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RINGS HAVING ZERO-DIVISOR GRAPHS OF
SMALL DIAMETER OR LARGE GIRTH

S.B. MULAY

Let R be a commutative ring possessing (non-zero) zero-divisors. There is a natural
graph associated to the set of zero-divisors of R. In this article we present a charac-
terisation of two types of R. Those for which the associated zero-divisor graph has
diameter different from 3 and those R for which the associated zero-divisor graph
has girth other than 3. Thus, in a sense, for a generic non-domain R the associated
zero-divisor graph has diameter 3 as well as girth 3.

Let R be a commutative ring with 1 # 0 and let Z{R) denote the set of non-zero
zero-divisors of R. By the zero-divisor-graph of R we mean the graph with vertices Z(R)
such that there is an (undirected) edge between vertices x, y if and only if x ^ y and
xy — 0 (see [1, 3, 4]). Since there is hardly any possibility of confusion, we allow
Z(R) to denote the zero-divisor graph of R. Following their introduction in [3], zero-
divisor graphs have received a good deal of attention. For a more comprehensive list of
references the reader is requested to refer to the bibliographies of [1, 2, 4]. Zero-divisor
graphs are highly symmetric and structurally very special; for example, in [4] this author
has investigated the structure of cycles, the graph-automorphism-group F(R) and its
explicit relationship with the ring-automorphism-group Aut(iZ). A sample consequence
of interest is: if T(R) is solvable, so is Aut(i?). For this reason alone it is of interest to
understand the nature of zero-divisor graphs. From the available evidence one is tempted
to surmise that generic zero-divisor graphs may be completely classifiable (in some sense).
It has been the experience that whenever one assumes Z(R) to have some special feature,
one can narrow down R to a small class of rings. The present article provides an instance
of this facet.

We tacitly assume that R has at least 2 non-zero zero-divisors. By declaring the
length of each edge to be 1, Z(R) becomes a metric space in which the distance between
two vertices is, by definition, the length of a shortest path connecting them. The diameter
of a metric space is the supremum (possibly oo) of the distances between pairs of points
of the space. With this structure, a zero-divisor graph is known to be a connected graph
of diameter at most 3 (for example see [1] or [4, (1.2)]). The girth of a graph is the
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length of a shortest cycle (or equivalently the number of vertices of a least sided polygon)
contained in the graph. If Z(R) does not contain a cycle, then its girth is denned to be
co. Obviously the girth of a graph is at least 3. The girth of Z{R), for an arbitrary R,
is known to be either infinite or 3 or 4 (see [4, (1.4)]).

In (1.2) of this article we present a characterisation of the rings R for which the
associated zero-divisor graph has diameter at most 2. In (2.3) we identify those R whose
associated zero-divisor graph has girth exactly 4. In (2.5) and (2.6) we determine the
rings R for which the associated zero-divisor graph has infinite girth. The graph-theoretic
counterpart of this has already been dealt with in [4] where the zero-divisor graphs of
infinite girth are completely determined. Except for one class of zero-divisor graphs of
diameter 2, the nature of zero-divisor graphs having either small diameter or large girth
is readily understood from the corresponding ring-theoretic characterisations.

By the total quotient ring of R we mean the quotient ring Q{R) := T~XR where
T stands for the multiplicative subset of non zero-divisors of R. Since the canonical
homomorphism from R to Q(R) is injective, R is thought of as a sub-ring of Q(R). As
mentioned above, we shall tacitly assume Z(R) to have at least two elements.

THEOREM 1 . 1 . The diameter of Z(Q(R)) is the same as the diameter of Z(R).
The girth ofZ(R) is the same as the girth ofZ(Q(R)).

PROOF: Observe that the diameter of Z(Q(R)) is 1 if and only if the diameter of
Z(R) is also 1. Now suppose that the diameter of Z(Q(R)) is 2. Then the diameter
of Z(R) is at least 2. Consider any a, b E Z(R) with a ^ b and ab / 0. By our
assumption about the diameter of Z(Q(R), there is a q € Z(Q(R)) such that a ^ q ± b
and aq — 0 — bq. Let q :— c/t with c,t € R such that t is a non zero-divisor of R. Then
ac = 0 = be. It follows that c is in Z(R) and hence the distance between a, b (when
considered as vertices of the zero-divisor graph of R) is 2. Conversely, assuming that
the diameter of Z(R) is 2 it is easy to see that the diameter of Z(Q(R)) must also be
2. In general, the diameter of any zero-divisor graph is at most 3. Therefore we have
established the first assertion.

Since Z(R) is a sub-graph of Z(Q(R)), it is clear that the girth of Z(R) is greater
than or equal to the girth of Z(Q{R)). Earlier we have noted that the girth of any zero-
divisor graph, when finite, is either 3 or 4. Suppose Z(Q(R)) has girth 3. Then there are
distinct elements qi,q2,Q3 of Z(Q(R)) such that q^q2 = ?2?3 = ?39i = 0. For i = 1,2,3
let <& := cii/t with ai,t G R and where t is a non zero-divisor of R. Then 01,02,03 are
distinct elements of Z(R) and since Oia2 = 040,3 — a3a\ = 0, they form a triangle in the
graph Z(R). Thus Z{R) also has girth 3. D

THEOREM 1.2. Assume that the diameter of Z(R) is < 2. Tien exactly one of
the following holds.
(i) Z(R) U {0} is a prime ideal of R,
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(ii) R is a sub-ring of a product of two integral domains.

If (ii) holds for (a non-domain) R, then the diameter of Z(R) is at most 2. If (i) holds
for (a non-domain) R and R is Noetherian, then Z(R) is of diameter at most 2.

P R O O F : Suppose Q{R) has two distinct maximal ideals Mi and M2. Let x e Mi
and y € Mi be such that x + y = 1. Then x, y are in Z(Q(R)) and

(0 : x) n (0 : y) = 0

(considered as ideals of Q(R)-) Since, by (1.1), the diameter of Z(Q(R)) is also 2, we
must have xy = 0. But y = 1 - x and hence x is an idempotent of Q(R). It follows
that Q(R) is isomorphic to a product of two rings. Say Q(R) = R\ x R2. Suppose
Z(Ri) is non-empty. Let o be an element of Z(Ri). Then (a, 1), (1,0) are elements of
Z(Q(R)) such that the distance between them is at least 3. This is impossible due to the
assumption that Z(Q{R) has diameter 2. Hence Z(Ri) has to be empty. Symmetrically,
Z(R2) must also be empty. Consequently Ri,R2 are domains (in fact, fields) that is,
assertion (ii) holds. It is clear that (i) holds if and only if Q{R) has a unique maximal
ideal.

If (ii) holds, then the diameter of Z(R) is easily seen to be either 1 or 2. If (i) holds
and R is Noetherian, then P := Z(R) U {0}, being an associated prime of 0, is of the
form (0 : x) for some x € Z(R) and hence the diameter of Z(R) is at most 2. D

REMARKS. 1. The diameter of Z(R) is 0 if and only if Z(R) is a singleton set if and
only if R is either Z/4Z or W2[X]/X2W2[X] (or example, see [4, (1.1)]).

2. The diameter of Z(R) is 1 (that is, Z(R) is a complete graph) if and only if
either R is the product of the field of 2 elements with itself or (i) holds with the added
property that P2 = 0 (see [1]).

3. Let A be a quasi-local factorial domain of (Krull) dimension at least 2. Let m(A)
denote the maximal ideal of A and let p(A) be a set of primes of A such that for each
height-one prime ideal P of A there is a unique p € p(A) with P = pA. Let A[X] be the
polynomial ring over A in the set of indeterminates X :— {Xp \ p € p{A)}. Then p(A)
(and hence X) is necessarily infinite. Let J be the ideal of A[X] generated by {pXp |
p € p(A)} and / := J + {XA[X]f. Define R := A[X)/I and M := (m(A) + XA[X})/I.
Then M is a maximal ideal of R whose elements constitute the zero-divisors of R. Thus
(i) holds for R. It is straightforward to verify that A is (naturally) a sub-ring of R and
given two distinct members p, q of p(A) and an r £ R with pr — 0 = qr we must have
r = 0. Consequently, Z(R) has diameter 3.

LEMMA 2 . 1 . Assume that Z(R) has girth 4. Then R has at most one non-zero
nilpotent. Furthermore, if a is the non-zero nilpotent of R, then (0 : a) is a maximal
ideal having F2 as its residue held.

PROOF: Assume R has non-zero nilpotents. Let o be a non-zero nilpotent of R
such that a2 = 0. If there are 4 distinct elements in the ring R/(0 : a), then there are
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3 distinct elements of Z(R) of the form xa,ya,za (with x,y,z G R) which constitute a
3-cycle in Z(R). Thus, in view of our hypothesis, it follows that R/(0 : a) is a ring of
cardinality at most 3. It is straightforward to verify that the zero-divisor graph of a ring
of cardinality < 9 has girth 3. Hence (0 : a) has cardinality at least 4. If aR ^ {0, a},
then for any b € aR\ {0, a} and any x G (0 : a) \ {0, a, 6} the elements a, x, b of Z(R)
form a 3-cycle, contrary to our hypothesis. Therefore aR = {0,a}. It now follows that
(0 : a) is a maximal ideal having the field of 2 elements as its residue field. If there is
some non-zero x G (0 : a) for which (0 : x) n (0 : a) is not a subset of {0, a, x}, then for
any y G (0 : x) C\ (0 : a) \ {0, a, x}, elements a, y, x form a 3-cycle. Hence (0 : x) n (0 : a)
is a subset of {0, a, x} for all non-zero x in (0 : a).

Let y be a nilpotent of R such that yn+1 = 0 but yn ^ 0 for a positive integer n.
Clearly n ^ 3, otherwise, yn,yn~l,yn~2 would be distinct elements of Z{R) forming a
3-cycle. In other words y4 = 0 for every nilpotent y of R. Suppose there is a nilpotent y
in R with y3 ^ 0. If (0 : y2) ^ {0, y2, y3}, then for any z G (0 : y2) \ {0, y2, y3} elements
y2,z,y3 constitute a 3-cycle. On the other hand, if (0 : y2) — {0,y2,y3}, then since
R/(0 : y2) has cardinality 2 by the above argument, R would be a ring of cardinality
at most 6 and hence Z(R) can not possibly have girth 4. Summarising, we must have
y3 = 0 for every nilpotent y of R. Next suppose there is nilpotent y of R with y2 ^ 0.
If (0 : y) £ {0, y2}, then y, x, y2 forms a 3-cycle of Z(R) for any x G (0 : y) \ {0, y2}. So
(0 : y) — {0,y2}. Let x be in (0 : y2) but not in (0 : y). Then xy is a non-zero element
of (0 : y) and hence xy — y2. Now x — y being in (0 : y) it is either 0 or y1. Thus (0 : y2)
is contained in the set {0,y,y2,y + y2}. Since R must have cardinality at least 9 (for
Z(R) to have girth 4) and R/(0 : y2) has cardinality 2, this is impossible. Therefore, we
conclude that y2 — 0 for each nilpotent y of R.

Let N(R) denote the nil-radical of R. Let a,b be non-zero members of N(R). If
ab ^ 0, then elements a,a + ab,ab form a triangle in Z(R). This being impossible,
N(R)2 = 0. If N{R) ^ aR, then for any c G N(R) \ aR elements a,a + c,b form a
triangle of Z(R). Hence we must have N(R) = aR. But we have already shown that
aR = {0, a}. This establishes our assertion. D

REMARK. Observe that if R := D x Z/4Z where D is an integral domain different from
F2, then R has a non-zero nilpotent and Z(R) does have girth 4.

LEMMA 2 . 2 . Assume that the nil-radical of R is zero. Then Z(R) is complete
bi-partite if and only if R is a sub-ring of a product of 2 integral domains.

PROOF: The 'if part is straightforward. Suppose Z(R) is complete bi-partite. Then
Z{R) has a partition {Zlt Z2} where Zx = (0 : z)\{0} for all x e Z2 and Z2 = (0 : x)\{0}
for all x E Zx. Let Px := Zx U {0}. Pick y in Z2. Now Px = (0 : y). Assume a,b G R
with ab e P\. Then aby = 0. If by = 0, then b is in Pv Assume by / 0. Now by is in
Z(.R) and (0 : y) C (0 : by), li by is in Zu then 0 = (0 : by) n (0 : y) which is absurd
since (0 : by) n (0 : y) = (0 : y). This forces 6y to be in Z2. But then (0 : by) = (0 : y)
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and a € (0 : by) — (0 : y) = Pi. In other words, P\ is a prime ideal of R. Likewise
Pi := Z2 U {0} is also a prime ideal of R. Since Z\ l~l Z2 is empty, P\ n P2 = 0. It follows
that R is canonically isomorphic to a sub-ring of the product of integral domains R/P\
and R/P2. D

THEOREM 2 . 3 . Assume that Z{R) has Unite girth. Then the girth of Z(R) is 4
if and only if one of the following holds.

(i) R is a sub-ring of a product of two integral domains.
(ii) R is isomorphic to D x 5 where D is an integral domain and S is either

Z/4Z or ¥2{X]/X2F2[X).

PROOF: The proof is divided in two cases, namely the case where the nil-radical
N(R) is zero and the case where N(R) is non-zero. Since R must have at least 9 elements
for Z(R) to have girth 4, henceforth we tacitly assume that the cardinality of R is at
least 9.

First assume that N(R) ^ 0. Then, from (2.1) it follows that N(R) = {0,a}
and the cardinality of (0 : a) is at least 5. Let i be a non-nilpotent in (0 : a). If
(0 : x) Pi (0 : a) contains a non-nilpotent y, then x,a,y form a triangle in Z(R). Hence
(0 : x) n (0 : a) = N(R) for every non-nilpotent x in (0 : a). If every zero-divisor of
R is in (0 : a), then (0 : x) = N{R) for all non-nilpotents of Z(R) and hence Z[R)
has infinite girth contrary to our assumption. Thus Z(R) \ (0 : a) must be non-empty.
Pick y e Z{R) such that y is not in (0 : a). Clearly, (0 : y) / 0. If (0 : y) D (0 : a)
is a subset of N(R), then since ay jt 0, we have (0 : y) D (0 : a) = 0 and hence R is
isomorphic to F2 x R/(0 : y) (where the first factor is the field of 2 elements). But the
zero-divisor graph of such a product has girth either oo or 3. Thus it must be possible
to choose a non-nilpotent x in (0 : y) D (0 : a). Consider the set C := {zy \ z € (0 : a)}.
If C has a member b not in {0,x,a}, then x, b, a form a triangle of Z(R) contrary to
our hypothesis. Therefore, C is contained in {0,1,a}. Using the fact that R/{0 : a)
is the field of two elements, we conclude that y — 1 is in (0 : a) and yR is a subset of
{0,x, a,y,y + x, y + a}. Now (y — l)o = 0 implies that a is in yR. So 0, y,a, y + a are 4
distinct elements of yR. Clearly, from our choice of x, y it follows that y + x + a can not
be in the set {0,x,a,y,y+x,y + a}. Hence yR = {0,y,a,y + a}. But then y2 must belong
to {y, y + a = y{\ + a)} (observe that 1 -I- a is a unit of R). Consequently, y2R = yR
has exactly 4 elements, (0 : y) n yR = 0 and (1 — y) is in (0 : y). Thus R is isomorphic
to R/yR x R/(0 : y) where R/(0 : y) is a ring of cardinality 4 containing a non-zero
nilpotent (namely, the image of a). In other words (ii) holds.

Finally consider the case where N(R) = 0. Let x be in Z(R). Suppose, if possible,
that (0 : x) has exactly 2 elements {0,j/}. Then yR = {0,y} and hence (0 : y) is a
maximal ideal having the residue field of 2 elements. Also, since y2 ^ 0, we must have
y2 = y and yR D (0 : y) — 0. Hence R is isomorphic to F2 x R/yR. But such a ring has
girth either oo or 3. Thus for each x in Z(R), the cardinality of (0 : x) is at least 3 (in
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the terminology of [4], the graph Z(R) has no 'ends'). Now it follows from [4, (2.2)] (see
Remark 2. following the assertion [4, (2.2)]) that Z(R) is a bi-partite graph. In view of
the Lemma (2.2) of this article we see that (i) holds.

Conversely, if either of (i) or (ii) holds (with Z(R) being non-empty of finite girth)
then it is easy to verify that the girth of Z{R) is exactly 4. D

LEMMA 2 . 4 . Assume that R has at least 10 elements. Let N(R) be the nil-radical

of R and assume that N(R) ^ 0. Then tie following are equivalent.

(i) Z(R) has infinite girth.

(ii) N(R) = {0, y) and (0 : x) = N(R) for all x € Z(R).

(iii) N(R) has cardinality 2 and it is a prime ideal of R.

P R O O F : The equivalence of (i) and (ii) follows from [4, (2.1)]. Assertion (iii) follows
from (ii) in a straightforward manner. Suppose (iii) holds. Then N(R) = {0,y} for
some non-zero y in R. Let x € Z(R) be distinct from y. Then x is not in N(R) and
(0 : x) # 0. Consider 0 ^ w € (0 : x). Since 0 = xw € N(R) and N(R) is prime, we
must have w € N(R) and hence w — y. Hence (ii) holds. D

DEFINITION: Let B be a ring such that its nil-radical N(B) is a prime ideal of
cardinality 2 and let B[X] be the polynomial ring in a non-empty set of indeterminates
X over B. Let / be an ideal of B[X] such that

1. /n5 = 0,

2. N(B)B[X] • XB[X] C / C 2B[X] + N(B)B[X] + XB[X) and

3. P(B, X, I) := N(B)B[X] +1 is a prime ideal of B[X}.

Then, by p(B, X, I) we mean the ring B[X]/I.

THEOREM 2 . 5 . Assume that R has at least 10 elements. Let N(R) be the nil-
radical of R and assume that N(R) ^ 0. Tien Z(R) has infinite girth if and only if one
of the following holds.

(i) R = p(B, X, I) where B = Z[w}/(w2,2w)Z[w] for an indeterminate w over
n

(ii) R = p(B, X, I) where B = F2[iu]/iy2F2[w] for an indeterminate w over F2

and where / is such that P(B,X, I) ^ N(B)B[X] + XB\X).

(iii) R = p(B,X,I) where B = Z/4Z and / is such that P(B,X,I)

Moreover, such a ring is necessarily infinite.

PROOF: Our argument will tacitly employ Lemma (2.4). At the outset we show
that under our assumptions the characteristic of R is either 0 or 2 or 4. Observe that
a sub-ring of R does not contain y if and only if it is an integral domain. On the other
hand, if a sub-ring SCR contains y, then N(S) — N(R) D S is a prime ideal and for
any a, b € Z(S) we have ab = 0 if and only if either a = y or 6 = y. Also, it follows that
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(0 : y) n 5 is a maximal ideal of S with residue field F2. In particular, the characteristic
of R is an even integer. Let 2n denote the characteristic of R. Suppose n is neither 0
nor 1. Then y is in the prime sub-ring n of R. Since the zero-divisors of n have to be
contained in the maximal ideal (0 : y) f~l n, the ring TT is a local ring that is, n is a power
of 2. But the nil-radical of TT has exactly two elements. Hence n = 2. It is plain to see
that the rings of the form mentioned in (i), (ii), (iii) above have characteristics 0, 2 and
4 respectively.

Suppose R satisfies any one of (i), (ii) and (iii). To simplify the notation set
P := P(B,X,I). In the first two cases let t be the canonical image of w in B and
in the third case let t = 2. Note that t2 = It = 0 and N(B) = {0, t}. We claim that R
has to be infinite. This is evident in the case of (i) since Z is indeed the prime sub-ring
of R. In the remaining two cases there is an x in X which is not in P — tB[X] + /
Consider the sub-ring A of B[X] obtained by adjoining x to the prime sub-ring. Then A
is a polynomial ring in one variable over the prime sub-ring and InAC PnA. MA has
characteristic 2 then PnACxA and consequently P n A = 0. Thus A is (naturally) an
infinite sub-ring of ii . If A has characteristic 4, then P n A = 2A and hence A/(I D A) is
necessarily an infinite sub-ring of R. Let y denote the canonical image of t in R. Then y is
a non-zero nilpotent of R. Let / e B[X] be in the radical of / . Clearly / has to be in P.
Hence yR = P/I — N(R) is a prime ideal of R. It is easy to verify that N(R) — {0,y}.
By Lemma (2.4), Z(R) must have infinite girth.

Conversely, suppose R has at least 10 elements, N(R) / 0 and Z(R) has infinite
girth. In view of Lemma (2.4) if we let N(R) := {0, y}, then N(R) is a prime ideal and
(0 : y) is a maximal ideal with residue field F2. We have already established that the
characteristic of R has to be one of 0,2,4. Our assumption about the cardinality of R
ensures that the ideal (0 : y) is distinct from N(R). Let IT denote the prime sub-ring of
R. Then B := ir[y] is (isomorphic to) exactly one of the rings appearing in (i), (ii), (iii)
above. Clearly, N(B) = N(R) and since for each r € R either r or r + 1 is in (0 : y), the
ring R is obtained by adjoining the elements of (0 : y) to B. Observe that (0 : y) n B is
a maximal ideal of B which equals J := 2B + N(B) and has F2 as its residue field. Now
the B-module (0 : y)/J is in fact a vector-space over F2 = B/J. Let T c (0 : y) be such
that T/J is an F2-basis of (0 : y)/J (we allow T to be the empty set). Then i i = B[T].
Let X b e a set of indeterminates over B equipped with a bijection S : I - J T U {0}.
Let a : B[X] —> R be the unique homomorphism of S-algebras which restricts to s on
the set X. Then a is surjective. Let I denote the kernel of a. Obviously I D B = 0
and / contains yx for all x e X. If / := b — g € I with b € B and g € XB[X], then
b — a(b) = o(g) and a(g) 6 (0 : y) imply that b is in J. Consequently, I is contained in
2B[X] + N(B)B[X] + XB[X}. Finally, since a(N{B)) = N(R) is a prime ideal of R, its
inverse image N(B)B[X] + I is also a prime ideal of B[X]. D

REMARKS. 1. If R has at least 10 members, A (̂ii) = 0 and Z(R) is non-empty, then
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Z(R) has infinite girth if and only if R is a product of a domain D and F2. This assertion
follows from the remark at the end of [4, (2.1)] (for infinite rings R see [1, Theorem 2.5]).
In fact, the above Theorem, in conjunction with [4, (2.1)] provides a complete (without
any cardinality restrictions) characterisation of those non domains R for which Z(R) has
infinite girth (that is, V(R) — 0 in the notation used in [4]).

2. Note that in the above proof it is not essential for us to choose T the way we
have chosen it, that is, we did not make any particular use of the fact that T/J is a
vector-space basis. On the other hand, it is natural to try to get hold of a 'smallest
possible' set T with R = B[T).

DEFINITION: If B is a ring and M is a B-module, then by B(+)M we denote the
ring obtained by idealising M (as defined in [5] ).

THEOREM 2 . 6 . Assume R satisBes the following. As above, N(R) denotes the
nil-radical of R.
(i) R has at least 5 elements.

(ii) There is y e Z(R) such that N(R) = {0, y} and (0 : x) = N{R) for all x € Z(R).
Then the characteristic of R is not 4 if and only if R has a sub-domain A such that
A[y] = A(+)F2 and for each r G R there exists a non-zero a € A (depending on r) with
ar € A[y\. Moreover, ifr is not in N(R) then ar ^ 0. (David F. Anderson (in a private
communication) asked whether a non-reduced, non-domain R with Z(R) having infinite
girth is of the form .D(-f )F2 for some domain D. The above theorem constitutes our
response to his question.)

PROOF: From the argument at the beginning of the proof of (2.5) it follows that
R has characteristic 0 or 2 or 4. If a ring contains a sub-ring of type D(+)F2 with D a
domain, then obviously the characteristic can not equal 4. Henceforth, assume that the
characteristic of R is either 0 or 2. We proceed to show that R contains an infinite integral
sub-domain. This is evident if R is of characteristic 0. Suppose R has characteristic 2.
Condition (i) ensures that Z(R) \ {y} is non-empty. Let x be an element of Z(R) \ {y}
and S := F2[z]. Note that Z(S) is contained in the single maximal ideal P := (0 : y) C\S
of S. Since xS C P, we must have P — xS. It is easy to see that y is not in xR and
hence y is not in 5. Thus 5 is an infinite integral sub-domain of R (in fact a polynomial
ring over F2). Let A denote a maximal sub-ring of R not containing y. Existence of
such a sub-ring can be seen in a straightforward manner. As a consequence of the above
argument A has to be an infinite integral domain. Since (0 : y) n A is a maximal ideal of
A with residue field F2, it follows that A is not a field. For r e R define

I(r,A):={a€A\areA[y}}.

Clearly I{r, A) is an ideal of A and I{r + b, A) = I(r, A) for all b £ A.
Suppose there is an x in R with I(x, A) = 0. Then I(bx, A) — 0 for all non-zero b € A.

Replacing x by x + 1 if needed, we may assume that x is a member of (0 : y). Obviously
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x is not in N(R) and hence xR n N(R) = 0. Consider the 4-algebra homomorphism
h of the polynomial domain A[X] onto A[x] which maps the indeterminate X to x.
Let J(x) denote the kernel of h. Our choice of A ensures that y G A[x]. Thus J(x)
is not a radical ideal of .AfX]. In particular, J(x) / 0. Let / € J(x) be a non-zero
polynomial of least degree. Let / := a0X

d + • • • + ad where d ^ 2 is the degree of /
and do 7̂  0. Replacing x by CLQX if needed, we may assume ao = 1 that is, x is integral
over A. The minimality of d allows us to conclude that J(x) = fA[X]. More generally,
we observe that J(bx) = bdf(X/b)A[X] for all non-zero b € A. Consequently, for each
non-zero 6 € A, the ring A[bx] contains y and it is a free A- sub-module of A[x] with basis
{l,bx, • • • , (bx)d~1}. Now, A is an integral domain which is not a field and hence the
intersection of all non-zero principal ideals of A is necessarily zero. Thus the intersection
of all the sub-modules A[bx] of A[x], as b ranges over non-zero elements of A is exactly
A. This is absurd since y is certainly not in A. Therefore we must have I(r, A) ^ 0 for
all r e R. It is easy to see that A[y] = A(+)W2. U

R E M A R K S . 1. The above theorem allows us to think of R as a "blow-up" of A(+)¥2.

2. A ring R is of the form S(+)M for some non-zero S-module M if and only if R
has a non-zero ideal TV and a derivation 6 : R -¥ N such that TV2 = 0, TV n Ker (6) = 0
and the set-theoretic map R —> R/N © TV sending r 6 R to a{r) © 6(r) (here a is the
canonical map) is surjective. Now any derivation of R is identically 0 on the prime sub-
ring of R. Suppose R satisfies the conditions of the above Theorem and the characteristic
of R is 4. Then N(R) — {0,2} and it is the only non-zero ideal of R whose square is
zero. Since TV(.R) is contained in the kernel of every derivation of R, it follows that R is
not of the form S(+)M with M / 0.

3. Consider the 3-variable polynomial ring B :— ¥2[Xi, X2, X3] with ideal / gener-
ated by {XJ, X2f, X3f} where / := XXX3 + X\. Let R := B/I and let u, v, w, y denote
the canonical images of Xi, X2, X3, f (respectively) in R. It is easy to see that R satisfies
the hypotheses of the above Theorem. We leave it to the reader to verify that for A (as
in the conclusion of the Theorem) we may take the sub-ring F2[u, v, w2, vw\. Further, it
is simple to check that 5{y) = 0 for any derivation 6 : R -* {0,y}. Hence R is not of the
form S(+)M with M / 0 . One can construct a similar example in characteristic 0.
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