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Abstract

In this paper we consider the MAP/G/1 queueing system with infinite capacity. In analysis,
we use the supplementary variable method to derive the double transform of the queue
length and the remaining service time of the customer in service (if any) in the steady state.
As will be shown in this paper, our method is very simple and elegant. As a one-dimensional
marginal transform of the double transform, we obtain the generating function of the queue
length in the system for the MAP/G/1 queue, which is consistent with the known result.

1. Introduction

In B-ISDNs, the major features of input traffics are high burstiness and strong corre-
lation between cell arrivals, and to support such characteristics the Markovian Arrival
Process (MAP) and the Batch Markovian Arrival Process (BMAP) have been proposed.
The BMAP is a convenient representation of the versatile Markovian point process (re-
process) and a class of which includes IPP, MMPP, Phase-type Renewal Process and
superpositions of such processes. Matrix-Geometric methods and Markov renewal
theory are usually employed for the analysis of the MAP/G/1 queueing system. Ra-
maswami [12] analyzed the N/G/l queue and Lucantoni [5] restated the results of the
N/G/l queue into BMAP notation. Lucantoni, Meier-Hellstern and Neuts [4] analyzed
the MAP/G/1 queue with server vacations. Lucantoni, Choudhury and Whitt [6] con-
sidered the transient BMAP/G/1 queue and derived the two-dimensional transforms
of the transient workload and queue-length distribution for the single-server queue
with general service times.

Recently it has been shown that the solution of the nonlinear matrix equation aris-
ing in the MAP/G/1 queue satisfies a Matrix-Exponential form. Ramaswami [13]
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considered the Matrix-Exponential form for the N/G/l and GI/N/1 queue. Lucan-
toni [5] considered the Matrix-Exponential form for the BMAP/G/1 queue. Takine and
Hasegawa [17] analyzed the workload in the MAP/G/1 queue with state-dependent
services by using Matrix-Exponential form. Lucantoni and Neuts [7] obtained the
Matrix-Exponential form for the MAP/G/1 and the MAP/SM/1 queues with less cal-
culation effort than in earlier proofs.

However to the best of authors' knowledge, there is no study of applying the supple-
mentary variable method to the analysis of the MAP/G/1 queue. The supplementary
variable method is known as a simple and convenient way of deriving the double
transform of the queue length and the supplementary variable used. We have two
kinds of supplementary variable, in general, one of which is the elapsed service time
and the other is the remaining service time, and for both cases the approaches of
deriving the double transforms are different. When we use the elapsed service time
as supplementary variable, the hazard rate function and the boundary conditions are
needed. However, when we use the remaining service time as supplementary variable,
all of these are not needed and we have much simpler calculations. In this paper we
use the remaining service time as our supplementary variable.

The main work of our paper is to apply the supplementary variable method to
the derivation of the double transform for the MAP/G/1 queueing system. As one
dimensional marginal transform of the double transform, we obtain the generating
function of the number of customers in the system for the MAP/G/1 queue, which
is in accord with a known result. It is shown that, when the arrival process is a
Poisson process, our result is reduced to the double transform of the queue length
and the remaining service time of the customers in service for the M/G/l queue. As
will be shown later, our method is very simple and elegant. So we expect that the
supplementary variable method can be widely used in the analysis of variants of the
MAP/G/1 queue.

This paper is organized as follows. In Section 2, we review MAP. In Section 3,
we derive the Chapman-Kolmogorov matrix differential equation for the queue length
and the remaining service time, and find the double transform of the queue length and
the remaining service time of the customer in service (if any) in the steady state. As
a corollary of our main result, we derive the generating function of the number of
customers in the steady state.

2. Markovian Arrival Process

To introduce the Markovian Arrival Process, first consider a Poisson arrival process
with rate A.. Let A, denote the number of customers arriving during [0, t]. The Poisson
process! A,} is a Markov process with state space [i\i > 0} and infinitesimal generator
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of the form
/-A. A. 0 0 ••

0 -A. A. 0 ••
0 0 -A. A. ••

The MAP is a natural generalization of the above Markov process where arrivals
are governed by an underlying m-state Markov chain, and diagonal elements and
upper diagonal elements of the above infinitesimal generator are replaced b y m x m
matrices C = [C,7] and D = [Du], respectively. The matrix C has negative diagonal
elements and nonnegative off-diagonal elements and D has nonnegative elements.
Here Cy, i ^ j is the state transition rate from state i to state j in the underlying
Markov chain without an arrival and Dy is the state transition rate from state i to state
j in the underlying Markov chain with an arrival. Let A, be the number of customers
arriving during [0, t], and J, indicate the state of the underlying Markov chain at time
t with state space {1 ,2 , . . . , m). Then {.A,, /,} is a two-dimensional Markov process
on state space {(/, j)\i > 0, 1 < j < m) with infinitesimal generator

(C D 0 0
0 C D 0
0 0 D D

. . . \

Then {A,, J,} is called the Markovian Arrival Process (MAP). Since the above matrix
is the infinitesimal generator of the MAP, we have

(C + D)e = 0,

where e is an m x 1 column vector whose elements are all equal to 1. Furthermore,
C + D is the infinitesimal generator of the underlying Markov chain {J,}. We assume
the underlying Markov chain is irreducible, so that there exists a stationary probability
vector n such that

n(C + D) =0, ne = \.

We assume that the service times of customers are i. i. d. with distribution function
G(x) and density function g(x). Let p be the traffic intensity, that is,

f°°
p = nDe I xg(x)dx.

Jo

Throughout this paper we assume p < 1 to guarantee the stability of our system.
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3. MAP/G/1 Queueing system

89

In this section we consider the MAP/G/1 queueing system. The capacity of the
queue is assumed to be infinite. Let N, and J, be the queue length and the state of the
underlying Markov chain of the MAP at time t. Let X, be the remaining service time
of customer in service (if any) at time t. Let £, be the number of busy servers at time
t, that is,

1, if the server is busy,

0, if the server is idle.

Define

7r,(n, x\ t)Ax = P[N, = n, x < X, < x + Ax, J, = i, £, = 1}, n > 0, x > 0

and

Then we have the following Chapman-Kolmogorov equations. When n = 0 and
1 < i < m,

Tti(O, x - At; t + At)

= 7t,(0, x; t) [1 + C,,At] + J^ *;(0. x> OCj,At

+ 7r,(l, 0; t)g(x)At + J^ pj(t)Djig(x)At + o(At). (1)

When n > 1 and I <i <m,

7ti(n,x - At;t + At)

— 7Ti(n, x; t)[l + CuAt] + } ^jin, x\ t)CjjAt

+ 7Ti(n + 1,0; t)g(x)At + ^ ^ ; ( n - l,x; t)DjiAt + o(At). (2)
j

For pi (t) we get

Pi(t + At) = p,(t) [1 + C At] + J2 Pj(t)Cj,At + 7T,(0, 0; t)At + o(At). (3)

From equations (1), (2) and (3) we have the following system of partial differential
equations. For n > 0 and 1 < i < m,

d d
- ^-7 r / (" . x; t) + —7Ti(n, x; t)

ox dt

+ n,(n + l, 0; *)*(*) + J^n^n ~l'x't)D^' (4)

j

= ^ * ) • ( « . * \
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and

j t + TT,(O, 0; 0 , (5)

where n>(-l , x; t) = pj(t)g(x).
Let n(n,x;t), 7r(«,0;r) and p(t) be row vectors whose i-th components are

Jti(n, x; t), 7Ti(n, 0; t) and pt(t), respectively. The above equations (4) and (5) can be
rewritten in matrix notation as

a a
- —7r(w, X; t) + —n{n, x; t)

dx dt
= n(n,x;t)C+n(n + l,O;t)g(x) + n(n- \,x\t)D (6)

and

^-p(t) = p«)C + 7T(0,0;t). (7)
at

Since we assume p < 1, the limits of 7r,(«, x\ t) and pt(t) exist. Define, for n > 0,
1 < i < m and x > 0,

7r,(", J:) = lim 7r,(n, x; r),

^r(n,jc) =[izx(n,x) nm(n,x)]

and

/?, = l i m pi(t), p = [p\,-..,Pm\-
t-nx

From (6) and (7) we have, for n > 0,

d n(.n,x) = 7t(n,x)C + n(n + l,0)g(x) + n(n- l,x)D (8)
dx

and

TT(O, 0) = -pC, (9)

where 7r(—1, JT) = pg(x). Define the generating function U(z, x) of n(n, x) by

n=0

for 0 < z < 1 and x > 0. By multiplying z" on both sides of (8) and summing over
n, we get

- ^ - n ( z , JC) = n(z, x)[C + zD] + - [n(z, 0) - n(0,
9x z

(10)
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Let n*(z, s) be the Laplace Transform of Fl(z, x) for s > 0, that is,

r°
FT(z, s) = /

Jo
n(z, x)e~SI dx for s > 0.

By taking the Laplace transform in (10) we get

-n*(z , j )5+n(z, 0) = n*(z, s)[c+zD]+- [n(z, 0) - n(o, o)] c

z

that is,

U*(z,s)[sl + C + zD] = n(z,0) 7 G*(S)I\ + -n(0,0)G*(s) - pDG*(s).
L z J z (11)

In above, G*(s) denotes the Laplace transform of g(x). Since 7r(0, 0) = — pC,

n*(z, s)[sl + C + zD] = n(z, 0) | / - -G*(s)11 - p \-C + D\ G*(s). (12)
L z J Lz J

Next, to find n (z, 0) we need to extend the domain of the Laplace transform to the
region

3 = 15 | 5 = [Sy] is an irreducible real matrix such that — Su > 0 for

i ^ j , and ^ (—5y) < 0 with strict inequality for some i \.
i '

Let G*(5) and FI*(z, S) be the Laplace transforms of g(x) and n(z, x) defined on 3,
respectively, that is,

G*(5)= I™ g(x)e-Sxdx,
Jo

/•OO

n*(z, S) = I n(z, x)e~Sx dx, for 5 € 3 .
Jo

Since all elements of e~Sx are dominated by 1 [3, 9], G*(5) and n*(z, 5) are well-
defined. Further, G*(S) and n*(z, 5) are natural generalizations of G*(s) and n*(z, 5)
because any positive real s can be identified with s I. Note that the notion of the Laplace
transform G*(s) of matrix argument was used in Lucantoni, Choudhury and Whitt
[6].

We further need the following two lemmas for later use.
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LEMMA 1. LetU*(z,S) be the Laplace transform defined on 3. Then

n*(Z,s)s-n(z,o)= f ^-n*(Z,x)e-Sxdx.
Jo dx

PROOF. Note that, for any 5 e S, S is invertible. So, from integration by parts, we
can easily derive the equation.

LEMMA 2. The matrix —C — zD is an element of % for 0 < z < 1.

PROOF. Since C + D is irreducible, C + zD is also irreducible for 0 < z < 1. Further,
since C + D is an infinitesimal generator of the underlying Markov chain and D is a
nonnegative matrix, — C — zD is an element in 3.

By multiplying both sides of (10) by e
(C+zD)x, and integrating both sides with

respect to x, and using Lemma 1, we get

- rP(z, -C - zD)[-C - zD] + n(z, 0)

= IT(z, - C - zD)[C + zD] + - [n (z , 0) - ;r(0,0)]G*(-C - zD)
z

+ PDG*(-C - zD).

Simplifying the above equation yields

n(z, 0) \l - \G\-C - zD)\ = \--n(0,0) + PD\ G*(-C - zD)

= p\-C + D\G\-C - ZD). (13)

Combining (12) and (13), we can eliminate Tl(z, 0) to give

IT(z, s)[sl + C + zD] | / - -G*{-C - zD)I

= p I -C + D\ [G*(-C - zD) - G*(s)I].

Therefore we have

n*(z, s)[sl + C + zD)[zI - G*(-C - zD)]

zD][G*(-C-zD)-G*(s)I], (14)

for 0 < z < 1 and s > 0.
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It remains to determine the vector p. Note that p is the stationary vector during idle
periods. Let Q be the infinitesimal generator of the underlying Markov chain which
is obtained by excising busy periods. By Takine and Hasegawa [17], Q satisfies the
equation

Q = C+ [°°g(x)DeQ*dx. (15)
Jo

Note that Q can be calculated by the limit of the recursive formulas

Qn+l =C+ [ g(x)DeQ"* dx, n>\,
Jo

/•oo

Qi=C+ g{x)Dec*dx,
Jo

Q = Hm Qn.
n—too

(See Takine and Hasegawa [17] for details.) Hence p must satisfy

pQ = O, pe = a, (16)

where or is a constant to be determined later. It will turn out to be 1 — p as we expect.
For 0 < z < 1 and s > 0, let U*(z, s) be the double transform of the queue length

and the remaining service time of the customer in service (if any) when the underlying
Markov chain is in state i in the steady state, that is,

U*(z, s) = lim P [J, = i, ft = 0} + lim E [z"'e-sXl; J, = i, ft = l ] .

Let U*(z, s) be the vector whose i-th component is U*(z, s). Then by definition, we
have

U*(z,s) = p + n*{z,s).

Therefore, from (14), we have

U*(z, s)[sl + C + zD][zI - G*(-C - zD)]

= p{s[zl - G*(-C - zD)] + [C + ZD][zI - G*(s)/]}. (17)

Now it remains to calculate the constant a. Letting s -> 0+ in (17), we get

U*(z, 0+)[C + zD][zl - G\-C - zD)] = p[C + zD](z - 1).

Since C + zD is invertible, we get
+ - G\-C - zD)] = p{z - 1).
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By differentiating the above equation with respect to z, we get

4-U'(z> 0+)t*7 " G*(-C - zD)] + U*(z, 0+) \l - ^-G\-C - zD)] = p.
dz L dz J

By multiplying e from the right and letting z -> 1", we get

1 — p = a.

Thus we obtain our main result.

THEOREM 1. The vector U*(z,s) of the double transform of the queue length and the
remaining service time of the customer in service in the steady state for 0 < z < 1
and s > 0 is given by

U\z, s)[sl + C + zD][zI - G*(-C - zD)}

= p {s[zl - G*(-C - zD)) + [C + ZD][zI - G*(5)/]}.

The vector p satisfies the equations

pQ=0, pe=\-p,

where
Q = C+ rg{x)DeQxdx.

Jo
From the above theorem we get the following corollary.

COROLLARY 1. Let fa (z) be the generating function of the number of customers in the
system (that is, the number of customers in the queue and the service facility) when the
underlying Markov chain is in state i. Let<p(z) be the vector of which i-th component
is <pi(z). Then the generating function <f>(z) of the number of customers in the system
at an arbitrary time is given by

- G*(-C - zD)] = p(z - 1)G*(-C - zD).

PROOF. Note that

From (14) we get, for 0 < z < 1

4>(z)[C + zD][zI - G\-C - zD)]

= p[C + zD][zI - G*{-C - zD)] + zp[C + zD][G*(-C - zD) -

= p[C + zD](z - 1)G*(-C - zD).

Since C + zD is invertible,

- G*(-C - zD)] = p(z - 1)G*(-C - zD).
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Note that our corollary is consistent with the equation (35) in Lucantoni [5], if we
restrict batch arrivals to a single arrival as in his model.

As a special case, for the M/G/l queueing system with arrival rate k, we have
C = — k and D = k. Hence

IT(z, s) = (1 - p)[k - kz][z - G*(k - kz)Tl[G*(s) - G*(k-kz)][s - k+kz]

= (1 - p)k[l - z][G*(s) - G*(k - kz)]

[z - G*& -kz)][s -k + kz]

which is a well-known result [16].
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