A NEW APPROACH TO THE DISTRIBUTION OF THE DURATION OF THE BUSY PERIOD FOR A $G / G / 1$ QUEUEING SYSTEM

WOLFGANG STADJE

(Received 25 February 1988; revised 22 November 1988)

Communicated by Timothy C. Brown

Abstract

For a $G / G / 1$ queueing system let X_{t} be the number of customers present at time t and $Y_{t}\left(Z_{t}\right)$ be the time elapsed since the last arrival of a customer (the last completion of a service) at time t. Let τ_{l} be the time until the number of customers in the system is reduced from j to $j-l$, given that $X_{0}=j \geq l, Y_{0}=y, Z_{0}=z$. For the joint distribution of τ_{1} and $Y_{\tau_{1}}$ and the Laplace transforms of the τ_{l} integral equations are derived. Under slight conditions these integral equations have unique solutions which can be determined by standard methods. Our results offer a method for calculating the busy period distribution which is completely different from the usual fluctuation theoretic approach.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 60 K 25.

1. Introduction

For the $G / G / 1$ queueing system the distribution of the duration of a busy period has been derived by Finch (1961) and Kingman (1961). The transform of the joint distribution of the number N of customers served during a busy period, its duration τ and the length of the subsequent idle period I is given in several textbooks (for example, Prabhu (1980)): for all $z \in(0,1), \theta_{1} \geq 0$, $\theta_{2} \geq 0$,

[^0]$E\left(z^{N} e^{-\theta_{1} \tau-\theta_{2} I}\right)=1-\exp \left\{-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \iint_{v-u \leq 0} e^{-\theta_{1} v+\theta_{2}(v-u)} d A^{* n}(u) d B^{* n}(v)\right\}$,
where A and B are the distribution functions of the interarrival times and the service times, and $A^{* n}$ denotes n-fold convolution of A. The derivation of (1.1) is based on fluctuation theory applied to the underlying random walk of the queueing system.

In this paper a different approach is developed. For $t \geq 0$ let X_{t} be the number of customers in the system at time t, Y_{t} be the time elapsed at time t since the last arrival of a customer and Z_{t} be the time elapsed between t and the last completion of a service before t. Let the system start at time 0 with the condition $X_{0}=j, Y_{0}=y, Z_{0}=z$ for some $j \in \mathbf{N}$ and $y, z \geq 0$. Clearly $\left(X_{t}, Y_{t}, Z_{t}\right)$ is a Markov process. For $l \leq j$ let τ_{l} be the time passing until the number of customers in the system is reduced from j to $j-l$. We shall derive an integral equation for

$$
\begin{equation*}
\Psi_{y, z}(\alpha, E):=E\left(e^{-\alpha \tau_{1}} 1_{\left\{Y_{\tau_{1}} \in E\right\}} \mid X_{0}=j, Y_{0}=y, Z_{0}=z\right) \tag{1.2}
\end{equation*}
$$

($\alpha>0, E$ a Borel subset of $[0, \infty)$) by some rather simple arguments based on the Markov character of the process $\left(X_{t}, Y_{t}, Z_{t}\right)$. Under a slight condition this integral equation is seen to determine $(\alpha, E) \rightarrow \Psi_{y, z}(\alpha, E)$ uniquely and, moreover, turns out to be solvable by the method of successive approximations. This method provides a sequence $\Psi_{y, z}^{(n)}$ tending to $\Psi_{y, z}$ at an exponential rate of convergence uniformly with respect to (y, z). This will be useful for a numerical determination of the joint distribution of τ_{1} and $Y_{\tau_{1}}$. Note that τ_{1}, the time for decreasing the numbers of customers from j to $j-1$, is for $j=1$ simply the ordinary busy period duration, while $Y_{\tau_{1}}$ is, for $j=1$, the waiting time of the last customer served in the busy period under consideration.

The process $\left(X_{t}, Y_{t}, Z_{t}\right)$ has also been studied by Keilson and Kooharian $(1960,1962)$ who rely on rather involved Wiener-Hopf techniques. The fairly straightforward approach given here is however sufficient to derive the conditional joint distribution of ($\tau_{1}, Y_{\tau_{1}}$) for an arbitrary initial condition on (X_{0}, Y_{0}, Z_{0}). Further it will be seen in Section 3 that our method can be applied to determine the Laplace transforms $\varphi_{j}(\cdot \mid y, z)$ of the τ_{j}, conditional on $X_{0}=l \geq j, Y_{0}=y, Z_{0}=z$. Define their joint generating function by

$$
\begin{equation*}
\Phi(x, u \mid y, z)=\sum_{j=1}^{\infty} \varphi_{j}(u \mid y, z) x^{j}, \quad|x|<1, u, y, z \geq 0 \tag{1.3}
\end{equation*}
$$

We obtain a system of two Fredholm integral equations of the second kind for the functions $y \rightarrow \Phi(x, u \mid y, 0)$ and $z \rightarrow \Phi(x, u \mid 0, z)$ and an equation which gives Φ in terms of these two functions. Under weak conditions this
system of integral equations has the corresponding Neumann series as its unique solution.

In the concluding Section 4 we use our technique to calculate $E\left(\exp \left\{-u \tau_{j}\right\} \mid\right.$ $X_{0}=l, Z_{0}=z$) for the bulk-arrival queue $M^{X} / G / 1$. The distribution of the busy period duration (i.e. of τ_{1} given that $X_{0}=1, Z_{0}=0$) has already been derived in Cohen (1980, Chapter III, 2.3) using a different method.

Throughout the paper we assume that the distribution functions of the interarrival times and the service times possess densities $a(x)$ and $b(y)$.

2. The joint distribution of $\left(\tau_{1}, Y_{\tau_{1}}\right)$ in a $G / G / 1$ queueing system

For $y, z \geq 0$ and $j=1,2$ let $Q_{y, z, j}$ be the joint conditional distribution of $\left(\tau_{j}, Y_{\tau_{j}}\right)$ given that $X_{0}=j, Y_{0}=y, Z_{0}=z$. Let

$$
\begin{equation*}
\Psi_{y, z}(\alpha, E):=\int_{0}^{\infty} e^{-\alpha t} Q_{y, z, 1}(d t, E), \tag{2.1}
\end{equation*}
$$

where $\alpha>0$ and E is a Borel subset of $[0, \infty)$. The duration of a busy period initiated by one customer arriving in the system at time 0 then has the Laplace transform $\alpha \rightarrow \Psi_{0,0}(\alpha,[0, \infty))$. We shall now derive an integral equation for $\Psi_{y, z}$.

Theorem 1. For all $u, y, z \geq 0$ and all $\alpha>0$ we have

$$
\begin{align*}
& \Psi_{y, z}(\alpha,[0, u])=\int_{0}^{\infty} e^{-\alpha t} \frac{(1-A(y+t)) b(z+t)}{(1-A(y))(1-B(z))} 1_{[0, \infty)}(u-y-t) d t \tag{2.2}\\
& \quad+\int_{t \geq 0} \int_{w^{\prime} \geq 0} e^{-\alpha t} \frac{(1-B(z+t)) a(y+t)}{(1-B(z))(1-A(y))} \Psi_{0, z+t}\left(\alpha, d w^{\prime}\right) \Psi_{w^{\prime}, 0}(\alpha,[0, u]) d t .
\end{align*}
$$

Proof. Let $X_{0}=j, Y_{0}=y, Z_{0}=z$. The first change of the queue size occurs at the time $\min \left(S_{y}, T_{z}\right)$, where S_{y} and T_{z} are independent random variables with distributions given by

$$
\begin{array}{cc}
P\left(S_{y} \geq v\right)=\frac{1-A(y+v)}{1-A(y)}, & v \geq 0 \tag{2.3}\\
P\left(T_{z} \geq w\right)=\frac{1-B(z+w)}{1-B(z)}, & w \geq 0
\end{array}
$$

($S_{y}\left(T_{z}\right)$ is the first positive arrival (departure) time.) If $S_{y}=v<T_{z}$, we have $X_{t}=j$ for $0 \leq t<v$ and $X_{v}=j+1, Y_{v}=0, Z_{v}=z+v$. The time remaining thereafter up to τ_{j} has the conditional distribution of τ_{j+1}, given that $X_{0}=j+1, Y_{0}=0, Z_{0}=z+v$.

If $T_{z}=w<S_{y}$, the analogous relations are $X_{t}=j$ for $0 \leq t<w$, $X_{w}=j-1, Y_{w}=y+w, Z_{w}=0$, so that the remaining time up to τ_{j} has the same distribution as τ_{j-1}, given that $X_{0}=j-1, Y_{0}=y+w, Z_{0}=0$.

Using these ideas for $j=1$ it is seen that $Q_{y, z, 1}$ satisfies

$$
\begin{align*}
Q_{y, z, 1}([0, t] \times[0, u])= & \int_{\substack{0 \leq s \leq t \\
y+s \leq u}} \frac{(1-A(y+s)) b(z+s)}{(1-A(y))(1-B(z))} d s \tag{2.5}\\
& +\iiint_{\substack{s+v \leq t \\
w \leq u}} \frac{(1-B(z+s)) a(y+s)}{(1-B(z))(1-A(y))} Q_{0, z+s, 2}(d v, d w) d s
\end{align*}
$$

Next we shall use the following relation between $Q_{y, z, 1}$ and $Q_{y, z, 2}$:

$$
\begin{equation*}
Q_{y, z, 2}(E \times F)=\iint_{v^{\prime}+v^{\prime \prime} \in E} \int_{w^{\prime} \geq 0} Q_{y, z, 1}\left(d v^{\prime}, d w^{\prime}\right) Q_{w^{\prime}, 0,1}\left(d v^{\prime \prime}, F\right) \tag{2.6}
\end{equation*}
$$

for all Borel subsets E, F of $[0, \infty)$. To see (2.6), note that in order to reduce the queue size from 2 to 0 , it must be first decreased to 1 which happens at some time v^{\prime}, say, and the time which is then elapsed since the last arrival can be any $w^{\prime} \in[0, \infty)$. Thereafter the queue size has to be decreased from 1 to 0 after some time $v^{\prime \prime}$. Integrating with respect to $\left(v^{\prime}, w^{\prime}\right)$ and $v^{\prime \prime}$ yields (2.6).

Inserting (2.6) into (2.5) we obtain

$$
\begin{align*}
& Q_{y, z, 1}([0, t] \times[0, u])=\int_{0}^{t} \frac{(1-A(y+s)) b(z+s)}{(1-A(y))(1-B(z))} 1_{[0, \infty)}(u-y-s) d s \tag{2.7}\\
& +\iiint_{\substack{s+v^{\prime}+v^{\prime \prime} \leq t \\
s \geq 0}} \int_{w \leq u} \int_{w^{\prime} \geq 0} \frac{(1-B(z+s)) a(y+s)}{(1-B(z))(1-A(y))} \\
& \times Q_{0, z+s, 1}\left(d v^{\prime}, d w^{\prime}\right) Q_{w^{\prime}, 0,1}\left(d v^{\prime \prime}, d w\right) d s .
\end{align*}
$$

Finally one has to take the Laplace transform of the measure

$$
B \rightarrow Q_{y, z, 1}(B \times[0, u]),
$$

where u is fixed, to complete the proof.
For fixed $\alpha>0$ the function $(y, z, E) \rightarrow \Psi_{y, z}(\alpha, E)$ is uniquely determined by equation (2.2) and the condition that $\Psi_{y, z}(\alpha, \cdot)$ is a subprobability measure, if

$$
\begin{equation*}
G(\alpha):=\sup _{y \geq 0} \int_{0}^{\infty} \frac{a(y+t)}{1-A(y)} e^{-\alpha t} d t<\frac{1}{2} . \tag{2.8}
\end{equation*}
$$

For let \mathscr{B} be the Banach space of all functions $\rho(y, z, E)$ such that $\rho(\cdot, \cdot, E)$: $[0, \infty)^{2} \rightarrow \mathbf{R}$ is measurable for each Borel subset E of $[0, \infty), \rho(y, z, \cdot)$ is a signed measure for each $(y, z) \in[0, \infty)^{2}$ and

$$
\begin{equation*}
\|\rho\|:=\sup _{y, z \geq 0}|\rho(y, z, \cdot)|<\infty \tag{2.9}
\end{equation*}
$$

($|\nu|$ denotes the total variation of a signed measure ν). Let $\mathscr{K}:=\{\rho \in$ $\mathscr{B} \mid\|\rho\| \leq 1\}$ and define the operator $U_{\alpha}: \mathscr{K} \rightarrow \mathscr{K}$ by

$$
\begin{align*}
\left(U_{\alpha} \rho\right)(y, z, E):=\int_{t \geq 0} \int_{w^{\prime}>0} e^{-\alpha t} \frac{(1-B(z+t)) a(y+t)}{(1-B(z))(1-A(y))} \tag{2.10}\\
\times \rho\left(0, z+t, d w^{\prime}\right) \rho\left(w^{\prime}, 0, E\right) d t .
\end{align*}
$$

If $\rho, \tilde{\rho} \in \mathscr{K}$, we have

$$
\begin{align*}
& \left\|U_{\alpha} \rho-U_{\alpha} \tilde{\rho}\right\| \leq \sup _{y, z \geq 0} \int_{t \geq 0} e^{-\alpha t} \frac{(1-B(z+t)) a(y+t)}{(1-B(z))(1-A(y))} \tag{2.11}\\
& \times\left\{\int \int \left[\left|\rho\left(0, z+t, d w^{\prime}\right) \rho\left(w^{\prime}, 0, d w\right)-\rho\left(0, z+t, d w^{\prime}\right) \tilde{\rho}\left(w^{\prime}, 0, d w\right)\right|\right.\right. \\
& \left.\left.\left.\quad+\mid \rho\left(0, z+t, d w^{\prime}\right) \tilde{\rho}\left(w^{\prime}, 0, d w\right)-\tilde{\rho}\left(0, z+t, d w^{\prime}\right) \tilde{\rho}\left(w^{\prime}, 0, d w\right)\right]\right]\right\} d t \\
& \quad \leq \sup _{y, z \geq 0} 2\|\rho-\tilde{\rho}\| \int_{t \geq 0} e^{-\alpha t} \frac{a(y+t)}{1-A(y)} d t \\
& =2 G(\alpha)\|\rho-\tilde{\rho}\| .
\end{align*}
$$

Thus if $G(\alpha)<1 / 2$ and $\rho, \tilde{\rho}$ are two solutions of (2.2) satisfying $\|\rho\|,\|\tilde{\rho}\| \leq 1$, (2.2) and (2.11) entail that

$$
\begin{equation*}
\|\rho-\tilde{\rho}\|=\left\|U_{\alpha} \rho-U_{\alpha} \tilde{\rho}\right\| \leq 2 G(\alpha)\|\rho-\tilde{\rho}\| \tag{2.12}
\end{equation*}
$$

so that $\rho=\tilde{\rho}$.
Especially if

$$
\begin{equation*}
G(\alpha)<\frac{1}{2} \quad \text { for all } \alpha \geq \alpha_{0} \tag{2.13}
\end{equation*}
$$

for some $\alpha_{0}>0$, equation (2.2) uniquely determines the Laplace transform of the measure $Q_{y, z, 1}(\cdot, E)$ for every fixed triple (y, z, E). Moreover, the above considerations show that the method of successive approximations yields a sequence of $\left(\Psi^{(n)}\right)_{n \geq 0}$ which converges to Ψ in the total variation distance with respect to E and uniformly with respect to y and z : we have

$$
\begin{equation*}
\sup _{y, z}\left|\Psi_{y, z}^{(n)}(\alpha, \cdot)-\Psi_{y, z}(\alpha, \cdot)\right| \leq \frac{[2 G(\alpha)]^{n}}{1-2 G(\alpha)} \sup _{y, z}\left|\Psi_{y, z}^{(1)}(\alpha, \cdot)-\Psi_{y, z}^{(0)}(\alpha, \cdot)\right| . \tag{2.14}
\end{equation*}
$$

We can take an arbitrary $\Psi_{y, 2}^{(0)}(\alpha, E)$ belonging to \mathscr{K} and then, for $n \geq 1$, have to find $\Psi_{y, z}^{(n)}(\alpha, E)$ recursively by

$$
\begin{align*}
& \Psi_{y, z}^{(n)}(\alpha, E):=\int_{0}^{\infty} e^{-\alpha t} \frac{(1-A(y+t)) b(z+t)}{(1-A(y))(1-B(z))} 1_{[0, \infty)}(u-y-t) d t \tag{2.15}\\
& \quad+\int_{i \geq 0} \int_{w^{\prime} \geq 0} e^{-\alpha t} \frac{(1-B(z+t)) a(y+t)}{(1-B(z))(1-A(y))} \Psi_{0, z+t}^{(n-1)}\left(\alpha, d w^{\prime}\right) \Psi_{w^{\prime}, 0}^{(n-1)}(\alpha, E) d t .
\end{align*}
$$

Condition (2.13) is for example satisfied, if A has a bounded hazard rate $a(y) /(1-A(y))$. For if $a /(1-A) \leq K$,

$$
\begin{equation*}
G(\alpha) \leq \int_{0}^{\infty} \frac{a(y+t)}{1-A(y+t)} e^{-\alpha t} d t \leq K / \alpha \tag{2.16}
\end{equation*}
$$

3. The Laplace transform of τ_{j}

Next we consider

$$
\begin{equation*}
\varphi_{j}(u \mid y, z):=E\left(\exp \left\{-u \tau_{j}\right\} \mid X_{0}=l, Y_{0}=y, Z_{0}=z\right), \tag{3.1}
\end{equation*}
$$

where $u, y, z \geq 0$ and $l \geq j \geq 1$. Using the argument already employed at the beginning of the proof of Theorem 1, but now for arbitrary $j \geq 1$ and for the Laplace transforms instead of the distributions themselves, we obtain

$$
\begin{align*}
& \varphi_{j}(u \mid y, z)=\int_{0}^{\infty} e^{-u v} \varphi_{j+1}(u \mid 0, z+v) \frac{(1-B(z+v)) a(y+v)}{(1-B(z))(1-A(y))} d v \tag{3.2}\\
& \quad+\int_{0}^{\infty} e^{-u w} \varphi_{j-1}(u \mid y+w, 0) \frac{(1-A(y+w)) b(z+w)}{(1-A(y))(1-B(z))} d w, \quad j \geq 2
\end{align*}
$$

and
(3.3) $\varphi_{1}(u \mid y, z)=\int_{0}^{\infty} e^{-u w} \frac{(1-A(y+w)) b(z+w)}{(1-A(y))(1-B(z))} d w$

$$
+\int_{0}^{\infty} e^{-u v} \varphi_{2}(u \mid 0, z+v) \frac{(1-B(z+v)) a(y+v)}{(1-B(z))(1-A(y))} d v
$$

To solve this system we introduce the generating function

$$
\begin{equation*}
\Phi(x, u \mid y, z):=\sum_{j=1}^{\infty} \varphi_{j}(u \mid y, z) x^{j}, \quad|x|<1 \tag{3.4}
\end{equation*}
$$

Summing (3.2) and (3.3) over j yields after some simple manipulations

$$
\begin{align*}
x \Phi(x, u \mid y, z)= & x^{2} \int_{0}^{\infty} e^{-u w} \frac{(1-A(y+w)) b(z+w)}{(1-A(y))(1-B(z))} d w \tag{3.5}\\
& +\int_{0}^{\infty} e^{-u w} \Phi(x, u \mid 0, z+w) \frac{(1-B(z+w)) a(y+w)}{(1-B(z))(1-A(y))} d w \\
& +x^{2} \int_{0}^{\infty} e^{-u w} \Phi(x, u \mid y+w, 0) \frac{(1-A(y+w)) b(z+w)}{(1-A(y))(1-B(z))} d w \\
& -x \int_{0}^{\infty} e^{-u w} \varphi_{1}(u \mid 0, z+w) \frac{(1-B(z+w)) a(y+w)}{(1-B(z))(1-A(y))} d w
\end{align*}
$$

Note that

$$
\begin{equation*}
\varphi_{1}(u \mid y, z)=\Psi_{y, z}(u,[0, \infty)), \tag{3.6}
\end{equation*}
$$

and Ψ has been determined in the previous section. We arrive at the following result.

Theorem 2. Let $u \geq 0$ and $x \in \mathbf{R},|x|<1$, be fixed. The functions $\boldsymbol{\Phi}(x, u \mid 0, \cdot)$ and $\boldsymbol{\Phi}(x, u \mid \cdot, 0)$ satisfy the following system of Fredholm integral equations of the second kind:

$$
\begin{align*}
&(1-B(z)) x \Phi(x, u \mid 0, z)=x^{2} \int_{0}^{\infty} e^{-u w}(1-A(w)) b(z+w) d w \tag{3.7}\\
&+\int_{0}^{\infty} e^{-u w} \Phi(x, u \mid 0, z+w)(1-B(z+w)) a(w) d w \\
&+x^{2} \int_{0}^{\infty} e^{-u w} \Phi(x, u \mid w, 0)(1-A(w)) b(z+w) d w \\
&-x \int_{0}^{\infty} e^{-u w} \varphi_{1}(u \mid 0, z+w)(1-B(z+w)) a(w) d w
\end{align*}
$$

$$
\begin{equation*}
(1-A(y)) x \Phi(x, u \mid y, 0)=x^{2} \int_{0}^{\infty} e^{-u w}(1-A(y+w)) b(w) d w \tag{3.8}
\end{equation*}
$$

$$
+\int_{0}^{\infty} e^{-u w} \Phi(x, u \mid 0, w)(1-B(w)) a(y+w) d w
$$

$$
+x^{2} \int_{\dot{0}}^{\infty} e^{-u w} \Phi(x, u \mid y+w, 0)(1-A(y+w)) b(w) d w
$$

$$
-x \int_{0}^{\infty} e^{-u w} \varphi_{1}(\hat{u} \mid 0, w)(1-B(w)) a(y+w) d w
$$

For arbitrary $y, z \geq 0$ the function $\Phi(x, u \mid y, z)$ is then connected with $\Phi(x, u \mid 0, \cdot)$, $\Phi(x, u \mid \cdot, 0)$ and $\varphi_{1}(u \mid 0, z)$ by (3.5).

Equations (3.7) and (3.8) can be written in the form

$$
\begin{equation*}
f=g+K f \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
f=\binom{f_{1}}{f_{2}}, \quad g=\binom{g_{1}}{g_{2}}, \quad K f=\binom{K_{11} f_{1}+K_{12} f_{2}}{K_{21} f_{1}+K_{22} f_{2}} \tag{3.10}
\end{equation*}
$$

and $f_{1}, f_{2}, g_{1}, g_{2}$ are defined as follows:
(3.11) $f_{1}(y)=(1-B(y)) \Phi(x, u \mid 0, y)$,
(3.12) $f_{2}(y)=(1-A(y) \Phi(x, u \mid y, 0)$,

$$
\begin{align*}
g_{1}(y)=x & \int_{0}^{\infty} e^{-u w}(1-A(w)) b(y+w) d w \tag{3.13}\\
& -\int_{0}^{\infty} e^{-u w} \varphi_{1}(u \mid 0, y+w)(1-B(y+w)) a(w) d w
\end{align*}
$$

$$
\begin{align*}
g_{2}(y)=x & \int_{0}^{\infty} e^{-u w}(1-A(y+w)) b(w) d w \tag{3.14}\\
& -\int_{0}^{\infty} e^{-u w} \varphi_{1}(u \mid 0, w)(1-B(w)) a(y+w) d w
\end{align*}
$$

The definition of the integral operators $K_{i j}, i, j=1,2$, is clear from (3.7) and (3.8); for instance,

$$
\begin{equation*}
\left(K_{11} h\right)(z)=x^{-1} \int_{0}^{\infty} e^{-u v} h(z+v) a(v) d v \tag{3.15}
\end{equation*}
$$

For $y \geq 0$ let \hat{a}_{y} and \hat{b}_{y} be the Laplace transform of the functions $v \rightarrow a(y+v)$ and $v \rightarrow b(y+v)$. Then we have, for arbitrary bounded measurable functions $h:[0, \infty) \rightarrow \mathbf{R}$,

$$
\begin{equation*}
\left|K_{11} h(z)\right|=\left|x^{-1} \int_{0}^{\infty} e^{-u v} h(z+v) a(v) d v\right| \leq|x|^{-1} \hat{a}_{0}(u)\|h\|_{\infty} \tag{3.16}
\end{equation*}
$$

where $\|h\|_{\infty}:=\sup _{z \geq 0}|h(z)|$, and similarly

$$
\begin{equation*}
\left|K_{12} h(z)\right|=\left|x \int_{0}^{\infty} e^{-u v} h(v) b(z+v) d v\right| \leq|x| \hat{b}_{z}(u)\|h\|_{\infty} \tag{3.17}
\end{equation*}
$$

If we define $\|h\|:=\left\|h_{1}\right\|_{\infty}+\left\|h_{2}\right\|_{\infty}$ for

$$
h=\binom{h_{1}}{h_{2}}:[0, \infty) \rightarrow \mathbf{R}^{2}
$$

(3.16)-(3.18) yield

$$
\begin{align*}
\|K h\| \leq & |x|^{-1} \hat{a}_{0}(u)\left\|h_{1}\right\|_{\infty}+|x| \sup _{z \geq 0} \hat{b}_{z}(u)\left\|h_{2}\right\|_{\infty} \tag{3.20}\\
& +|x|^{-1} \sup _{z \geq 0} \hat{a}_{z}(u)\left\|h_{1}\right\|_{\infty}+|x| \hat{b}_{0}(u)\left\|h_{2}\right\|_{\infty}
\end{align*}
$$

Let us assume that

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \sup _{z \geq 0} \hat{a}_{z}(u)=\lim _{u \rightarrow \infty} \sup _{z \geq 0} \int_{0}^{\infty} e^{-u v} a(z+v) d v=0 \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \sup _{z \geq 0} \hat{b}_{z}(u)=0 \tag{3.22}
\end{equation*}
$$

Equations (3.21) and (3.22) are not very restrictive conditions; they are for example satisfied, if a and b are monotone on [T, ∞) for some $T \geq 0$. If (3.21) and (3.22) are valid, some standard arguments using (3.20) now show that, for sufficiently large u, (3.9) possesses a unique continuous solution which is given by the uniformly convergent Neumann series

$$
\begin{equation*}
f=g+K g+K^{2} g+\cdots \tag{3.23}
\end{equation*}
$$

Thus for large u the functions $\Phi(x, u \mid 0, \cdot)$ and $\Phi(x, u \mid \cdot, 0)$ are uniquely determined by (3.7) and (3.8), and the series (3.23) gives a way to approximate them exponentially fast. For arbitrary $\varepsilon \in(0,1 / 2)$ this convergence is uniform with respect to $x \in(\varepsilon, 1-\varepsilon)$, if $u \geq u_{0}=u_{0}(\varepsilon)$.

4. The bulk queue $M^{X} / G / 1$

For the queueing system $M^{X} / G / 1$ the above technique can also be applied to determine the conditional Laplace transform

$$
\begin{equation*}
\varphi_{j}(u \mid z):=E\left(\exp \left\{-u \tau_{j}\right\} \mid X_{0}=l, Z_{0}=z\right), \quad u, z \geq 0, l \geq j \geq 1 \tag{4.1}
\end{equation*}
$$

of the first time instant τ_{j} at which the queue size is decreased from l to $l-j$. Let $A(x)=1-e^{-\lambda x}, x \geq 0$, for some $\lambda>0$. At the time of the i th arrival in $(0, \infty)$ a group of A_{i} customers enters the system, where A_{1}, A_{2}, \ldots are assumed to be independent random variables having the common distribution $P\left(A_{i}=n\right)=p_{n}, n=1,2, \ldots$, and the generating function $p(s):=\sum_{n=1}^{\infty} p_{n} s^{n}$. For $M^{X} / G / 1$ obviously $\left(X_{t}, Z_{t}\right)$ is a Markov process. It is not difficult to see that

$$
\begin{equation*}
\varphi_{j}(u \mid z)=\varphi_{1}(u \mid z) \varphi_{1}(u \mid 0)^{j-1} \tag{4.2}
\end{equation*}
$$

so that it suffices to compute $\varphi_{1}(u \mid z)$. Now given that $X_{0}=1, Z_{0}=z$, the following possibilities can be distinguished. If no new customers enter before the next service is completed at time x, say (an event of probability $\left.[b(z+x) /(1-B(z))] e^{-\lambda x} d x\right)$, we have $\tau_{1}=x$. If $j \geq 1$ arrivals take place before the next service completion time x and the number of new customers entering the system in $(0, x]$ is equal to n, we have $\tau_{1}=x+\tilde{\tau}_{n}$, where $\tilde{\tau}_{n}$ has the same distribution as τ_{n}, given that $X_{0}=n, Z_{0}=0$. This possibility occurs with probability

$$
e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} P\left(\sum_{i=1}^{j} A_{i}=n\right) \frac{b(z+x)}{1-B(z)} d x
$$

For $\varphi_{1}(u \mid z)$ these considerations yield

$$
\begin{align*}
\varphi_{1}(u \mid z) & =\int_{0}^{\infty} e^{-u x} \frac{b(z+x)}{1-B(z)} e^{-\lambda x} d x \tag{4.3}\\
& +\sum_{j=1}^{\infty} \sum_{n=j}^{\infty}\left[\int_{0}^{\infty} e^{-u x} e^{-\lambda x} \frac{(\lambda x)^{j}}{j!} P\left(\sum_{i=1}^{j} A_{i}=n\right) \frac{b(z+x)}{1-B(z)} d x\right] \varphi_{1}(u \mid 0)^{n} \\
= & \frac{1}{1-B(z)}\left[\int_{0}^{\infty} e^{-(u+\lambda) x} b(z+x) d x\right. \\
& \left.+\sum_{j=1}^{\infty} \int_{0}^{\infty} e^{-(u+\lambda) x} b(z+x) \frac{(\lambda x)^{j}}{j!} p\left(\varphi_{1}(u \mid 0)\right)^{j} d x\right] \\
= & \frac{1}{1-B(z)} \int_{0}^{\infty} b(z+x) \exp \left\{\lambda x p\left(\varphi_{1}(u \mid 0)\right)-(u+\lambda) x\right\} d x
\end{align*}
$$

Equations (4.3) show how to compute $\varphi_{1}(u \mid z)$, if $\varphi_{1}(u \mid 0)$ is known. For $z=0$, (4.3) can be written as

$$
\begin{equation*}
\varphi_{1}(u \mid 0)=f\left(u+\lambda-\lambda p\left(\varphi_{1}(u \mid 0)\right)\right) \tag{4.4}
\end{equation*}
$$

where f is the Laplace transform of $b(x)$.
Equation (4.4) is a generalization of the well-known Takács equation (Feller (1971), pages 441-442 and 473) which comes out for $p(x)=x$. As in the classic case the following lemma is easily proved.

Lemma. Assume that $1 / \mu:=\int_{0}^{\infty} x b(x) d x<\infty$ and $\nu:=\sum_{n=1}^{\infty} n p_{n}<\infty$. The equation

$$
\begin{equation*}
\varphi(u)=f(u+\lambda-\lambda p(\varphi(u))), \quad u>0, \tag{4.5}
\end{equation*}
$$

possesses a unique solution $\varphi(u)$ which is the Laplace transform of a distribution which is proper if $\lambda \nu / \mu \leq 1$ and defective otherwise.

As an example, let us consider the case when $B(x)=1-e^{-\mu x}, x \geq 0$, for some $\mu>0$. Equation (4.4) for $\varphi=\varphi_{1}(\cdot \mid 0)$ takes the form

$$
\begin{equation*}
\varphi(u)=\frac{\mu}{\mu+\lambda+u-\lambda p(\varphi(u))}=\frac{\mu}{\mu+\lambda+u}+\frac{\lambda}{\mu+\lambda+u} \varphi(u) p(\varphi(u)) . \tag{4.6}
\end{equation*}
$$

We note that φ can be expanded into ascending powers of $(\lambda+\mu+u)^{-1}$ in the form

$$
\begin{equation*}
\varphi(u)=\sum_{n=1}^{\infty} q_{n}[(\lambda+\mu) /(\lambda+\mu+u)]^{n}, \quad u \geq 0 \tag{4.7}
\end{equation*}
$$

where $q_{n} \geq 0$ for all $n \geq 1$. To derive (4.7), let X_{i} be the time between the $(i-1)$ th and the i th jump of the queue size and let Y_{i} be the size of the i th
jump. Then if $j_{1}, j_{2}, \ldots, j_{n} \in\{-1,1,2,3, \ldots\}$ satisfy $j_{1}+\cdots+j_{m}>-1$ for $m=1, \ldots, n-1$ and $j_{1}+\cdots+j_{n}=-1$, it is easily seen that

$$
\begin{equation*}
\int_{\left\{Y_{1}=j_{1}, \ldots, Y_{n}=j_{n}\right\}} e^{-u\left(X_{1}+\cdots+X_{n}\right)} d P=\prod_{m=1}^{n} \int_{\left\{Y_{m}=j_{m}\right\}} e^{-u X_{m}} d P \tag{4.8}
\end{equation*}
$$

and

$$
\begin{gather*}
\int_{\left\{Y_{m}=-1\right\}} e^{-u X_{m}} d P=\frac{\mu}{\lambda+\mu+u}, \tag{4.9}\\
\int_{\left\{Y_{m}=j_{m}\right\}} e^{-u X_{m}} d P=\frac{\lambda}{\lambda+\mu+u}, \quad \text { if } j_{m} \geq 1, \tag{4.10}
\end{gather*}
$$

since X_{m} can be represented as the minimum of two exponential variables S_{m} and T_{m}, say, with means $1 / \lambda$ and $1 / \mu$, respectively, and $Y_{m}=1$ if and only if $S_{m}<T_{m}$. Obviously $\varphi(u)$ can be written as a series of terms of the form (4.8). Inserting (4.9) and (4.10) into (4.8) shows (4.7).

Let $v:=(\lambda+\mu) /(\lambda+\mu+u), \tilde{\varphi}(v):=\varphi(u)$ if $v \in(0,1]$ and $\tilde{\varphi}(0):=0$. From (4.6) it follows that

$$
\begin{equation*}
\tilde{\varphi}(v)=\frac{\mu}{\mu+\lambda} v+\frac{\lambda}{\mu+\lambda} v \tilde{\varphi}(v) p(\tilde{\varphi}(v)) . \tag{4.11}
\end{equation*}
$$

Inserting (4.7) into (4.11) and comparing the coefficients at both sides gives the following recursive relation for the q_{n} :

$$
\begin{align*}
q_{1} & =\mu /(\mu+\lambda), \quad q_{2}=0, \\
q_{n+1} & =\frac{\lambda}{\mu+\lambda} \sum\binom{i_{1}+\cdots+i_{n}}{i_{1}, \ldots, i_{n}} p_{i_{1}+\cdots+i_{n}-1} q_{1}^{i_{1}} \cdots q_{n}^{i_{n}}, \quad n>1, \tag{4.12}
\end{align*}
$$

where the sum is taken over all n-tuples (i_{1}, \ldots, i_{n}) of nonnegative integers for which $\sum_{j=1}^{n} j i_{j}=n$. To check (4.9), it is convenient to use the formula

$$
\begin{equation*}
\frac{d^{n}}{d v^{n}}(F \circ \varphi)(v)=\sum \frac{n!}{i_{1}!\cdots i_{n}!} F^{\left(i_{1}+\cdots+i_{n}\right)}(\varphi(v)) \prod_{j=1}^{n}\left(\frac{\varphi^{(j)}(v)}{j!}\right)^{i_{j}} \tag{4.13}
\end{equation*}
$$

where the sum is extended over the same set of n-tuples as in (4.12) (see Gradshteyn and Ryzhik (1980), page 19, formulae 0.430).

Equation (4.7) can be inverted term-by-term. Thus the density of τ_{1} is given by

$$
\begin{equation*}
e^{-(\mu+\lambda) t} \sum_{n=1}^{\infty} \frac{(\mu+\lambda)^{n}}{(n-1)!} q_{n} t^{n-1} . \tag{4.14}
\end{equation*}
$$

References

J. W. Cohen (1982), The single server queue (North-Holland, Amsterdam-New York-Oxford).
W. Feller (1971), An introduction to probability theory and its applications, volume II (Wiley, New York).
P. Finch (1961), 'On the busy period in the queueing system $G I / G / 1$ ', J. Austral Math. Soc. 2, 217-227.
I. S. Gradshteyn and I. M. Ryzhik (1980), Table of integrals, series, and products (Academic Press, New York).
J. Keilson and A. Kooharian (1960), 'On time-dependent queueing processes', Ann. Math. Statist. 31, 104-1 12.
J. Keilson and A. Kooharian (1962), 'On the general time-dependent queue with a single server', Ann. Math. Statist. 33, 767-791.
J. F. C. Kingman (1962), 'The use of Spitzer's identity in the investigation of the busy period and other quantities in the queue $G I / G / 1^{\prime}, J$. Austral Math. Soc. 2, 345-356.
N. U. Prabhu (1980), Stochastic storage processes (Springer, New York-Berlin-Heidelberg).

Fachbereich Mathematik/Informatik
Universität Osnabrück
Postfach 4469
Albrechtstrasse 28
45 Osnabrück
West Germany

[^0]: (C) 1990 Australian Mathematical Society $0263-6115 / 90 \$$ A2.00 +0.00

