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Positive Definite Distributions and Subspaces
of L−p With Applications to Stable Processes

Alexander Koldobsky

Abstract. We define embedding of an n-dimensional normed space into L−p , 0 < p < n by extending ana-
lytically with respect to p the corresponding property of the classical Lp-spaces. The well-known connection
between embeddings into Lp and positive definite functions is extended to the case of negative p by showing
that a normed space embeds in L−p if and only if ‖x‖−p is a positive definite distribution. We show that the
technique of embedding in L−p can be applied to stable processes in some situations where standard meth-
ods do not work. As an example, we prove inequalities of correlation type for the expectations of norms of
stable vectors. In particular, for every p ∈ [n − 3, n), E(maxi=1,...,n |Xi |−p) ≥ E(maxi=1,...,n |Yi |−p), where
X1, . . . ,Xn and Y1, . . . ,Yn are jointly q-stable symmetric random variables, 0 < q ≤ 2, so that, for some
k ∈ N, 1 ≤ k < n, the vectors (X1, . . . ,Xk) and (Xk+1, . . . ,Xn) have the same distributions as (Y1, . . . ,Yk)
and (Yk+1, . . . ,Yn), respectively, but Yi and Y j are independent for every choice of 1 ≤ i ≤ k, k + 1 ≤ j ≤ n.

1 Introduction

The connections between stable measures, positive definite norm dependent functions and
embedding of normed spaces in Lp were discovered by P. Lévy [14] as parts of his theory of
stable processes, and, since then, those connections have been under intensive development
(see [10], [16] for the most recent surveys). In particular, P. Lévy pointed out that an n-
dimensional normed space B = (Rn, ‖ · ‖) embeds isometrically in Lp, p > 0 if and only if
there exists a finite Borel measure γ on the unit sphereΩ in Rn so that

‖x‖p =

∫
S
|(x, ξ)|p dγ(ξ)(1)

for every x ∈ Rn. On the other hand, for 0 < p ≤ 2, the representation (1) exists if
and only if the function exp(−‖x‖p) is positive definite and, hence, is the characteristic
function of a symmetric stable measure in Rn. We call (1) the Blaschke-Lévy representation
of the norm with the exponent p and measure γ (see [11] for the history, generalizations
and applications of this representation).

Several applications of the Blaschke-Lévy representation to stable processes depend on
the standard procedure of using (1) to estimate the expectation of the norm of a stable
vector (we give an example in Section 4). Sometimes, those applications do not use the
Banach space structure of the space Lp, and they work equally well for p ≥ 1 and p ∈ (0, 1).
Moreover, when p < 2 becomes smaller one can expect more normed spaces to admit the
representation (1) with the exponent p, because for 0 < p1 < p2 ≤ 2, the space Lp2
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Positive Definite Distributions 345

embeds isometrically in Lp1 (see [1]). However, the spaces `n∞, n ≥ 3 do not embed in
any of the spaces Lp with p > 0, and the spaces `nq , n ≥ 3, q > 2 do not embed in Lp

with 0 < p ≤ 2 (see [15], [7]; note that the latter results solved the 1938 Schoenberg’s
problems on positive definite functions [18].) These spaces (especially `n∞) are particularly
important in the theory of stable processes, and it seems to be natural to try to modify the
standard technique so that it works for those spaces.

These were the reasons which led the author to an attempt to get more norms involved
by generalizing the Blaschke-Lévy representation (and embedding in Lp) to the case of neg-
ative p. In Section 2, we define the Blaschke-Lévy representation in Rn with negative expo-
nents −p, 0 < p < n, and we say that the existence of such a representation for a normed
space means that the space embeds in L−p. The definition is “analytic” with respect to p,
which might allow us to transfer properties of the spaces Lp in both directions between the
positive and negative values of p. We show that the connection between embeddings in Lp

and positive definiteness remains in force, namely, a space B = (Rn, ‖ · ‖) embeds in L−p

if and only if ‖x‖−p is a positive definite distribution on Rn. Recall that in the positive case
the condition is that the distribution Γ(−p/2)‖x‖p must be positive definite outside of the
origin (see [8]; p is not an even integer).

In Section 3, we give an example of how the standard technique of the theory of stable
processes can be modified by using embeddings in L−p. For B = (Rn, ‖ · ‖), p ∈ R,
we consider the problem of optimization of the expectation E(‖X‖p) of the norm of a
symmetric q-stable random vector X in Rn in the following sense. Let 1 ≤ k < n, 0 < q ≤ 2
and X1, . . . ,Xn and Y1, . . . ,Yn be jointly q-stable symmetric random variables, so that the
vectors (X1, . . . ,Xk) and (Xk+1, . . . ,Xn) have the same distributions as (Y1, . . . ,Yk) and
(Yk+1, . . . ,Yn), respectively, but Yi and Y j are independent for every choice of 1 ≤ i ≤ k,
k + 1 ≤ j ≤ n. We compare the expectations E(‖X‖p) and E(‖Y‖p). First, we apply the
standard methods to the case where p > 0 and B is a subspace of Lp, and we prove that
E(‖X‖p) ≤ E(‖Y‖p) for each p < q. Then, we show that the technique of embedding
in L−p leads to similar results for a larger class of spaces B. In particular, for every p ∈
[n− 3, n),

E( max
i=1,...,k

|Xi|
−p) ≥ E( max

i=1,...,k
|Yi|
−p).

The question of what happens to the latter inequality when the exponent−p is replaced by
1 is open, and, in the Gaussian case, this question is the matter of the weak version of the
well-known Gaussian correlation problem (see [17] for the most recent developments).

2 Positive Definite Distributions and Embeddings in L−p

The main tool of this paper is the Fourier transform of distributions. As usual, we denote
by S(Rn) the space of rapidly decreasing infinitely differentiable functions (test functions)
in Rn, and S

′
(Rn) is the space of distributions over S(Rn). The Fourier transform of a

distribution f ∈ S
′
(Rn) is defined by 〈 f̂ , φ̂〉 = (2π)n〈 f , φ〉 for every test function φ. A

distribution is called even homogeneous of degree p ∈ R if 〈 f (x), φ(x/α)〉 = |α|n+p〈 f , φ〉
for every test function φ and every α ∈ R, α 6= 0. The Fourier transform of an even
homogeneous distribution of degree p is an even homogeneous distribution of degree−n−
p. If p > −1 and p is not an even integer, then the Fourier transform of the function h(z) =

|z|p, z ∈ R is equal to (|z|p)∧(t) = cp|t|−1−p (see [4, p. 173]), where cp =
2p+1√πΓ((p+1)/2)

Γ(−p/2) .
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The well-known connection between the Radon transform and the Fourier transform is
that, for every ξ ∈ Ω, the function t → φ̂(tξ) is the Fourier transform of the function
z → Rφ(ξ; z) =

∫
(x,ξ)=z φ(x) dx (R stands for the Radon transform). A distribution f is

called positive definite if, for every test function φ, 〈 f , φ ∗ φ(−x)〉 ≥ 0. A distribution is
positive definite if and only if it is the Fourier transform of a tempered measure in Rn ([5,
p. 152]). Recall that a (non-negative, not necessarily finite) measure µ is called tempered if∫

Rn

(1 + ‖x‖2)−β dµ(x) <∞

for some β > 0. Every positive distribution (in the sense that 〈 f , φ〉 ≥ 0 for every non-
negative test function φ) is a tempered measure [5, p. 147].

Throughout the paper ‖x‖ stands for a homogeneous of degree 1, continuous, positive
outside of the origin function on Rn. We say that B = (Rn, ‖ · ‖) is a homogeneous n-
dimensional space. Clearly, the class of homogeneous spaces contains all finite dimensional
normed and quasi-normed spaces. It is easily seen that every functional ‖x‖ is equivalent
to the Euclidean norm in the sense that, for every x ∈ Rn, K1‖x‖2 ≤ ‖x‖ ≤ K2‖x‖2 for
some positive constants K1, K2. Hence, ‖x‖−p is a locally integrable function on Rn for
every p ∈ (0, n).

Now we are ready to define the Blaschke-Lévy representation with negative exponents p.
Indeed, the formula (1) does not make sense if p < −1. However, let us start with positive
p and apply functions in both sides (1) to a test function φ :∫

Rn

‖x‖pφ(x) dx =

∫
Ω

dγ(ξ)

∫
Rn

|(x, ξ)|pφ(x) dx

=

∫
Ω

dγ(ξ)

∫
R
|z|p
(∫

(x,ξ)=z
φ(x) dx

)
dz

=

∫
Ω

〈|z|p,Rφ(ξ; z)〉 dγ(ξ)

= cp

∫
Ω

〈|t|−1−p, φ̂(tξ)〉 dγ(ξ).

If p is negative the function |t|−1−p is locally integrable, which allows to write
〈|t|−1−p, φ̂(tξ)〉 as an integral, and this is how we extend the Blaschke-Lévy representation:

Definition Let B = (Rn, ‖ · ‖) be an n-dimensional homogeneous space, p ∈ (0, n). We
say that the norm of B admits the Blaschhke-Lévy representation with the exponent−p, if
there exists a finite symmetric measure γ on the sphereΩ so that, for every test function φ,∫

Rn

‖x‖−pφ(x) dx =

∫
Ω

dγ(ξ)

∫
R
|t|p−1φ̂(tξ) dt.(2)

If the norm of B satisfies (2) with a measure γ, we also say that the space B embeds in L−p.
It is easy to show the uniqueness of the representation (2). In fact, consider the test

functions φ of the form

φ(x) = h(t)u(ξ), x = tξ, t ∈ R, t > 0, ξ ∈ Ω,(3)
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where h is a non-negative test function on R, and u is an infinitely differentiable even func-
tion on the sphereΩ. If a norm admits the representation (2) with two measures γ1 and γ2,
then applying (2) to the test functions whose Fourier transforms have the form (3), we get
that, for every u, ∫

Ω

u(ξ) dγ1(ξ) =

∫
Ω

u(ξ) dγ2(ξ),

which implies γ1 = γ2.
We need the following simple fact.

Lemma 1 Let µ be a tempered measure on Rn which is, at the same time, a homogeneous
distribution of degree −n + p, p ∈ (0, n). Then there exists a finite Borel measure γ on the
sphere Ω so that, for every test function φ,

〈µ, φ〉 =

∫
Ω

dγ(ξ)

∫
R
|t|p−1φ(tξ) dt.

Proof Let us first show that µ can not have an atom at the origin. In fact, suppose that µ =
µ1 + aδ, where µ1({0}) = 0, and δ is the unit mass at the origin. Since µ is homogeneous
of degree −n + p, for every non-negative test function φ with φ(0) > 0 and every t >
0, we have 〈µ, φ(x/t)〉 = t p〈µ, φ〉 → 0 as t → 0. On the other hand, 〈µ, φ(x/t)〉 =
〈µ1, φ(x/t)〉 + aφ(0), so a = 0.

For every Borel subset A ⊂ Ω and interval (a, b] ∈ [0,∞) denote by A× (a, b] = {x ∈
Rn : x = tθ, t ∈ (a, b], θ ∈ A}, and let χA×(a,b] be the indicator of this set.

By the definition of a homogeneous distribution, we have 〈µ, φ(x/t)〉 = t p〈µ, φ〉 for
every test function φ and t > 0. Using the dominated convergence theorem to extend the
latter equality to non-smooth functions, we get

µ
(
A× [0, k]

)
= 〈µ, χA×[0,1](x/k)〉 = kpµ

(
A× [0, 1]

)
.

Now, for every Borel subset A ⊂ Ω and every 0 ≤ a < b we have µ(A × (a, b]) =
(bp − ap)µ(A× [0, 1]).

Define a measure µ0 onΩ by µ0(A) = pµ(A× [0, 1]) for every Borel set A ⊂ Ω. Clearly,∫
Ω

dµ0(θ)

∫
R
|t|p−1χA×(a,b](tθ) dt = (bp − ap)µ0(A).

Therefore, we get the equality (2) with φ = χA×(a,b] and the result follows since A, a, b are
arbitrary.

Similar to the positive case, embedding into L−p is closely related to positive definiteness.
The following fact will serve as a tool for checking whether certain spaces embed in L−p.

Theorem 1 An n-dimensional homogeneous space B = (Rn, ‖ · ‖) embeds in L−p, p ∈ (0, n)
if and only if ‖x‖−p is a positive definite distribution.

Proof Suppose that B embeds in L−p. For every non-negative test function φ, using (2)

and the fact that (φ̂)∧(x) = (2π)nφ(−x), we get

〈(‖x‖−p)∧, φ〉 =

∫
Rn

‖x‖−pφ̂(x) dx = (2π)n

∫
Ω

dγ(ξ)

∫
R
|t|p−1φ(tξ) dt ≥ 0,
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which shows that (‖x‖−p)∧ is a positive distribution over S(Rn, ) and, hence, the distribu-
tion ‖x‖−p is positive definite.

Conversely, since the function ‖x‖−p is a positive definite distribution and it is homo-
geneous of degree −p, the Fourier transform (‖x‖−p)∧ is a tempered measure µ on Rn,
which is a homogeneous distribution of degree−n + p. By Lemma 1, there exists a measure
γ on the sphereΩ so that, for every test function φ,

〈(‖x‖−p)∧, φ〉 = 〈µ, φ〉

∫
Ω

dγ(ξ)

∫
R
|t|p−1φ(tξ) dt.

The result follows.
In order to prove that every homogeneous space embeds in every L−p with p ∈

[n− 1, n), we use the following simple facts taken from [11], [12].

Lemma 2 Let p ∈ (n − 1, n) and let f be an even homogeneous function of degree −p on
Rn \ {0} such that f |Ω ∈ L1(Ω). Then for every ξ ∈ Rn

f̂ (ξ) =
π

c

∫
Ω

|(θ, ξ)|−n+p f (θ) dθ.

where c = 2−n+p+1√πΓ
(
(−n + p + 1)/2

)
/Γ
(
(n− p)/2

)
> 0. In particular, f̂ |Ω ∈ L1(Ω).

Lemma 3 Let f be an even homogeneous function of degree −n + 1 on Rn \ {0} so that
f |Ω ∈ L1(Ω). Then, for every ξ ∈ Ω,

f̂ (ξ) = π

∫
Ω∩{(θ,ξ)=0}

f (θ) dθ.

If B = (Rn, ‖ · ‖) is a homogeneous space and p ∈ [n − 1, n), the function f (x) =
‖x‖−p satisfies the conditions of Lemma 2 or Lemma 3. Therefore, the Fourier transform
(‖x‖−p)∧ is a homogeneous of degree −n + p, positive, locally integrable in Rn function,
and, hence, it is a positive distribution. By Theorem 1,

Corollary 1 Every n-dimensional homogeneous space embeds in L−p for every p ∈ [n−1, n).

Let us show that each of the spaces L−p is large enough to contain all finite dimensional
subspaces of Lq, 0 < q ≤ 2.

Theorem 2 Every n-dimensional subspace of Lq with 0 < q ≤ 2 embeds in L−p for each
p ∈ (0, n).

Proof By a well-known result of P. Lévy [14], for every n-dimensional subspace B =
(Rn, ‖ · ‖) of Lq with 0 < q ≤ 2, the function exp(−‖x‖q) is the Fourier transform of
a q-stable symmetric measure µ on Rn. We have

‖x‖−p =
q

Γ(p/q)

∫ ∞
0

t p−1 exp(−tq‖x‖q) dt.
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For every non-negative test function φ,

〈(‖x‖−p)∧, φ〉 =

∫
Rn

‖x‖−pφ̂(x) dx

=
q

Γ(p/q)

∫ ∞
0

t p−1 dt

∫
Rn

φ̂(x) exp(−tq‖x‖q) dx

=
q

Γ(p/q)

∫ ∞
0

t p−1 dt

∫
Rn

φ(tx) dµ(x) ≥ 0.

Therefore, (‖x‖−p)∧ is a positive distribution.
A detailed proof of our next result will appear in a later paper [13]. We denote by ‖x‖q

the norm of the space `nq , 2 < q ≤ ∞, where ‖x‖q = (|x1|q + · · · + |xn|q)1/q if 2 < q < ∞
and ‖x‖∞ = max(|x1|, . . . , |xn|).

Theorem 3 Let 2 < q ≤ ∞, 0 < p < n, n ≥ 3. The function ‖x‖−p
q is a positive definite

distribution if p ∈ [n − 3, n), and it is not positive definite if p ∈ (0, n − 3). Therefore, the
space `nq embeds in L−p if and only if p ∈ [n− 3, n).

3 Inequalities of Correlation Type for the Expectations of Norms of Stable
Vectors

For 0 < q ≤ 2, let X = (X1, . . . ,Xn) be a symmetric q-stable random vector which means
that the characteristic functional of the vector X has the form

φ(ξ) = exp
(
−
∥∥∥ n∑

i=1

ξi si

∥∥∥q

q

)
, ξ ∈ Rn,(4)

where s1, . . . , sn ∈ Lq([0, 1]). In this section, we use the notation ‖ · ‖q for the norm of the
space Lq([0, 1]).

Fix an integer k, 1 ≤ k < n, and consider the set A(X, k) of all n-dimensional sym-
metric q-stable random vectors whose first k coordinates have the same joint distribu-
tion as X1, . . . ,Xk, and whose last n − k coordinates have the same joint distribution as
Xk+1, . . . ,Xn. We denote by Y = (Y1, . . . ,Yn) the vector from A(X, k) for which every Yi

and Y j with 1 ≤ i ≤ k, k + 1 ≤ j ≤ n are independent. Then, the characteristic functional
of Y is equal to

φ0(ξ) = exp
(
−
∥∥∥ k∑

i=1

ξi si

∥∥∥q

q
−
∥∥∥ n∑

i=k+1

ξi si

∥∥∥q

q

)
.

Given an n-dimensional homogeneous space B = (Rn, ‖ · ‖) and a real number p, we
are interested in conditions on B and p under which the independent case is extremal in
the sense that the expectation E(‖Y‖p) is the minimal or maximal value of E(‖Z‖p), Z ∈
A(X, k).

First, we consider the case where B = (Rn, ‖ · ‖) is an n-dimensional subspace of Lp,
p > 0 satisfying the following symmetry condition: for every u ∈ Rk, v ∈ Rn−k,

(∗) ‖(u, v)‖ = ‖(u,−v)‖.
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We use the representation (1) and a standard argument from the theory of stable processes
to show that, if 0 < p ≤ q then

E(‖Y‖p) = max{E(‖Z‖p) : Z ∈ A(X, k)}.

As it was mentioned in the Introduction, the condition that B is a subspace of Lp is
restricting, for example, the most interesting case of B = `n∞ is not covered. However, we
replace the standard argument by the technique of embedding in L−p, which allows to get
more spaces involved. We prove that if B embeds into L−p, p ∈ (0, n) and has the symmetry
(∗) then

E(‖Y‖−p) = min{E(‖Z‖−p) : Z ∈ A(X, k)}.

Let us start with the standard technique. If B is a subspace of Lp with p > 0, then
one can use the well-known formula for the expectations of the scalar products of q-stable
vectors with fixed vectors to reduce the estimation of E(‖X‖p) to simple properties of the
Lq-norms.

We need a few simple inequalities for the Lq-norms which follow from Clarkson’s in-
equality (see [2]). For the reader’s convenience we include the proof.

Lemma 4 Let x, y ∈ Lq([0, 1]), 0 < q ≤ 2. Then

exp(−‖x + y‖q
q) + exp(−‖x − y‖q

q) ≥ 2 exp(−‖x‖q
q − ‖y‖q

q).(5)

Also for every 0 < p ≤ q

‖x + y‖p
q + ‖x − y‖p

q ≤ 2(‖x‖q
q + ‖y‖q

q)p/q.(6)

Finally, for q = 2 and p > 2 the inequality (6) reverses.

Proof First, note that for any 0 < q ≤ 2

‖x + y‖q
q + ‖x − y‖q

q ≤ 2(‖x‖q
q + ‖y‖q

q),(7)

and this is a simple consequence of the same inequality for real numbers. Now to get (5)
apply the relation between the arithmetic and geometric means and then use (7). The
inequality (6) also follows from (7):

(
‖x + y‖p

q + ‖x − y‖p
q

2

)1/p

≤

(
‖x + y‖q

q + ‖x − y‖q
q

2

)1/q

≤ (‖x‖q
q + ‖y‖q

q)1/q.

Finally, if q = 2 the latter calculation works for p > 2 where the first inequality goes in the
opposite direction, and the second inequality turns into an equality.

Proposition 1 Let q, k,X,Y be as in the beginning of this section, 0 < p ≤ q. Let B =
(Rn, ‖ · ‖) be a subspace of Lp satisfying the condition (*). Then

E(‖Y‖p) = max{E(‖Z‖p) : Z ∈ A(X, k)}.

Also, if q = 2 and p > 2 then E (‖Y‖p) is the minimal value.
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Proof A basic property of the stable vector with the characteristic function (4) is that, for
any vector ξ ∈ Rn, the random variable (X, ξ) has the same distribution as ‖

∑n
i=1 ξi si‖qU ,

where U is the standard one-dimensional q-stable random variable. Therefore, if p < q
then

E|(X, ξ)|p = cp,q

∥∥∥ n∑
i=1

ξi si

∥∥∥p

q
,(8)

where cp,q is the p-th moment of U (which exists only for p < q if q < 2, and it exists for
every p > 0 if q = 2; see [19] for a formula for cp,q). Similarly, we get

E|(X−, ξ)|
p = cp,q

∥∥∥ k∑
i=1

ξi si −
n∑

i=k+1

ξi si

∥∥∥p

q
,

where X− = (X1, . . . ,Xk,−Xk+1, . . . ,−Xn). Also,

E|(Y, ξ)|p = cp,q

(∥∥∥ k∑
i=1

ξi si

∥∥∥q

q
+
∥∥∥ n∑

i=k+1

ξi si

∥∥∥q

q

)p/q
.

Since (Rn, ‖ · ‖) is a subspace of Lp([0, 1]), we can use the Blaschke-Lévy representa-
tion (1) and after that the formula (8) to get

E(‖X‖p) =

∫
S

E
(
|(X, ξ)|p

)
dγ(ξ) = cp,q

∫
S

∥∥∥ n∑
i=1

ξi si

∥∥∥p

q
dγ(ξ).(9)

Similarly,

E(‖Y‖p) = cp,q

∫
S

(∥∥∥ k∑
i=1

ξi si

∥∥∥q

q
+
∥∥∥ n∑

i=k+1

ξi si

∥∥∥q

q

)p/q
dγ(ξ),(10)

E(‖X−‖
p) = cp,q

∫
S

∥∥∥ k∑
i=1

ξi si −
n∑

i=k+1

ξi si

∥∥∥p

q
dγ(ξ).(11)

Since 0 < p ≤ q, the equalities (9), (10), (11) in conjunction with (6) imply E(‖X‖p) +
E(‖X−‖p) ≤ 2E(‖Y‖p), and now the result follows from the property of the norm that
‖X‖ = ‖X−‖. In the case q = 2, p > 2 we use the corresponding part of Lemma 4.

Remark For p > q, q < 2 the expectation of ‖X‖p does not exist so the statement of
Proposition 1 does not make sense in that case.

Theorem 4 Let q, k,X,Y be as in Proposition 1, and suppose that 0 < p < n and B =
(Rn, ‖·‖) is a homogeneous space which embeds in L−p and whose norm satisfies the symmetry
condition (*). Then E(‖X‖−p) ≥ E(‖Y‖−p).

https://doi.org/10.4153/CMB-1999-040-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-040-5


352 Alexander Koldobsky

Proof By Theorem 1, the function ‖x‖−p is a positive definite distribution, and by
L. Schwartz’s generalization of Bochner’s theorem [5, p. 152], this function is the Fourier
transform of a tempered measure µ on Rn.

Let PX be the q-stable measure in Rn according to which the random vector X is dis-
tributed. Applying the Parseval equality and formula (4) for the characteristic function of
X we get

E(‖X‖−p) =

∫
Rn

‖x‖−p dPX(x) =

∫
Rn

P̂X(ξ) dµ(ξ)

=

∫
Rn

exp
(
−
∥∥∥ n∑

i=1

ξi si

∥∥∥q

q

)
dµ(ξ).

Note that the function ‖x‖−p is locally integrable in Rn because 0 < p < n. Similarly,

E(‖X−‖
−p) =

∫
Rn

exp
(
−
∥∥∥ k∑

i=1

ξi si −
n∑

i=k+1

ξi si

∥∥∥q

q

)
dµ(ξ),

where X− = (X1, . . . ,Xk,−Xk+1, . . . ,−Xn), and

E(‖Y‖−p) =

∫
Rn

exp
(
−
∥∥∥ k∑

i=1

ξi si

∥∥∥q

q
−
∥∥∥ n∑

i=k+1

ξi si

∥∥∥q

q

)
dµ(ξ).

Now by the inequality (5) from Lemma 4 and taking in account that µ is a positive measure,
we get

E(‖X‖−p) + E(‖X−‖
−p) ≥ 2E(‖Y‖−p),

and the result follows from the property (*).
The following is an immediate consequence of Theorem 4 in conjunction with Theo-

rems 2, 3 and Corollary 1.

Corollary 2 Let B = (Rn, ‖ · ‖) be a homogeneous space, 0 < p < n, and q, k, X, Y as above.
Then the inequality

E(‖X‖−p) ≥ E(‖Y‖−p)

holds in each of the following cases:

(i) B is any n-dimensional homogeneous space satisfying the condition (*) and p ∈
[n− 1, n);

(ii) B is an n-dimensional subspace of Lr with 0 < r ≤ 2 satisfying the condition (*) and p
is any number from (0, n);

(iii) B = `nq, n ≥ 3, 2 < q ≤ ∞ and p ∈ [n− 3, n).
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