J. Austral. Math. Soc. (Series A) 48 (1990), 89-100

A NEW APPROACH TO THE DISTRIBUTION OF THE DURATION OF THE BUSY PERIOD FOR A G/G/1 QUEUEING SYSTEM

WOLFGANG STADJE

(Received 25 February 1988; revised 22 November 1988)

Communicated by Timothy C. Brown

Abstract

For a G/G/1 queueing system let X_l be the number of customers present at time t and $Y_l(Z_l)$ be the time elapsed since the last arrival of a customer (the last completion of a service) at time t. Let τ_l be the time until the number of customers in the system is reduced from j to j - l, given that $X_0 = j \ge l$, $Y_0 = y$, $Z_0 = z$. For the joint distribution of τ_1 and Y_{τ_1} and the Laplace transforms of the τ_l integral equations are derived. Under slight conditions these integral equations have unique solutions which can be determined by standard methods. Our results offer a method for calculating the busy period distribution which is completely different from the usual fluctuation theoretic approach.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 60 K 25.

1. Introduction

For the G/G/1 queueing system the distribution of the duration of a busy period has been derived by Finch (1961) and Kingman (1961). The transform of the joint distribution of the number N of customers served during a busy period, its duration τ and the length of the subsequent idle period I is given in several textbooks (for example, Prabhu (1980)): for all $z \in (0, 1), \theta_1 \ge 0$, $\theta_2 \ge 0$,

^{© 1990} Australian Mathematical Society 0263-6115/90 \$A2.00 + 0.00

(1.1)

$$E(z^{N}e^{-\theta_{1}\tau-\theta_{2}I}) = 1 - \exp\left\{-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \iint_{v-u \leq 0} e^{-\theta_{1}v+\theta_{2}(v-u)} dA^{*n}(u) dB^{*n}(v)\right\},\$$

where A and B are the distribution functions of the interarrival times and the service times, and A^{*n} denotes *n*-fold convolution of A. The derivation of (1.1) is based on fluctuation theory applied to the underlying random walk of the queueing system.

In this paper a different approach is developed. For $t \ge 0$ let X_t be the number of customers in the system at time t, Y_t be the time elapsed at time t since the last arrival of a customer and Z_t be the time elapsed between t and the last completion of a service before t. Let the system start at time 0 with the condition $X_0 = j$, $Y_0 = y$, $Z_0 = z$ for some $j \in \mathbb{N}$ and $y, z \ge 0$. Clearly (X_t, Y_t, Z_t) is a Markov process. For $l \le j$ let τ_l be the time passing until the number of customers in the system is reduced from j to j - l. We shall derive an integral equation for

(1.2)
$$\Psi_{y,z}(\alpha, E) := E(e^{-\alpha \tau_1} \mathbf{1}_{\{Y_{\tau_1} \in E\}} | X_0 = j, Y_0 = y, Z_0 = z)$$

 $(\alpha > 0, E$ a Borel subset of $[0, \infty)$) by some rather simple arguments based on the Markov character of the process (X_t, Y_t, Z_t) . Under a slight condition this integral equation is seen to determine $(\alpha, E) \rightarrow \Psi_{y,z}(\alpha, E)$ uniquely and, moreover, turns out to be solvable by the method of successive approximations. This method provides a sequence $\Psi_{y,z}^{(n)}$ tending to $\Psi_{y,z}$ at an exponential rate of convergence uniformly with respect to (y, z). This will be useful for a numerical determination of the joint distribution of τ_1 and Y_{τ_1} . Note that τ_1 , the time for decreasing the numbers of customers from j to j-1, is for j = 1simply the ordinary busy period duration, while Y_{τ_1} is, for j = 1, the waiting time of the last customer served in the busy period under consideration.

The process (X_t, Y_t, Z_t) has also been studied by Keilson and Kooharian (1960, 1962) who rely on rather involved Wiener-Hopf techniques. The fairly straightforward approach given here is however sufficient to derive the conditional joint distribution of (τ_1, Y_{τ_1}) for an arbitrary initial condition on (X_0, Y_0, Z_0) . Further it will be seen in Section 3 that our method can be applied to determine the Laplace transforms $\varphi_j(\cdot|y, z)$ of the τ_j , conditional on $X_0 = l \ge j$, $Y_0 = y$, $Z_0 = z$. Define their joint generating function by

(1.3)
$$\Phi(x, u|y, z) = \sum_{j=1}^{\infty} \varphi_j(u|y, z) x^j, \qquad |x| < 1, \ u, y, z \ge 0.$$

We obtain a system of two Fredholm integral equations of the second kind for the functions $y \to \Phi(x, u|y, 0)$ and $z \to \Phi(x, u|0, z)$ and an equation which gives Φ in terms of these two functions. Under weak conditions this

system of integral equations has the corresponding Neumann series as its unique solution.

In the concluding Section 4 we use our technique to calculate $E(\exp\{-u\tau_j\}|X_0 = l, Z_0 = z)$ for the bulk-arrival queue $M^X/G/1$. The distribution of the busy period duration (i.e. of τ_1 given that $X_0 = 1, Z_0 = 0$) has already been derived in Cohen (1980, Chapter III, 2.3) using a different method.

Throughout the paper we assume that the distribution functions of the interarrival times and the service times possess densities a(x) and b(y).

2. The joint distribution of (τ_1, Y_{τ_1}) in a G/G/1 queueing system

For $y, z \ge 0$ and j = 1, 2 let $Q_{y,z,j}$ be the joint conditional distribution of (τ_j, Y_{τ_j}) given that $X_0 = j$, $Y_0 = y$, $Z_0 = z$. Let

(2.1)
$$\Psi_{y,z}(\alpha,E) := \int_0^\infty e^{-\alpha t} Q_{y,z,1}(dt,E),$$

where $\alpha > 0$ and *E* is a Borel subset of $[0, \infty)$. The duration of a busy period initiated by one customer arriving in the system at time 0 then has the Laplace transform $\alpha \to \Psi_{0,0}(\alpha, [0, \infty))$. We shall now derive an integral equation for $\Psi_{y,z}$.

THEOREM 1. For all $u, y, z \ge 0$ and all $\alpha > 0$ we have (2.2) $\Psi_{y,z}(\alpha, [0, u]) = \int_0^\infty e^{-\alpha t} \frac{(1 - A(y + t))b(z + t)}{(1 - A(y))(1 - B(z))} \mathbf{1}_{[0,\infty)}(u - y - t) dt$ $+ \int_{t>0} \int_{w'>0} e^{-\alpha t} \frac{(1 - B(z + t))a(y + t)}{(1 - B(z))(1 - A(y))} \Psi_{0,z+t}(\alpha, dw') \Psi_{w',0}(\alpha, [0, u]) dt.$

PROOF. Let $X_0 = j$, $Y_0 = y$, $Z_0 = z$. The first change of the queue size occurs at the time min (S_y, T_z) , where S_y and T_z are independent random variables with distributions given by

(2.3)
$$P(S_{y} \ge v) = \frac{1 - A(y + v)}{1 - A(y)}, \quad v \ge 0,$$

(2.4)
$$P(T_z \ge w) = \frac{1 - B(z + w)}{1 - B(z)}, \qquad w \ge 0.$$

 $(S_y(T_z)$ is the first positive arrival (departure) time.) If $S_y = v < T_z$, we have $X_t = j$ for $0 \le t < v$ and $X_v = j + 1$, $Y_v = 0$, $Z_v = z + v$. The time remaining thereafter up to τ_j has the conditional distribution of τ_{j+1} , given that $X_0 = j + 1$, $Y_0 = 0$, $Z_0 = z + v$.

Wolfgang Stadje

If $T_z = w < S_y$, the analogous relations are $X_t = j$ for $0 \le t < w$, $X_w = j - 1$, $Y_w = y + w$, $Z_w = 0$, so that the *remaining* time up to τ_j has the same distribution as τ_{j-1} , given that $X_0 = j - 1$, $Y_0 = y + w$, $Z_0 = 0$.

Using these ideas for j = 1 it is seen that $Q_{y,z,1}$ satisfies (2.5)

$$\begin{aligned} Q_{y,z,1}([0,t]\times[0,u]) &= \int_{\substack{0 \le s < t \\ y+s \le u}} \frac{(1-A(y+s))b(z+s)}{(1-A(y))(1-B(z))} \, ds \\ &+ \iiint_{\substack{s+v \le t \\ w \le u}} \frac{(1-B(z+s))a(y+s)}{(1-B(z))(1-A(y))} Q_{0,z+s,2}(dv,dw) \, ds. \end{aligned}$$

Next we shall use the following relation between $Q_{y,z,1}$ and $Q_{y,z,2}$:

(2.6)
$$Q_{y,z,2}(E \times F) = \iint_{v'+v'' \in E} \int_{w' \ge 0} Q_{y,z,1}(dv', dw') Q_{w',0,1}(dv'', F)$$

for all Borel subsets E, F of $[0, \infty)$. To see (2.6), note that in order to reduce the queue size from 2 to 0, it must be first decreased to 1 which happens at some time v', say, and the time which is then elapsed since the last arrival can be any $w' \in [0, \infty)$. Thereafter the queue size has to be decreased from 1 to 0 after some time v''. Integrating with respect to (v', w') and v'' yields (2.6).

Inserting (2.6) into (2.5) we obtain

$$(2.7) \quad Q_{y,z,1}([0,t] \times [0,u]) = \int_0^t \frac{(1-A(y+s))b(z+s)}{(1-A(y))(1-B(z))} \mathbf{1}_{[0,\infty)}(u-y-s) \, ds \\ + \iiint_{\substack{s+v'+v'' \le t \\ s \ge 0}} \int_{w \le u} \int_{w' \ge 0} \frac{(1-B(z+s))a(y+s)}{(1-B(z))(1-A(y))} \\ \times Q_{0,z+s,1}(dv',dw')Q_{w',0,1}(dv'',dw) \, ds.$$

Finally one has to take the Laplace transform of the measure

$$B \rightarrow Q_{\nu,z,1}(B \times [0, u]),$$

where u is fixed, to complete the proof.

For fixed $\alpha > 0$ the function $(y, z, E) \rightarrow \Psi_{y,z}(\alpha, E)$ is uniquely determined by equation (2.2) and the condition that $\Psi_{y,z}(\alpha, \cdot)$ is a subprobability measure, if

(2.8)
$$G(\alpha) := \sup_{y \ge 0} \int_0^\infty \frac{a(y+t)}{1-A(y)} e^{-\alpha t} dt < \frac{1}{2}.$$

For let \mathscr{B} be the Banach space of all functions $\rho(y, z, E)$ such that $\rho(\cdot, \cdot, E)$: $[0, \infty)^2 \to \mathbb{R}$ is measurable for each Borel subset E of $[0, \infty)$, $\rho(y, z, \cdot)$ is a signed measure for each $(y, z) \in [0, \infty)^2$ and

(2.9)
$$\|\rho\| := \sup_{y,z \ge 0} |\rho(y, z, \cdot)| < \infty$$

93

 $(|\nu| \text{ denotes the total variation of a signed measure } \nu)$. Let $\mathscr{K} := \{\rho \in \mathscr{B} | \|\rho\| \le 1\}$ and define the operator $U_{\alpha} : \mathscr{K} \to \mathscr{K}$ by

$$(2.10) \quad (U_{\alpha}\rho)(y,z,E) := \int_{t\geq 0} \int_{w'>0} e^{-\alpha t} \frac{(1-B(z+t))a(y+t)}{(1-B(z))(1-A(y))} \\ \times \rho(0,z+t,dw')\rho(w',0,E) \, dt.$$

If $\rho, \tilde{\rho} \in \mathcal{K}$, we have (2.11)

$$\begin{aligned} \|U_{\alpha}\rho - U_{\alpha}\tilde{\rho}\| &\leq \sup_{y,z \geq 0} \int_{t \geq 0} e^{-\alpha t} \frac{(1 - B(z + t))a(y + t)}{(1 - B(z))(1 - A(y))} \\ &\times \left\{ \iint [|\rho(0, z + t, dw')\rho(w', 0, dw) - \rho(0, z + t, dw')\tilde{\rho}(w', 0, dw)| \\ &+ |\rho(0, z + t, dw')\tilde{\rho}(w', 0, dw) - \tilde{\rho}(0, z + t, dw')\tilde{\rho}(w', 0, dw)|] \right\} dt \\ &\leq \sup_{y,z \geq 0} 2 \|\rho - \tilde{\rho}\| \int_{t \geq 0} e^{-\alpha t} \frac{a(y + t)}{1 - A(y)} dt \\ &= 2G(\alpha) \|\rho - \tilde{\rho}\|. \end{aligned}$$

Thus if $G(\alpha) < 1/2$ and ρ , $\tilde{\rho}$ are two solutions of (2.2) satisfying $\|\rho\|$, $\|\tilde{\rho}\| \le 1$, (2.2) and (2.11) entail that

(2.12)
$$\|\rho - \tilde{\rho}\| = \|U_{\alpha}\rho - U_{\alpha}\tilde{\rho}\| \le 2G(\alpha)\|\rho - \tilde{\rho}\|$$

so that $\rho = \tilde{\rho}$. Especially if

.. . ..

(2.13)
$$G(\alpha) < \frac{1}{2}$$
 for all $\alpha \ge \alpha_0$

for some $\alpha_0 > 0$, equation (2.2) uniquely determines the Laplace transform of the measure $Q_{y,z,1}(\cdot, E)$ for every fixed triple (y, z, E). Moreover, the above considerations show that the method of successive approximations yields a sequence of $(\Psi^{(n)})_{n\geq 0}$ which converges to Ψ in the total variation distance with respect to E and uniformly with respect to y and z: we have

$$(2.14) \quad \sup_{y,z} |\Psi_{y,z}^{(n)}(\alpha,\cdot) - \Psi_{y,z}(\alpha,\cdot)| \leq \frac{[2G(\alpha)]^n}{1 - 2G(\alpha)} \sup_{y,z} |\Psi_{y,z}^{(1)}(\alpha,\cdot) - \Psi_{y,z}^{(0)}(\alpha,\cdot)|.$$

We can take an arbitrary $\Psi_{y,z}^{(0)}(\alpha, E)$ belonging to \mathscr{K} and then, for $n \ge 1$, have to find $\Psi_{y,z}^{(n)}(\alpha, E)$ recursively by

$$\begin{aligned} & (2.15) \\ \Psi_{y,z}^{(n)}(\alpha,E) &:= \int_0^\infty e^{-\alpha t} \frac{(1-A(y+t))b(z+t)}{(1-A(y))(1-B(z))} \mathbf{1}_{[0,\infty)}(u-y-t) \, dt \\ &\quad + \int_{t\geq 0} \int_{w'\geq 0} e^{-\alpha t} \frac{(1-B(z+t))a(y+t)}{(1-B(z))(1-A(y))} \Psi_{0,z+t}^{(n-1)}(\alpha,dw') \Psi_{w',0}^{(n-1)}(\alpha,E) \, dt. \end{aligned}$$

Wolfgang Stadje

Condition (2.13) is for example satisfied, if A has a bounded hazard rate a(y)/(1-A(y)). For if $a/(1-A) \le K$,

(2.16)
$$G(\alpha) \leq \int_0^\infty \frac{a(y+t)}{1-A(y+t)} e^{-\alpha t} dt \leq K/\alpha.$$

3. The Laplace transform of τ_i

Next we consider

(3.1)
$$\varphi_j(u|y,z) := E(\exp\{-u\tau_j\}|X_0 = l, Y_0 = y, Z_0 = z),$$

where $u, y, z \ge 0$ and $l \ge j \ge 1$. Using the argument already employed at the beginning of the proof of Theorem 1, but now for arbitrary $j \ge 1$ and for the Laplace transforms instead of the distributions themselves, we obtain (3.2)

$$\varphi_{j}(u|y,z) = \int_{0}^{\infty} e^{-uv} \varphi_{j+1}(u|0,z+v) \frac{(1-B(z+v))a(y+v)}{(1-B(z))(1-A(y))} dv + \int_{0}^{\infty} e^{-uw} \varphi_{j-1}(u|y+w,0) \frac{(1-A(y+w))b(z+w)}{(1-A(y))(1-B(z))} dw, \qquad j \ge 2,$$

and

(3.3)
$$\varphi_1(u|y,z) = \int_0^\infty e^{-uw} \frac{(1-A(y+w))b(z+w)}{(1-A(y))(1-B(z))} dw$$

 $+ \int_0^\infty e^{-uv} \varphi_2(u|0,z+v) \frac{(1-B(z+v))a(y+v)}{(1-B(z))(1-A(y))} dv.$

To solve this system we introduce the generating function

(3.4)
$$\Phi(x, u|y, z) := \sum_{j=1}^{\infty} \varphi_j(u|y, z) x^j, \quad |x| < 1.$$

Summing (3.2) and (3.3) over j yields after some simple manipulations (3.5)

$$\begin{split} x \Phi(x, u|y, z) &= x^2 \int_0^\infty e^{-uw} \frac{(1 - A(y + w))b(z + w)}{(1 - A(y))(1 - B(z))} \, dw \\ &+ \int_0^\infty e^{-uw} \Phi(x, u|0, z + w) \frac{(1 - B(z + w))a(y + w)}{(1 - B(z))(1 - A(y))} \, dw \\ &+ x^2 \int_0^\infty e^{-uw} \Phi(x, u|y + w, 0) \frac{(1 - A(y + w))b(z + w)}{(1 - A(y))(1 - B(z))} \, dw \\ &- x \int_0^\infty e^{-uw} \varphi_1(u|0, z + w) \frac{(1 - B(z + w))a(y + w)}{(1 - B(z))(1 - A(y))} \, dw. \end{split}$$

Note that

(3.6)
$$\varphi_1(u|y,z) = \Psi_{y,z}(u,[0,\infty)),$$

and Ψ has been determined in the previous section. We arrive at the following result.

THEOREM 2. Let $u \ge 0$ and $x \in \mathbf{R}$, |x| < 1, be fixed. The functions $\Phi(x, u|0, \cdot)$ and $\Phi(x, u|\cdot, 0)$ satisfy the following system of Fredholm integral equations of the second kind:

$$(3.7) \quad (1 - B(z))x\Phi(x, u|0, z) = x^{2} \int_{0}^{\infty} e^{-uw}(1 - A(w))b(z + w) dw + \int_{0}^{\infty} e^{-uw}\Phi(x, u|0, z + w)(1 - B(z + w))a(w) dw + x^{2} \int_{0}^{\infty} e^{-uw}\Phi(x, u|w, 0)(1 - A(w))b(z + w) dw - x \int_{0}^{\infty} e^{-uw}\varphi_{1}(u|0, z + w)(1 - B(z + w))a(w) dw (3.8) \quad (1 - A(y))x\Phi(x, u|y, 0) = x^{2} \int_{0}^{\infty} e^{-uw}(1 - A(y + w))b(w) dw + \int_{0}^{\infty} e^{-uw}\Phi(x, u|0, w)(1 - B(w))a(y + w) dw + x^{2} \int_{0}^{\infty} e^{-uw}\Phi(x, u|y + w, 0)(1 - A(y + w))b(w) dw - x \int_{0}^{\infty} e^{-uw}\varphi_{1}(u|0, w)(1 - B(w))a(y + w) dw.$$

For arbitrary $y, z \ge 0$ the function $\Phi(x, u|y, z)$ is then connected with $\Phi(x, u|0, \cdot)$, $\Phi(x, u|\cdot, 0)$ and $\varphi_1(u|0, z)$ by (3.5).

Equations (3.7) and (3.8) can be written in the form

$$(3.9) f = g + Kf,$$

where

(3.10)
$$f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}, \quad g = \begin{pmatrix} g_1 \\ g_2 \end{pmatrix}, \quad Kf = \begin{pmatrix} K_{11}f_1 + K_{12}f_2 \\ K_{21}f_1 + K_{22}f_2 \end{pmatrix}$$

and f_1 , f_2 , g_1 , g_2 are defined as follows:

$$(3.11) \quad f_{1}(y) = (1 - B(y))\Phi(x, u|0, y),$$

$$(3.12) \quad f_{2}(y) = (1 - A(y)\Phi(x, u|y, 0),$$

$$(3.13) \quad g_{1}(y) = x \int_{0}^{\infty} e^{-uw}(1 - A(w))b(y + w) dw$$

$$- \int_{0}^{\infty} e^{-uw}\varphi_{1}(u|0, y + w)(1 - B(y + w))a(w) dw,$$

$$(3.14) \quad g_{2}(y) = x \int_{0}^{\infty} e^{-uw}(1 - A(y + w))b(w) dw$$

$$- \int_{0}^{\infty} e^{-uw}\varphi_{1}(u|0, w)(1 - B(w))a(y + w) dw.$$

The definition of the integral operators K_{ij} , i, j = 1, 2, is clear from (3.7) and (3.8); for instance,

(3.15)
$$(K_{11}h)(z) = x^{-1} \int_0^\infty e^{-uv} h(z+v) a(v) \, dv.$$

For $y \ge 0$ let \hat{a}_y and \hat{b}_y be the Laplace transform of the functions $v \to a(y+v)$ and $v \to b(y+v)$. Then we have, for arbitrary bounded measurable functions $h: [0, \infty) \to \mathbb{R}$,

$$(3.16) |K_{11}h(z)| = \left| x^{-1} \int_0^\infty e^{-uv} h(z+v) a(v) \, dv \right| \le |x|^{-1} \hat{a}_0(u) ||h||_\infty,$$

where $||h||_{\infty} := \sup_{z \ge 0} |h(z)|$, and similarly

(3.17)
$$|K_{12}h(z)| = \left|x\int_0^\infty e^{-uv}h(v)b(z+v)\,dv\right| \le |x|\hat{b}_z(u)||h||_\infty,$$

$$(3.18) |K_{21}h(z)| \le |x|^{-1}\hat{a}_z(u)||h||_{\infty}$$

 $(3.19) |K_{22}h(z)| \le |x|b_0(u)||h||_{\infty}.$

If we define $||h|| := ||h_1||_{\infty} + ||h_2||_{\infty}$ for

$$h = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} : [0,\infty) \to \mathbf{R}^2,$$

(3.16)-(3.18) yield

(3.20)
$$||Kh|| \le |x|^{-1} \hat{a}_0(u) ||h_1||_{\infty} + |x| \sup_{z \ge 0} \hat{b}_z(u) ||h_2||_{\infty} + |x|^{-1} \sup_{z \ge 0} \hat{a}_z(u) ||h_1||_{\infty} + |x| \hat{b}_0(u) ||h_2||_{\infty}.$$

Let us assume that

(3.21)
$$\lim_{u\to\infty}\sup_{z\geq 0}\hat{a}_z(u)=\lim_{u\to\infty}\sup_{z\geq 0}\int_0^\infty e^{-uv}a(z+v)\,dv=0$$

[9]

$$\lim_{u\to\infty}\sup_{z>0}\hat{b}_z(u)=0.$$

Equations (3.21) and (3.22) are not very restrictive conditions; they are for example satisfied, if a and b are monotone on $[T, \infty)$ for some $T \ge 0$. If (3.21) and (3.22) are valid, some standard arguments using (3.20) now show that, for sufficiently large u, (3.9) possesses a unique continuous solution which is given by the uniformly convergent Neumann series

$$(3.23) f = g + Kg + K^2g + \cdots$$

Thus for large u the functions $\Phi(x, u|0, \cdot)$ and $\Phi(x, u|\cdot, 0)$ are uniquely determined by (3.7) and (3.8), and the series (3.23) gives a way to approximate them exponentially fast. For arbitrary $\varepsilon \in (0, 1/2)$ this convergence is uniform with respect to $x \in (\varepsilon, 1 - \varepsilon)$, if $u \ge u_0 = u_0(\varepsilon)$.

4. The bulk queue $M^X/G/1$

For the queueing system $M^X/G/1$ the above technique can also be applied to determine the conditional Laplace transform

$$(4.1) \quad \varphi_j(u|z) := E(\exp\{-u\tau_j\}|X_0 = l, Z_0 = z), \qquad u, z \ge 0, \ l \ge j \ge 1,$$

of the first time instant τ_j at which the queue size is decreased from l to l-j. Let $A(x) = 1 - e^{-\lambda x}$, $x \ge 0$, for some $\lambda > 0$. At the time of the *i*th arrival in $(0, \infty)$ a group of A_i customers enters the system, where A_1, A_2, \ldots are assumed to be independent random variables having the common distribution $P(A_i = n) = p_n$, $n = 1, 2, \ldots$, and the generating function $p(s) := \sum_{n=1}^{\infty} p_n s^n$. For $M^X/G/1$ obviously (X_i, Z_i) is a Markov process. It is not difficult to see that

(4.2)
$$\varphi_j(u|z) = \varphi_1(u|z)\varphi_1(u|0)^{j-1}$$

so that it suffices to compute $\varphi_1(u|z)$. Now given that $X_0 = 1$, $Z_0 = z$, the following possibilities can be distinguished. If no new customers enter before the next service is completed at time x, say (an event of probability $[b(z+x)/(1-B(z))]e^{-\lambda x} dx$), we have $\tau_1 = x$. If $j \ge 1$ arrivals take place before the next service completion time x and the number of new customers entering the system in (0, x] is equal to n, we have $\tau_1 = x + \tilde{\tau}_n$, where $\tilde{\tau}_n$ has the same distribution as τ_n , given that $X_0 = n$, $Z_0 = 0$. This possibility occurs with probability

$$e^{-\lambda x} \frac{(\lambda x)^j}{j!} P\left(\sum_{i=1}^j A_i = n\right) \frac{b(z+x)}{1-B(z)} dx.$$

For $\varphi_1(u|z)$ these considerations yield

$$\begin{aligned} &(4.3)\\ \varphi_{1}(u|z) = \int_{0}^{\infty} e^{-ux} \frac{b(z+x)}{1-B(z)} e^{-\lambda x} \, dx \\ &+ \sum_{j=1}^{\infty} \sum_{n=j}^{\infty} \left[\int_{0}^{\infty} e^{-ux} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} P\left(\sum_{i=1}^{j} A_{i} = n\right) \frac{b(z+x)}{1-B(z)} \, dx \right] \varphi_{1}(u|0)^{n} \\ &= \frac{1}{1-B(z)} \left[\int_{0}^{\infty} e^{-(u+\lambda)x} b(z+x) \, dx \\ &+ \sum_{j=1}^{\infty} \int_{0}^{\infty} e^{-(u+\lambda)x} b(z+x) \frac{(\lambda x)^{j}}{j!} p(\varphi_{1}(u|0))^{j} \, dx \right] \\ &= \frac{1}{1-B(z)} \int_{0}^{\infty} b(z+x) \exp\{\lambda x p(\varphi_{1}(u|0)) - (u+\lambda)x\} \, dx. \end{aligned}$$

Equations (4.3) show how to compute $\varphi_1(u|z)$, if $\varphi_1(u|0)$ is known. For z = 0, (4.3) can be written as

(4.4)
$$\varphi_1(u|0) = f(u+\lambda-\lambda p(\varphi_1(u|0))),$$

where f is the Laplace transform of b(x).

Equation (4.4) is a generalization of the well-known Takács equation (Feller (1971), pages 441-442 and 473) which comes out for p(x) = x. As in the classic case the following lemma is easily proved.

LEMMA. Assume that $1/\mu := \int_0^\infty x b(x) dx < \infty$ and $\nu := \sum_{n=1}^\infty n p_n < \infty$. The equation

(4.5)
$$\varphi(u) = f(u + \lambda - \lambda p(\varphi(u))), \quad u > 0,$$

possesses a unique solution $\varphi(u)$ which is the Laplace transform of a distribution which is proper if $\lambda \nu / \mu \leq 1$ and defective otherwise.

As an example, let us consider the case when $B(x) = 1 - e^{-\mu x}$, $x \ge 0$, for some $\mu > 0$. Equation (4.4) for $\varphi = \varphi_1(\cdot | 0)$ takes the form

(4.6)
$$\varphi(u) = \frac{\mu}{\mu + \lambda + u - \lambda p(\varphi(u))} = \frac{\mu}{\mu + \lambda + u} + \frac{\lambda}{\mu + \lambda + u} \varphi(u) p(\varphi(u)).$$

We note that φ can be expanded into ascending powers of $(\lambda + \mu + u)^{-1}$ in the form

(4.7)
$$\varphi(u) = \sum_{n=1}^{\infty} q_n [(\lambda + \mu)/(\lambda + \mu + u)]^n, \qquad u \ge 0,$$

where $q_n \ge 0$ for all $n \ge 1$. To derive (4.7), let X_i be the time between the (i-1)th and the *i*th jump of the queue size and let Y_i be the size of the *i*th

(1 2)

jump. Then if $j_1, j_2, ..., j_n \in \{-1, 1, 2, 3, ...\}$ satisfy $j_1 + \cdots + j_m > -1$ for m = 1, ..., n - 1 and $j_1 + \cdots + j_n = -1$, it is easily seen that

(4.8)
$$\int_{\{Y_1=j_1,\ldots,Y_n=j_n\}} e^{-u(X_1+\cdots+X_n)} dP = \prod_{m=1}^n \int_{\{Y_m=j_m\}} e^{-uX_m} dP$$

and

(4.9)
$$\int_{\{Y_m=-1\}} e^{-uX_m} dP = \frac{\mu}{\lambda + \mu + u},$$

(4.10)
$$\int_{\{Y_m=j_m\}} e^{-uX_m} dP = \frac{\lambda}{\lambda+\mu+u}, \quad \text{if } j_m \ge 1,$$

since X_m can be represented as the minimum of two exponential variables S_m and T_m , say, with means $1/\lambda$ and $1/\mu$, respectively, and $Y_m = 1$ if and only if $S_m < T_m$. Obviously $\varphi(u)$ can be written as a series of terms of the form (4.8). Inserting (4.9) and (4.10) into (4.8) shows (4.7).

Let $v := (\lambda + \mu)/(\lambda + \mu + u)$, $\tilde{\varphi}(v) := \varphi(u)$ if $v \in (0, 1]$ and $\tilde{\varphi}(0) := 0$. From (4.6) it follows that

(4.11)
$$\tilde{\varphi}(v) = \frac{\mu}{\mu + \lambda}v + \frac{\lambda}{\mu + \lambda}v\tilde{\varphi}(v)p(\tilde{\varphi}(v)).$$

Inserting (4.7) into (4.11) and comparing the coefficients at both sides gives the following recursive relation for the q_n :

(4.12)
$$q_{1} = \mu/(\mu + \lambda), \quad q_{2} = 0,$$
$$q_{n+1} = \frac{\lambda}{\mu + \lambda} \sum \begin{pmatrix} i_{1} + \dots + i_{n} \\ i_{1}, \dots, i_{n} \end{pmatrix} p_{i_{1} + \dots + i_{n-1}} q_{1}^{i_{1}} \cdots q_{n}^{i_{n}}, \qquad n > 1,$$

where the sum is taken over all *n*-tuples (i_1, \ldots, i_n) of nonnegative integers for which $\sum_{j=1}^{n} ji_j = n$. To check (4.9), it is convenient to use the formula

(4.13)
$$\frac{d^n}{dv^n}(F \circ \varphi)(v) = \sum \frac{n!}{i_1! \cdots i_n!} F^{(i_1 + \cdots + i_n)}(\varphi(v)) \prod_{j=1}^n \left(\frac{\varphi^{(j)}(v)}{j!}\right)^{i_j}$$

where the sum is extended over the same set of *n*-tuples as in (4.12) (see Gradshteyn and Ryzhik (1980), page 19, formulae 0.430).

Equation (4.7) can be inverted term-by-term. Thus the density of τ_1 is given by

(4.14)
$$e^{-(\mu+\lambda)t} \sum_{n=1}^{\infty} \frac{(\mu+\lambda)^n}{(n-1)!} q_n t^{n-1}.$$

Wolfgang Stadje

References

J. W. Cohen (1982), *The single server queue* (North-Holland, Amsterdam-New York-Oxford). W. Feller (1971), *An introduction to probability theory and its applications*, volume II (Wiley, New York).

P. Finch (1961), 'On the busy period in the queueing system GI/G/1', J. Austral Math. Soc. 2, 217-227.

I. S. Gradshteyn and I. M. Ryzhik (1980), Table of integrals, series, and products (Academic Press, New York).

J. Keilson and A. Kooharian (1960), 'On time-dependent queueing processes', Ann. Math. Statist. 31, 104-112.

J. Keilson and A. Kooharian (1962), 'On the general time-dependent queue with a single server', Ann. Math. Statist. 33, 767-791.

J. F. C. Kingman (1962), 'The use of Spitzer's identity in the investigation of the busy period and other quantities in the queue GI/G/1', J. Austral Math. Soc. 2, 345-356.

N. U. Prabhu (1980), Stochastic storage processes (Springer, New York-Berlin-Heidelberg).

Fachbereich Mathematik/Informatik Universität Osnabrück Postfach 4469 Albrechtstrasse 28 45 Osnabrück West Germany