CORRIGENDUM

SYMPLECTIC FILLINGS OF LINKS OF QUOTIENT SURFACE SINGULARITIES - CORRIGENDUM

MOHAN BHUPAL and KAORU ONO

First published online by Duke University Press 1 September 2012, subsequently published online by Cambridge University Press 11 January 2016, doi:10.1017/S0027763000022297
D. Shin informed us of his joint work [3] and that one case is missing in our list in [2]. We claimed that the link of the quotient surface singularity $I_{30(5-2)+23}$ has four minimal symplectic fillings; however, there is a fifth one. Recall that in [2] we showed that the compactifying divisor of a tetrahedral, octahedral or icosahedral singularity of Type $(3,1)$ can be chosen to have the form indicated in Figure 1, where D is a rational cuspidal curve, A and B are rational curves meeting D at the cusp point and C_{1}, \ldots, C_{k} are rational curves. The missing filling is a Case II filling. In [2], we represented these using the notation $\left(m ; D \cdot D,-c_{1}, \ldots,-c_{k} ; i, j ; a_{1} \times i_{1}, \ldots, a_{l} \times i_{l}\right)$, where m denotes the index of the singularity and $-c_{1}, \ldots,-c_{k}$ denote the self-intersection numbers of the curves C_{1}, \ldots, C_{k}. This notation is meant to indicate that if we glue the corresponding symplectic filling X to a regular neighborhood of the compactifying divisor, then there will be a pair of (-1) curves, one intersecting B and C_{i} and one intersecting D and C_{j}. In addition, there will be a further $a_{i}(-1)$-curves intersecting C_{i} for each i. In this notation, the missing filling can be represented by

$$
(30(5-2)+23 ; 5,-2,-2,-3,-3 ; 4,4 ; 2) .
$$

We would like to point out that this omission in our original list was not due to a theoretical error. Rather, it was due to our overlooking of a case - the original list was prepared by hand using the restrictions given in Propositions 4.5, 4.8 and 4.10. The omission arose by our not considering all possibilities arising from Proposition 4.10 in the case of the link of the singularity $I_{30(5-2)+23}$. It has been verified by the first author using

[^0]

Figure 1.
Compactifying divisor for a tetrahedral, octahedral, or icosahedral singularity of Type (3,1).
a program in $\mathrm{C}++[1]$ that this is the only case missing in our original list. Details of the algorithm found in the program in the case of Type $(3,1)$ singularities follow. The algorithm for the case of Type $(3,2)$ singularities is similar and the details are omitted.

Algorithm for finding symplectic fillings of links of quotient surface singularities of Type $(3,1)$

As mentioned above, corresponding to each link of a quotient surface singularity of Type $(3,1)$ there is a standard compactifying divisor K consisting of a cuspidal rational curve D, a string of rational curves C_{1}, \ldots, C_{k} and two more rational curves A and B. For our purposes it is sufficient to record the self-intersection numbers $d=D \cdot D,-c_{1}=C_{1} \cdot C_{1}, \ldots,-c_{k}=$ $C_{k} \cdot C_{k}$. We will write $Q=Q_{K}=\left(d,-c_{1}, \ldots,-c_{k}\right)$. We handle Case I and Case II symplectic fillings of the singularity link associated with the data Q separately. For Case I fillings, by Proposition 4.8, it is sufficient to list the numerical data associated to all preadmissible configurations $A^{\prime} \cup B^{\prime} \cup D^{\prime} \cup C_{1}^{\prime} \cup \cdots \cup C_{k}^{\prime}$ such that $D^{\prime} \cdot D^{\prime}=D \cdot D$ and $C_{i}^{\prime} \cdot C_{i}^{\prime} \geqslant C_{i} \cdot C_{i}$ for all i. For Case II fillings, by assumption and Proposition 4.10, first we have to identify the curves C_{i} and C_{j} such that there are exceptional curves E and F intersecting B and C_{i} and D and C_{j}, respectively, in some rational surface R containing the compactifying divisor K. Blowing down the curves E and F and denoting the resulting configuration $A^{\prime} \cup$ $B^{\prime} \cup D^{\prime} \cup C_{1}^{\prime} \cup \cdots \cup C_{k}^{\prime}$, by Proposition 4.10, it is then sufficient to find all preadmissible configurations $A^{\prime \prime} \cup B^{\prime \prime} \cup D^{\prime \prime} \cup C_{1}^{\prime \prime} \cup \cdots \cup C_{k}^{\prime \prime}$ such that $D^{\prime \prime} \cdot D^{\prime \prime}=D^{\prime} \cdot D^{\prime}$ and $C_{i}^{\prime \prime} \cdot C_{i}^{\prime \prime} \geqslant C_{i}^{\prime} \cdot C_{i}^{\prime}$ for all i. (Note that in [2], we did not define preadmissible configurations for Case II symplectic fillings of links of tetrahedral, octahedral or icosahedral singularities of Type $(3,1)$, however a definition similar to the other cases can be given.)

```
Algorithm 1 Enumerate symplectic fillings of the link of a quotient surface
singularity of Type \((3,1)\)
    procedure ListExceptionalCollections \((Q) \triangleright\) Given the data \(Q=\)
    \(\left(d,-c_{1}, \ldots,-c_{k}\right)\) of a compactifying divisor, list the set of all possible
    collections \(S=\left(e_{1}, \ldots, e_{k}\right)\) that may arise as the data of a collection of
    exceptional curves
        start with the empty collection \(S_{0}=(0, \ldots, 0)\)
        increment \(e_{1}\) in steps of 1 until it reaches \(c_{1}-1\)
        then set \(e_{1}\) to be 0 and increment \(e_{2}\) by 1
        then increment \(e_{1}\) in steps of 1 again until it reaches \(c_{1}-1\) again
        then set \(e_{1}\) to be 0 again and increment \(e_{2}\) by 1 again
        repeat this process until \(e_{2}\) reaches \(c_{2}-1\)
        then set \(e_{2}\) to be 0 and increment \(e_{3}\) by 1
        repeat in this way until \(S\) becomes \(\left(c_{1}-1, \ldots, c_{k}-1\right)\)
    end procedure
    procedure \(\operatorname{BlowDownCaseI}(Q, S) \triangleright\) Given the data \(Q\) of a compact-
    ifying divisor \(K\) of a Case I filling of the link of a quotient surface
    singularity of Type \((3,1)\) and exceptional curves data \(S\), returns the data
    of the configuration \(K^{\prime}\) obtained after a collection of exceptional curves
    represented by \(S\) has been blown down
        \(Q \leftarrow\left(d,-c_{1}+e_{1}, \ldots,-c_{k}+e_{k}\right)\)
        return \(Q\)
    end procedure
    procedure AdmissibilityTestCaseI \((Q) \triangleright\) Check whether \(Q=\)
    \(\left(d,-c_{1}, \ldots,-c_{k}\right)\) is the data of a preadmissible configuration of a Case \(I\)
    filling of the link of a quotient surface singularity of Type \((3,1)\)
        if \(k=0\) then
        if \(d<9\) then
            return 1
        else
            return 0
        end if
    end if
    let \(1 \leqslant s \leqslant k\) be the smallest index, if it exists, such that \(c_{s}=1\)
    if no such \(s\) exists then
        return 0
    end if
```

```
Algorithm 1 Continued
    let \(Q^{\prime}\) denote the data of the configuration after \(C_{s}\) is blown down
    return AdmissibilityTestCaseI \(\left(Q^{\prime}\right)\)
    end procedure
    procedure EnumerateFillingsCaseI \((Q) \triangleright\) Enumerate Case I sym-
    plectic fillings of the link of the quotient surface singularity of Type \((3,1)\)
    associated to the data \(Q=\left(d,-c_{1}, \ldots,-c_{k}\right)\)
        for all possible collections \(S=\left(e_{1}, \ldots, e_{k}\right)\) do
        \(Q^{\prime} \leftarrow \operatorname{BlowDownCaseI(Q,S)~}\)
        if AdmissibilityTestCaseI \(\left(Q^{\prime}\right)\) then
            list \(Q\) together with \(S\) as a filling
        end if
    end for
    end procedure
    procedure BlowDownCaseII \((Q, i, j, S) \triangleright\) Given the data \(Q\) of a
    compactifying divisor \(K\) of a Case II filling of the link of a quotient surface
    singularity of Type \((3,1)\), integers \(i\) and \(j\), and exceptional curves data
    \(S\), returns the data of the configuration \(K^{\prime}\) obtained after \(E\) and \(F\) and a
    collection of exceptional curves represented by \(S\) have been blown down
    \(c_{i} \leftarrow c_{i}-1\)
    \(c_{j} \leftarrow c_{j}-1\)
    \(d \leftarrow d+1\)
    \(Q \leftarrow\left(d,-c_{1}+e_{1}, \ldots,-c_{k}+e_{k}\right)\)
    return \(Q\)
    end procedure
    procedure AdmissibilityTestCaseII \((Q, i, j) \triangleright\) Check whether \(Q=\)
    \(\left(d,-c_{1}, \ldots,-c_{k}\right), i, j\) is the data of a preadmissible configuration of a
    Case II filling of the link of a quotient surface singularity of Type \((3,1)\)
        if \(k=1\) then
        if \(d<9\) and \(c_{1}=0\) then
                return 1
        else
            return 0
        end if
    end if
    let \(1 \leqslant s \leqslant k\) be the smallest index, if it exists, such that \(c_{s}=1\) and
    \(s \neq i\) and either \(s \neq j\) or \(s=k\)
```

```
Algorithm 1 Continued
    if no such \(s\) exists then
            return 0
        end if
        let \(Q^{\prime}\) denote the data of the configuration \(K^{\prime}=A^{\prime} \cup B^{\prime} \cup D^{\prime} \cup C_{1}^{\prime} \cup\)
        \(\cdots \cup C_{k-1}^{\prime}\) obtained by blowing down \(C_{s}\)
        define \(i^{\prime}\) and \(j^{\prime}\) by the condition that \(D^{\prime}\) intersects the string
        \(C_{1}^{\prime}, \ldots, C_{k-1}^{\prime}\) at \(C_{1}^{\prime}\) and at \(C_{j}^{\prime}\) and that \(B^{\prime}\) intersects the string at \(C_{i}^{\prime}\)
        return AdmissibilityTestCaseII \(\left(Q^{\prime}, i^{\prime}, j^{\prime}\right)\)
    end procedure
    procedure EnumerateFillingsCaseII \((Q) \triangleright\) Enumerate Case II sym-
    plectic fillings of the link of the quotient surface singularity of Type \((3,1)\)
    associated to the data \(Q=\left(d,-c_{1}, \ldots,-c_{k}\right)\)
        for all pairs \((i, j)\) with \(1 \leqslant i \leqslant j \leqslant k\) do
            for all possible collections \(S=\left(e_{1}, \ldots, e_{k}\right)\) do
                \(Q^{\prime} \leftarrow \operatorname{BlowDownCaseII}(Q, i, j, S)\)
                if AdmissibilityTestCaseII \(\left(Q^{\prime}, i, j\right)\) then
                list \(Q\) together with \(i, j\) and \(S\) as a filling
                end if
            end for
        end for
    end procedure
```

In the algorithm above, we assume that the compactifying divisor K associated with the data Q sits in some rational surface R. Collections of exceptional curves $\left\{E_{\alpha}\right\}$ in R that are disjoint from $D \cup A \cup B$ and such that $E_{\alpha} \cdot \bigcup C_{i}=1$ for each α will be recorded by the data $S=\left(e_{1}, \ldots, e_{k}\right)$, where e_{i} denotes the number of exceptional curves intersecting C_{i}. Thus to list all possible Case I fillings of the singularity link associated to Q, it is sufficient to enumerate all possible k-tuples S such that on blowing down a collection of exceptional curves represented by S, K is transformed into a preadmissible configuration. Similarly, to list all possible Case II fillings of the singularity link associated to Q, it is sufficient to list all possible numerical data (i, j) and S such that on blowing down E and F and a collection of exceptional curves represented by S, K is transformed into a preadmissible configuration.

Acknowledgments. We thank Dongsoo Shin and his collaborators for identifying the missing case in our list.

Supplementary material

Supplementary material is available at http://dx.doi.org/10.1017/nmj. 2 016.42.

References

[1] M. Bhupal, C++ program to compute symplectic fillings of links of quotient surface singularities, Available at www.metu.edu.tr/~bhupal.
[2] M. Bhupal and K. Ono, Symplectic fillings of links of quotient surface singularities, Nagoya Math. J. 207 (2012), 1-45.
[3] H. Park, J. Park, D. Shin and G. Urzúa, Milnor fibers and symplectic fillings of quotient surface singularities, preprint 2015.

Mohan Bhupal
Department of Mathematics
Middle East Technical University
06800 Ankara
Turkey
bhupal@metu.edu.tr
Kaoru Ono
Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606-8502
Japan
ono@kurims.kyoto-u.ac.jp

[^0]: 2010 Mathematics subject classification. Primary 53D35; Secondary 57R17, 32S25.
 © 2016 by The Editorial Board of the Nagoya Mathematical Journal

