HOMOMORPHISMS BETWEEN LATTICES OF ZERO-SETS

BY

S. BROVERMAN¹

ABSTRACT. For a completely regular Hausdorff topological space X, let Z(X) denote the lattice of zero-sets of X. If τ is a continuous map from X to Y, then there is a lattice homomorphism τ' from Z(Y) to Z(X) induced by τ which is defined by $\tau'(A) = \tau^{\leftarrow}(A)$. A characterization is given of those lattice homomorphisms from Z(Y) to Z(X) which are induced in the above way by a continuous function from X to Y.

1. Introduction. The theory of duality linking topology and algebra has been studied in depth in the past. Most notably in this area, is the work of M. H. Stone in [3], which describes the duality between compact, Hausdorff, 0-dimensional spaces (i.e. spaces with a base of open-and-closed sets) and Boolean algebras. In particular, it is shown that if X and Y are compact, Hausdorff, 0-dimensional spaces and B(X) and B(Y) are their Boolean algebras of clopen sets then if $t:B(Y) \rightarrow B(X)$ is a homomorphism such that t(Y) = X, then there is a continuous map $f: X \rightarrow Y$ such that $t(A) = f^{\leftarrow}(A)$ for all $A \in B(Y)$. In chapter 10 of [1] this aspect of duality is studied where the algebraic object is C(X), the ring of continuous functions of a completely regular, Hausdorff space. It is shown that if X and Y are realcompact spaces and if $t: C(Y) \rightarrow C(X)$ is a homomorphism such that $t((1_Y) = 1_X)$ (where 1 denotes the constant function whose range is $\{1\}$), then there is a continuous function $f: X \rightarrow Y$ such that $t(g) = g \circ f$ for all $g \in C(Y)$.

In this paper we consider the lattice Z(X), of zero-sets of a completely regular, Hausdorff space and characterize these lattice homomorphisms between zero-set lattices that arise, in the natural way described above, from continuous functions.

1.1. DEFINITION. (a) Let X and Y be spaces and let Z(X) and Z(Y) denote their respective zero-set lattices. By a σ -homomorphism t from Z(Y) to Z(X)

AMS Subj. Class: Primary 54C05, 54C50.

Secondary 54D35, 54D60

Received by the editors November 30, 1976 and in revised form, June 30, 1977.

Key words and phrases: zero-set lattice, lattice homomorphism, z-ultrafilter, realcompact, Stone-Cech compactification.

¹ This research was partially supported by a scholarship from the National Research Council of Canada.

S. BROVERMAN

March

we will mean a lattice homomorphism $t: Z(Y) \to Z(X)$ such that t preserves countable meets (i.e. if $\{A_i\}_{i=1}^{\infty} \subseteq Z(Y)$, then $t(\bigcap_{i=1}^{\infty} A_i) = \bigcap_{i=1}^{\infty} t(A_i)$), and such that $t(\phi) = \phi$, t(Y) = X.

(b) Let X and Y be spaces and let $\tau: X \to Y$ be a continuous map. Then the "homomorphism induced by τ " is the map $\tau': Z(Y) \to Z(X)$ defined by $\tau'(A) = \tau^{\leftarrow}(A)$ for $A \in Z(Y)$.

Note that in 1.1(b) τ' is actually a σ -homomorphism in the sense of 1.1(a). In section 2 it is shown that these are precisely the homomorphisms induced by continuous maps.

The notation will be that of [1]. The set of integers is denoted by N. All spaces discussed are assumed to be completely regular and Hausdorff.

2. The homomorphism induced by a continuous map. Before getting to the main characterization theorem, some results of general interest on the induced homomorphism are obtained.

2.1 DEFINITION. (a) A subspace W of X is G_{δ} -dense in X if every G_{δ} in X meets W in a non-empty set.

(b) A subspace W of X is z-embedded in X if every zero-set in W is the restriction to W of a zero-set in X.

2.2. THEOREM. Let τ be a continuous map from X to Y and let τ' be the induced homomorphism from Z(Y) to Z(X). Then

(a) τ' is one-to-one iff $\tau(X)$ is G_{δ} -dense in Y, and

(b) τ' is onto iff τ is a homeomorphism onto a z-embedded subset of Y.

Proof. (a) Necessity. Suppose $\tau(X)$ is not G_{δ} -dense in Y. Then there is a non-empty G_{δ} set $H = \bigcap_{i \in N} U_i$ in Y (where U_i is open in Y for all $i \in N$) such that $H \cap \tau(X) = \phi$. Let $y \in H$. Then there is a zero-set Z in Y such that $y \in Z \subseteq H$ (for each $i \in N$ there is a zero-set Z_i in Y such that $y \in Z \subseteq U_i$ (for each $i \in N$ there is a zero-set Z_i in Y such that $y \in Z_i \subseteq U_i$ since Y is completely regular, thus $y \in Z = \bigcap_{i \in N} \subseteq Z_i \bigcap_{i \in N} U_i = H$). Hence $\tau'(Z) = \tau^{\leftarrow}(Z) = \phi = \tau^{\leftarrow}(\phi) = \tau'(\phi)$ and thus τ' is not one-to-one.

Sufficiency. Suppose τ' is not one-to-one. Then there exist $Z_1, Z_2 \in Z(Y)$ such that $\tau^{\leftarrow}(Z_1) = \tau^{\leftarrow}(Z_2)$ but $Z_1 \neq Z_2$. Let $p \in Z_1 - Z_2$. Then there is a $Z_3 \in Z(Y)$ such that $p \in Z_3$ and $Z_3 \cap Z_2 = \phi$ (as $Y - Z_2$ is a neighborhood of p). Let $Z = Z_1 \cap Z_3$. Then $\tau'(Z) = \tau^{\leftarrow}(Z_1 \cap Z_3) = \tau'(Z_1) \cap \tau^{\leftarrow}(Z_3) = \tau^{\leftarrow}(Z_2) \cap \tau^{\leftarrow}(Z_3) = \tau^{\leftarrow}(Z_2 \cap Z_3) = \tau^{\leftarrow}(\phi) = \phi$. Thus $Z \cap \tau(X) = \phi$ and hence $\tau(X)$ is not G_{δ} dense in Y.

(b) This result has been obtained independently by Mandelker in [2, p. 619], to which the reader is referred for a proof.

2.3. DEFINITION. Let X be a space. A z-filter \mathscr{F} on X is a filter on the lattice Z(X). That is $\mathscr{F} \subseteq Z(X)$ such that i) $\phi \notin \mathscr{F}$, ii) if $Z_1, Z_2 \in \mathscr{F}$ then $Z_1 \cap Z_2 \in \mathscr{F}$, and iii) if $Z_1 \in \mathscr{F}$ and $Z \in Z(X)$ such that $Z_1 \subseteq Z$, then $Z \in \mathscr{F}$. A z-filter \mathscr{F} on X

2

is prime if $Z_1 \cup Z_2 \in \mathscr{F}$ implies that either $Z_1 \in \mathscr{F}$ or $Z_2 \in \mathscr{F}$. A z-ultrafilter is a maximal z-filter. A real z-ultrafilter is a z-ultrafilter closed under countable intersection (i.e. if $\{Z_i\}_{i \in \mathbb{N}} \subseteq \mathscr{F}$, then $\bigcap_{i \in \mathbb{N}} Z_i \in \mathscr{F}$).

2.4. REMARK. If $\{p\}$ is the one point space, then $Z(\{p\}) = \{\phi, \{p\}\}\)$ is the two-point lattice which will be referred to here as $\{0, 1\}$. There is a one-to-one correspondence between σ -homomorphisms from Z(Y) onto $\{0, 1\}\)$ and real z-ultrafilters on Y. Clearly if \mathcal{F} is a real z-ultrafilter on Y, then $t:Z(Y) \rightarrow \{0, 1\}\)$ defined by t(Z) = 1 if $Z \in \mathcal{F}$, t(Z) = 0 otherwise, is a σ -homomorphism. On the other hand, if $t:Z(Y) \rightarrow \{0, 1\}\)$ is a prime z-filter on Y. Since t is a σ -homomorphism, then clearly $\mathcal{F} = t^{-}(\{1\})\)$ is a prime z-filter on Y. Since t is a σ -homomorphism, \mathcal{F} is closed under countable intersection. Thus, by [1, 7H4], \mathcal{F} is a real z-ultrafilter. It is also apparent that there is a one-to-one correspondence between all homomorphisms from Z(Y) to $\{0, 1\}\)$ and all prime z-filters on Y.

2.5. THEOREM. Let Y be a realcompact space and let t be a homomorphism from Z(Y) to Z(X). The following are equivalent.

- (i) t is a σ -homomorphism.
- (ii) $t = \tau'$ for a unique continuous map $\tau: X \to Y$.

Proof. (ii) implies (i). We have already noted in the introduction that this implication is true.

(i) implies (ii). Let $x \in X$. Let $A_x = \{Z \in Z(X) \mid x \in Z\}$. Then A_x is a real z-ultrafilter on X. Let $t^{\leftarrow}(A_x) = \{Z \in Z(Y) \mid t(Z) \in A_x\}$. Then $t^{\leftarrow}(A_x)$ is clearly a prime z-filter on Y. Furthermore, $t^{\leftarrow}(A_x)$ is closed under countable intersection (since t is a σ -homomorphism). Thus, by [1, 7H4], $t^{\leftarrow}(A_x)$ is a real z-ultrafilter on Y. Since Y is realcompact, there is a unique $y \in Y$ such that $\bigcap t^{\leftarrow}(A_x) = \{y\}$. Define $\tau(x) = y$. Then τ is a well-defined map from X to Y.

Let $Z \in Z(Y)$. Then $t(Z) = \tau^{-}(Z)$, for $x \in t(Z)$ iff $t(Z) \in A_x$ iff $Z \in t^{-}(A_x)$ iff $x \in \tau^{-}(Z)$. This shows that $t = \tau'$ and τ is continuous, as every closed subset of Y is an intersection of zero-sets.

If $\sigma: X \to Y$ such that $\sigma' = \tau' = t$, then $\sigma^{\to}(Z) = \tau^{\leftarrow}(Z)$ for every $Z \in Z(Y)$. Thus $\sigma^{\leftarrow}(\{y\}) = \sigma^{\leftarrow}(\bigcap A_y) = \tau^{\leftarrow}(\bigcap A_y) = \tau^{\leftarrow}(\{y\})$. Hence $\sigma = \tau$, and τ is unique.

The condition "Y is realcompact" in 2.5 cannot be dropped because, as is shown in [1, 8D2], $Z(X) \cong Z(\nu X)$ (lattice isomorphic by the isomorphism $Z \rightarrow cl_{\nu X}Z$, where νX denotes the Hewitt realcompactification of X) for any space X, thus Z(X) does not distinguish between X and νX . This immediately gives the following corollary to 2.5.

2.6. COROLLARY. If t is a σ -homomorphism from Z(Y) to Z(X), then there is a unique continuous map $\tau: X \to \nu Y$ such that $t(Z) = \tau^{\leftarrow}(cl_{\nu Y}Z)$ for all $Z \in Z(Y)$.

1978]

S. BROVERMAN

Theorem 2.5 also yields the following results.

2.7. COROLLARY. If X and Y are two spaces then $Z(X) \cong Z(Y)$ (lattice isomorphic) iff $vX \cong vY$.

Proof. Sufficiency. This follows from the fact, noted above, that $Z(X) \cong Z(\nu X)$ and $Z(Y) \cong Z(\nu Y)$.

Necessity. Let $t: Z(vY) \to Z(vX)$ be an isomorphism. Then $s: Z(vX) \to Z(vY)$ defined by $s(Z) = t^{\leftarrow}(Z)$ is also an isomorphism. By 2.5 there are continuous maps $\tau: vX \to vY$ and $\sigma: vY \to vX$ such that $t = \tau'$ and $s = \sigma'$ (as an isomorphism is, in particular, a σ -homomorphism). Then $\sigma' \circ \tau' = s \circ t = 1_{Z(vY)}$ (the identity map) and $\tau' \circ \sigma' = t \circ s = 1_{Z(vX)}$, i.e. $\sigma' \circ \tau' = (1_{vY})'$ and $\tau' \circ \sigma' = (1_{vX})'$ But $\sigma' \circ \tau' = (\tau \circ \sigma)'$ (as $\sigma' \circ \tau'(Z) = \sigma^{\leftarrow}(\tau^{\leftarrow}(Z)) = (\tau \circ \sigma)^{\leftarrow}(Z) = (\tau \circ \sigma)'(Z)$), and $\tau' \circ \sigma' = (\sigma \circ \tau)'$. Thus $(\tau \circ \sigma)' = (1_{vY})'$ and $(\sigma \circ \tau)' = (1_{vX})'$. By uniqueness $\tau \circ \sigma = 1_{vY}$, $\sigma \circ \tau = 1_{vX}$. Thus σ and τ are homeomorphisms.

2.8. COROLLARY. vY contains a continuous image of X iff Z(X) contains a σ -homomorphic image of Z(Y).

2.2 together with 2.5 yield the following results.

2.9. COROLLARY. Z(X) contains a σ -isomorphic copy of Z(Y) iff vY contains a G_{δ} -dense continuous image of X.

2.10. COROLLARY. vY contains a Z-embedded copy of X iff Z(X) is a σ -homomorphic image of Z(Y).

Results 2.5 to 2.10 are the Z(X)-analogues of 10.6 and 10.9 in [1].

3. The continuous map induced by a homomorphism. In section 2 we were concerned only with σ -homomorphisms. We now show that any lattice homomorphism $t: Z(Y) \to Z(X)$ (such that t(Y) = X and $t(\phi) = \phi$) induces a continuous map $\tau: \beta X \to \beta Y$.

3.1. DEFINITION. Let X be a space. Let

 $M^{p} = \{ Z \in Z(X) \mid p \in cl_{\beta X} Z \} \text{ and}$ $0^{p} = \{ Z \in Z(X) \mid cl_{\beta X} Z \text{ is a neighborhood in } \beta X \text{ of } p \}.$

3.2. PROPOSITION. Let $t: Z(Y) \to Z(X)$ be a lattice homomorphism. Then there exists a continuous map $\tau: \beta X \to \beta Y$ such that $\tau^{\leftarrow}(cl_{\beta Y}Z) \supseteq cl_{\beta X}t(Z)$. For a given $Z \in Z(Y)$, the above containment is equality if $t^{\leftarrow}(M^p) = M^{\tau(p)}$ for every $p \in \tau(cl_{\beta Y}Z)$ (i.e. is $t^{\leftarrow}(M^p)$ is an ultrafilter for every $p \in \tau^{\leftarrow}(cl_{\beta Y}Z)$).

Proof. Let $t: Z(Y) \to Z(X)$ be as hypothesized and let $x \in \beta X$. Then $t^{\leftarrow}(M^x)$ is a prime z-filter on Y. Thus, by [1.2.11], $t^{\leftarrow}(M^x)$ is contained in a unique z-ultrafilter M^p , on Y. Let $\tau: \beta X \to \beta Y$ be defined by $\tau(x) = p$. Let $Z \in Z(Y)$. Let $x \in cl_{\beta X} t(Z)$. Then $t(Z) \in M^x$, and thus $Z \in t^{\leftarrow}(M^x) \subseteq M^{\tau(x)}$. So $\tau(x) \in cl_{\beta Y} Z$,

[March

ZERO-SETS

and hence $x \in \tau^{\leftarrow}(cl_{\beta Y}Z)$, i.e. $cl_{\beta X}t(Z) \subseteq \tau^{\leftarrow}(cl_{\beta Y}Z)$. Now we show that τ is continuous.

First we show that $t(0^{\tau(x)}) \subseteq 0^x$ for every $x \in X$. Let $x \in X$. Consider $A = \{P \subseteq Z(X) \mid 0^x \subseteq P, \text{ and } P \text{ is a prime } z\text{-filter}\}$. Then $t^{\leftarrow}(P)$ is prime for every $P \in A$, and $t^{\leftarrow}(P) \subseteq t^{\leftarrow}(M^x) \subseteq M^{\tau(x)}$ (as 0^x is contained in only one z-ultrafilter, namely M^x). Thus, by [1, 7.15], $t^{\leftarrow}(P) \supseteq 0^{\tau(x)}$ for every $P \in A$. But by [1, 2.8] $0^x = \bigcap_{P \in A} P$. Therefore $t(0^{\tau(x)}) \subseteq \bigcap_{P \in A} P = 0^x$.

Let $x \in \beta X$, and let $W \in 0^{\tau(x)}$ (i.e. $cl_{\beta Y}W$ is a neighborhood of $\tau(x)$). Then $t(W) \in 0^x$. However, $cl_{\beta X}t(W) \subseteq \tau^{\leftarrow}(cl_{\beta Y}W)$, and the former set is a neighborhood of x in βX (as $t(W) \in 0^x$). Thus $\tau^{\leftarrow}(cl_{\beta Y}W)$ is a neighborhood of x. Since the closures in βY of the sets in $0^{\tau(x)}$ form a neighborhood base $\tau(x)$, this shows that τ is a continuous map.

Suppose $Z \in Z(Y)$ and $t^{\leftarrow}(M^p)$ is maximal for every $p \in \tau^{\leftarrow}(cl_{\beta Y}Z)$. If $p \in \tau^{\leftarrow}(cl_{\beta Y}Z)$, then $\tau(p) \in cl_{\beta Y}Z$ and hence $Z \in M^{\tau(p)}$. Since $t^{\leftarrow}(M^p)$ is maximal and is contained in $M^{\tau(p)}$ we must have $t^{\leftarrow}(M^p) = M^{\tau(p)}$. Thus $Z \in t^{\leftarrow}(M^p)$ and so $t(Z) \in M^p$ and $p \in cl_{\beta X}t(Z)$. Hence $cl_{\beta X}t(Z) = \tau^{\leftarrow}(cl_{\beta X}Z)$.

It is evident that distinct homomorphisms from Z(Y) to Z(X) may induce the same map from βX to βY . All that is required for two homomorphisms t_{α} and t_{β} from Z(Y) to Z(X) to induce the same map from βX to βY is that given $x \in \beta X$, there is a point $p \in \beta Y$ such that $t_{\alpha}^{\leftarrow}(M^x)$, $t_{\beta}^{\leftarrow}(M^x) \subseteq M^p$.

The continuous map τ induced by t in 3.2 in turn induces a homomorphism $t': Z(\beta Y) \to Z(\beta X)$ defined by $t'(Z) = \tau^{\leftarrow}(Z)$. Thus if $Z \in Z(\beta Y)$, then $t'(Z) \cap X = \tau^{\leftarrow}(Z) \cap X \supseteq \tau^{\leftarrow}(cl_{\beta Y}(Z \cap Y)) \cap X \supseteq t(Z \cap Y)$. So if $Z \in Z(Y)$ and $W \in Z(\beta Y)$ such that $Z = W \cap Y$ then $t'(W) \cap X \supseteq t(W \cap Y) = t(Z)$.

Thus it can be seen that if $f: X \to Y$ is continuous, then $t: Z(Y) \to Z(X)$ defined by $t(Z) = f^{\leftarrow}(Z)$ is a $(\sigma$ -) homomorphism. Then by Proposition 3.2 there is a map $\tau: \beta X \to \beta Y$ such that $\tau^{\leftarrow}(cl_{\beta Y}Z) \supseteq cl_{\beta X}t(Z) = cl_{\beta X}(f^{\leftarrow}(Z))$ for any $Z \in Z(Y)$. Thus τ must agree with f on X. For if $\tau(x) \neq f(x)$, let $Z \in Z(Y)$ be such that $f(x) \in Z$ and $\tau(x) \notin cl_{\beta Y}Z$. Clearly $x \in cl_{\beta X}(f^{\leftarrow}(Z))$, hence, $x \in \tau^{\leftarrow}(cl_{\beta Y}Z)$. But then $\tau(x) \in cl_{\beta Y}Z$ contrary to assumption. Therefore τ is precisely the Stone extension of f. Since t is also a σ -homomorphism it follows that $\tau(\nu X) \subseteq \nu Y$.

REFERENCES

1. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, 1960.

2. Mark Mandelker, F'-spaces and z-embedded subspaces, Pacific J. of Math. 28 (1969), 615-621.

3. Stone, M. H., Applications of the theory of Boolean rings to general topology, Trans, Amer. Math. Soc. 41 (1937), 375-481.

MATHEMATICS DEPARTMENT UNIVERSITY OF TORONTO TORONTO ONT.

1978]