
y e U(z) so tha t (x, y) Ç U2 C W. We thus have V C W and therefore W 
is in the universal uniformity. 
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