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Abstract

For a G/G/l queueing system let Xt be the number of customers present at time / and Yt(Zi)
be the time elapsed since the last arrival of a customer (the last completion of a service) at
time /. Let rt be the time until the number of customers in the system is reduced from j to
j - /, given that XQ = j > I, Yo = y, ZQ = z. For the joint distribution of Tj and YZi and
the Laplace transforms of the T/ integral equations are derived. Under slight conditions these
integral equations have unique solutions which can be determined by standard methods. Our
results offer a method for calculating the busy period distribution which is completely different
from the usual fluctuation theoretic approach.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 60 K 25.

1. Introduction

For the G/G/l queueing system the distribution of the duration of a busy
period has been derived by Finch (1961) and Kingman (1961). The transform
of the joint distribution of the number N of customers served during a busy
period, its duration x and the length of the subsequent idle period / is given
in several textbooks (for example, Prabhu (1980)): for all z e (0, \),Q\> 0,
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(1.1)
e e I iy" / / ee^u) dA*"(u)dB*/

v-u<0 J
where A and B are the distribution functions of the interarrival times and
the service times, and A*n denotes M-fold convolution of A. The derivation
of (1.1) is based on fluctuation theory applied to the underlying random walk
of the queueing system.

In this paper a different approach is developed. For t > 0 let Xt be the
number of customers in the system at time t, Y, be the time elapsed at time
t since the last arrival of a customer and Z, be the time elapsed between t
and the last completion of a service before t. Let the system start at time
0 with the condition XQ — j , YQ = y, ZQ = z for some y e N and y, z > 0.
Clearly (X,, Yt,Zt) is a Markov process. For I < j let T/ be the time passing
until the number of customers in the system is reduced from ; to j - I. We
shall derive an integral equation for

(1.2) VyA<*>E) •= E(e~aXi hYu€E}\X0 = j , Yo = y,Z0 = z)

{a > 0, E a Borel subset of [0, oo)) by some rather simple arguments based
on the Markov character of the process (Xt, Yt, Zt). Under a slight condition
this integral equation is seen to determine (a, E) —> Wy^faE) uniquely and,
moreover, turns out to be solvable by the method of successive approxima-
tions. This method provides a sequence 4^"] tending to *F,,jZ at an exponential
rate of convergence uniformly with respect to (y, z). This will be useful for a
numerical determination of the joint distribution of x\ and YTi. Note that T\,
the time for decreasing the numbers of customers from jtoj—l, is for j — I
simply the ordinary busy period duration, while YTl is, for j —\, the waiting
time of the last customer served in the busy period under consideration.

The process (Xt, Yt,Zt) has also been studied by Keilson and Kooharian
(1960, 1962) who rely on rather involved Wiener-Hopf techniques. The fairly
straightforward approach given here is however sufficient to derive the con-
ditional joint distribution of (fi, yTl) for an arbitrary initial condition on
{XQ, JO, Z O ) . Further it will be seen in Section 3 that our method can be ap-
plied to determine the Laplace transforms Vj{-\y, z) of the T7, conditional on
Xo = I > j , Yo = y, Zo = z. Define their joint generating function by

(1.3) <!>(x,u\y,z) = J2vj(u\y,z)xj, \x\ < 1, u,y,z > 0.
7=1

We obtain a system of two Fredholm integral equations of the second
kind for the functions y —• O(x, u\y, 0) and z —> O(x, u\0, z) and an equation
which gives O in terms of these two functions. Under weak conditions this
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system of integral equations has the corresponding Neumann series as its
unique solution.

In the concluding Section 4 we use our technique to calculate E(exp{-uzj}\
XQ = I, ZQ = z) for the bulk-arrival queue Mx/G/l. The distribution of the
busy period duration (i.e. of tj given that Xo = 1, Zo = 0) has already been
derived in Cohen (1980, Chapter III, 2.3) using a different method.

Throughout the paper we assume that the distribution functions of the
interarrival times and the service times possess densities a(x) and b(y).

2. The joint distribution of (TI, YXI) in a G/G/l queueing system

For y, z > 0 and j — 1,2 let Qy,zj be the joint conditional distribution of
(T,, YTj) given that Xo = j , Yo = y,Z0 = z. Let

(2.1) Vy<z(a,E):= C
Jo

where a > 0 and £ is a Borel subset of [0,oo). The duration of a busy
period initiated by one customer arriving in the system at time 0 then has
the Laplace transform a —> *Fo,o(a. [0, oo)). We shall now derive an integral
equation for *¥y,z-

THEOREM 1. For all u, y, z > 0 and all a> 0 we have

PROOF. Let Xo = j , Yo = y, Zo = z. The first change of the queue size
occurs at the time min(5'^,rz), where Sy and Tz are independent random
variables with distributions given by

1 -
\-A{y)(2-3) P(Sy > v) = l ^ Z r , v > 0,

(2.4) P(TZ > W) = l-*%™\ ^ > 0.

{Sy(T2) is the first positive arrival (departure) time.) If Sy = v < Tz, we
have X, = j for 0 < t < v and Xv = j + 1, Yv = 0, Zv = z + v. The time
remaining thereafter up to Xj has the conditional distribution of T,-+I, given
that Xo = J!+ 1, Yo = 0, Zo = z + v.
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If Tz = w < Sy, the analogous relations are Xt = j for 0 < t < w,
Xw = j - 1, Yw = y + w, Zw = 0, so that the remaining time up to T, has the
same distribution as T,-_I, given that XQ = j - 1, Yo = y + w, Zo = 0.

Using these ideas for j = 1 it is seen that Qy,z<\ satisfies

s+v<t

Next we shall use the following relation between Qy>z,i and Qy,z,2-

(2.6) Q,tZt2(E x F) = if f Qy,z,x{dv',dw')Qw,Al{dv",F)
J Jv'+v"€E Jw'>0

for all Borel subsets E, F of [0, oo). To see (2.6), note that in order to reduce
the queue size from 2 to 0, it must be first decreased to 1 which happens at
some time v', say, and the time which is then elapsed since the last arrival
can be any w' e [0,oo). Thereafter the queue size has to be decreased from
1 to 0 after some time v". Integrating with respect to (v1, w') and v" yields
(2.6).

Inserting (2.6) into (2.5) we obtain

(2.7) Qy,z, ([0, t) x [0,»]) = jT ( i ^ ± i » _ t i ) 1[0 oo)(M _ y _ ,) ds

f f
v'+v"<t Jw<u Jw'

i>0 ~

xGo,2+i,i (dv1, dw')Qw,Ai(dv", dw) ds.

Finally one has to take the Laplace transform of the measure

* - G y A i ( * x [ 0 , u ] ) ,

where u is fixed, to complete the proof.
For fixed a > 0 the function (y,z,E) -* 4^2(a,E) is uniquely determined

by equation (2.2) and the condition that *¥y z{a, •) is a subprobability measure,
if

(2.8) G(a) := sup [°° ^±^-e-
at dt < i

>oJ i A\y) 2

For let 38 be the Banach space of all functions p(y, z, E) such that />(•, •, E):
[0, oo)2 -• R is measurable for each Borel subset E of [0, oo), p(y, z, •) is a
signed measure for each (y, z) e [0, oo)2 and

(2.9) HiH := sup \p(y, z, •)] < oo
>o
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(|i/| denotes the total variation of a signed measure v). Let X := {p e
&\\\p\\ < 1} and define the operator Ua: X -»3T by

(2.10) (Uap)(y,z,E):= / e-a'\\ D
v

Jl>oJw'>O ( 1 — i»l

xp(0, z + t, dw')p(w', 0, E) dt.

If /», p € ̂ ", we have
(2.11)

{ ff[
c

e {l_B{zm_A{y))

[\p(O, z + t, dw')p(w', 0, dw) - p(0, z + t, dw')p(w', 0, dw)\

+ \p(0,z + t,dw')p(w',0,dw) - p(0,z + t,dw')p(w',0,dw)\]\ dt

<suP2\\p-p\\[ e-«p
y,z>o Jt>o 1 -

= 2G{a)\\p-p\\.

Thus if G(a) < 1/2 and p, pare two solutions of (2.2) satisfying \\p\\, \\p\\ < 1,
(2.2) and (2.11) entail that

(2.12) \\p - l | | = \\Uap - Uap\\ < 2G(a)\\p - p\\

so that p = p.
Especially if

(2.13) G{a)<{
1 f o r a l l a > a 0

for some ao > 0, equation (2.2) uniquely determines the Laplace transform
of the measure Qy>z,\ (•> E) for every fixed triple (y, z, E). Moreover, the above
considerations show that the method of successive approximations yields a
sequence of (^*(n))n>o which converges to 4* in the total variation distance
with respect to E and uniformly with respect to y and z: we have

(2.14) S U P | ^ ( Q , - ) - 4 ' > , , Z ( Q , - ) | < \2G,ar}\ sup

We can take an arbitrary *F ẑ(a» E) belonging to S£ and then, for n > 1, have
to find ¥$(<*,£) recursively by

(2.15)

E ) ^ e

Jl>oL>o (1 -B{z)){\ -
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Condition (2.13) is for example satisfied, if A has a bounded hazard rate
a(y)/(l -A{y)). For if a/(I -A) <K,

(2.16) G(a)< f a(y + t) --a

3. The Laplace transform of r7

Next we consider

(3.1) <pj{u\y, z) := E(cxp{-uXj}\X0 = l,Y0 = y,Z0 = z),

where u,y, z > 0 and I > j > 1. Using the argument already employed at the
beginning of the proof of Theorem 1, but now for arbitrary j > 1 and for
the Laplace transforms instead of the distributions themselves, we obtain

(3.2)

and

To solve this system we introduce the generating function

(3.4) <D(x, u\y, z) := f ] <pj(u\y, z)x\ \x\ < 1.

Summing (3.2) and (3.3) over j yields after some simple manipulations

(3.5)
+ w) ,

)) dw

Jo

Jo

_ A{y))

(l-A(y +
-B{z))

OO (-1 Til 7

aw
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Note that

(3.6)

and *F has been determined in the previous section. We arrive at the following
result.

THEOREM 2. Let u > 0 and x e R, JJC| < 1, be fixed. The functions
O(x, «|0, •) and 4>(x, u\-,0) satisfy the following system of Fredholm integral
equations of the second kind:

(3.7) (1 - B{z))x<b{x, M|0, Z) = x2 f e-"w(l - A(w))b(z + w) dw
Jo

+ f e-"
w®(x, u\0, z + w)(l- B(z + w))a{w) dw

Jo

+ x2 f e-uw<P(x, u\w,0)(l - A{w))b{z + w)dw
Jo
rOO

-x e-uw<pi{u\0,z + w)(l -B{z + w))a{w)dw
Jo

(3.8) {l-A(y))x<!>(x,u\y,O)=x2 f°°e~uw(I - A{y + w))b(w)dw
J
f
o

+ f e-
uw4>(x,u\O,w){l - B(w))a{y + w)dw

Jo

+ x2 I e-"w®(x,u\y + w,O)(l-A(y + w))b(w)dw
Jo .

-x f e-uw<pi(u\0,w){l - B(w))a(y + w)dw.
Jo

For arbitrary y, z > 0 the function O(x, u\y, z) is then connected with <J>(x, M|0, •),
<t>(x,u\;0)and<pl(u\0,z)by(S.5).

Equations (3.7) and (3.8) can be written in the form

(3.9) f = g + Kf,

where

<-» ' -GO- -
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and f\, fi, g\, g2 are defined as follows:

(3.11) A(y) = (I -B(y))<t>(x,u\0,y),
(3.12) f2(y) = (l-A(y)0(x,u\y,O),

(3.13) gi(y) = x fe-uw(l-A(w))b(y
Jo

- / '
Jo

(3.14) fcGO = x f ° «
Jo

-i;

<pi(u\0,y -B{y + w))a(w)dw,

-B(w))a(y + w)dw.

The definition of the integral operators Ky, i,j = 1,2, is clear from (3.7) and
(3.8); for instance,

(3.15) (Knh){z) = v)a{v)dv.

For y > 0 let ay and by be the Laplace transform of the functions v —• a{y+v)
and v —> b(y+v). Then we have, for arbitrary bounded measurable functions
h: [0, oo) -> R,

(3.16) \Knh(z)\ = e~uv h{z + v)a(v) dv < \x\-lao(u

where ||A||oo := supr>0 \h(z)\, and similarly

(3.17) \Knh{z)\ = f
Jo

e-uvh(v)b(z + v)dv < \x\bz(u)\\h\\oo,

(3.18) \K2lh(z)\ < \x\-%(u)\\h\U

(3.19) \K22h(z)\ < W*o(")||A||oo.

If we define \\h\\ := \\hi\\co + \\h2\\oo for

h = : [0,oo)^R2,

(3.16)-(3.18) yield

(3.20)
z>0

supaz(M)||/n||oo
z>0

Let us assume that
/•OO

(3.21) lim supaz(w) = lim sup / e~uva(z + v)dv = 0
«—°°z>0 "—"'z^oyo
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and

(3.22) lim supbz(u) = 0.
u-.oo z > 0

Equations (3.21) and (3.22) are not very restrictive conditions; they are for
example satisfied, if a and b are monotone on [T, oo) for some T > 0. If
(3.21) and (3.22) are valid, some standard arguments using (3.20) now show
that, for sufficiently large u, (3.9) possesses a unique continuous solution
which is given by the uniformly convergent Neumann series

(3.23) f = g + Kg + K2g + --.

Thus for large u the functions <P(x, u\0, •) and <S>(x, u\-, 0) are uniquely deter-
mined by (3.7) and (3.8), and the series (3.23) gives a way to approximate
them exponentially fast. For arbitrary e e (0,1/2) this convergence is uni-
form with respect to x e (e, 1 - e), if u > MQ = «o(e)-

4. The bulk queue Mx/G/l

For the queueing system Mx/G/l the above technique can also be applied
to determine the conditional Laplace transform

(4.1) <pj(u\z) := E(exp{-UTj}\X0 = / , Z 0 = z ) , u , z > 0 , l > j > l ,

of the first time instant Xj at which the queue size is decreased from / to l—j.
Let A{x) = 1 - e~Xx, x > 0, for some X > 0. At the time of the /th arrival
in (0,oo) a group of At customers enters the system, where AUA2,... are as-
sumed to be independent random variables having the common distribution
P(Aj = n)=pn,n = l,2,..., and the generating function p(s):— J2%Li PnSn.
For Mx/G/l obviously (Xt, Zt) is a Markov process. It is not difficult to see
that

(4.2) ^•(«|z) = «»1(«|z)^(M|0y-1

so that it suffices to compute <p\{u\z). Now given that Xo = 1, Zo = z,
the following possibilities can be distinguished. If no new customers enter
before the next service is completed at time x, say (an event of probability
[b(z + x)/{\ - Biz))^'^ dx), we have x\ = x. If j > 1 arrivals take place
before the next service completion time x and the number of new customers
entering the system in [0,x] is equal to n, we have x\ = x + xn, where xn

has the same distribution as xn, given that XQ — n, Zo = Q. This possibility
occurs with probability
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i

For (p\{u\z) these considerations yield

(4.3)

<px{u\z)= f™ e-
ux^-j^e-*x dx

J

rOO

dx

1 Z " 0 0

= -j s r T / b(z + x) txp{Xxp{q>x (M|0)) - (M
1 - tS\Z) Jo

Equations (4.3) show how to compute q>\(u\z), if q>\(u\Q) is known. For
z = 0, (4.3) can be written as

(4.4) 9i(u\0) = nu + X-Xp(9i{u\0))),

where / is the Laplace transform of b(x).
Equation (4.4) is a generalization of the well-known Takacs equation

(Feller (1971), pages 441-442 and 473) which comes out for p(x) = x. As
in the classic case the following lemma is easily proved.

LEMMA. Assume that l//x := /0°° xb{x)dx < oo and v := J2T=i nP" < °°-
The equation

(4.5) <p{u) = f{u + k-kp{(p{u))), « > 0 ,

possesses a unique solution <p(u) which is the Laplace transform of a distribu-
tion which is proper ifkv/n < 1 and defective otherwise.

As an example, let us consider the case when B(x) = 1 - e~*x, x > 0, for
some n > 0. Equation (4.4) for q> — ^i( |0) takes the form

(4-6) *(M) = V + X + U-WKU)) = ̂ T T ^ + jnr+H'{u)pMu))'
We note that q> can be expanded into ascending powers of (A + fi + u)~l in
the form

(4.7) f

where qn > 0 for all n > 1. To derive (4.7), let X{ be the time between the
(i - l)th and the /th jump of the queue size and let Y, be the size of the zth
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jump. Then if .A, .72, . . . , ;„ € {-1,1,2,3,. . .} satisfy h + •• • + j m > - 1 for
m = ! , . . . , « - 1 and j \ -\ h jn = - 1 , it is easily seen that

(4.8) / e-u(xl+-+xn) dp = TT f
•'tl'|-./l,...,l»=./!!> m = 1-'lJ'm-71

^ -uXm

and

(4.9) / e""^ dP =

J{Ym=-i\

J{Ym=jm

(4.10) / e-x~dP=T-l—, ifjm>l,

since Xm can be represented as the minimum of two exponential variables
Sm and Tm, say, with means I/A and l/n, respectively, and Ym — 1 if and
only if Sm < Tm. Obviously <p{u) can be written as a series of terms of the
form (4.8). Inserting (4.9) and (4.10) into (4.8) shows (4.7).

Letv :=(X + n)/(X + n + u), <p(v) := <p{u) if v e (0,1] and 0(0) := 0. From
(4.6) it follows that

(4.11) <p{v) = -^-v + -A-v<p{v)p{<p{v)).

Inserting (4.7) into (4.11) and comparing the coefficients at both sides gives
the following recursive relation for the qn:

qx = n/{n + X), q2 = 0,

where the sum is taken over all n-tuples (i\,...,/«) of nonnegative integers
for which Y?j=\ Jh = "• To check (4.9), it is convenient to use the formula

( 4 , 3 ) ^ ^ J ^
J

where the sum is extended over the same set of n-tuples as in (4.12) (see
Gradshteyn and Ryzhik (1980), page 19, formulae 0.430).

Equation (4.7) can be inverted term-by-term. Thus the density of Ti is
given by

(4.14) '
rt= 1
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