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Abstract. Except for blocks with a cyclic or Klein four defect group, it is not
known in general whether the Morita equivalence class of a block algebra over a field
of prime characteristic determines that of the corresponding block algebra over a p-
adic ring. We prove this to be the case when the defect group is quaternion of order 8§
and the block algebra over an algebraically closed field k of characteristic 2 is Morita
equivalent to kA4. The main ingredients are Erdmann’s classification of tame blocks [6]
and work of Cabanes and Picaronny [4, 5] on perfect isometries between tame blocks.

2000 Mathematics Subject Classification. 20C20.

Introduction. Throughout these notes, O is a complete discrete valuation ring
with algebraically closed residue field k of characteristic 2 and with quotient field K of
characteristic 0. According to Erdmann’s classification in [6], if G is a finite group and
if b is a block of OG having the quaternion group Qg of order 8 as defect group, then
the block algebra kGb is Morita equivalent to either kQs or kA4 or the principal block
algebra of kA5, where here b is the canonical image of b in kG. In the first case the block
is nilpotent (cf. [3]), and it follows from Puig’s structure theorem of nilpotent blocks
in [8] that OGb is Morita equivalent to OQg. In the remaining two cases one should
expect that OGb is Morita equivalent to O 44 or the principal block algebra of OAs,
respectively. We show this to be true in one of these two cases under the assumption
that K is large enough.

THEOREM A.  Let G be a finite group, and let b be a block of OG having a quaternion
defect group of order 8. Denote by b the image of b in kG. Assume that KGb is split. If
kGb is Morita equivalent to kA4 then OGb is Morita equivalent to OAy.

By Cabanes-Picaronny [4, 5], in the situation of Theorem A there is a perfect
isometry between the character groups of OGb and of ©OA4. Thus Theorem A is a
consequence of the following slightly more general Theorem which characterises OGb
in terms of its center, its character group and kA4; see the end of this section for more
details regarding the notation.

THEOREM B. Let A be an O-free O-algebra fuch that K ®¢ A is split semi-simple
and such that k ®p A is Morita equivalent to kAy. Assume that there is an isometry
@ : Zlrrg(A) = Zlrrg (OA4) which maps Proj(A) to Proj(OAy4) such that the map sending
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e(x) to e(®(yx)) for every x € Irrg(A) induces an O-algebra isomorphism of the centers
Z(A) = Z(OAy). Then A is Morita equivalent to OA,.

Theorem B is in turn a consequence of the more precise Theorem C, describing A4
in terms of generators and relations:

THEOREM C. Let A be a basic O-free O-algebra such that KQo A is split semi-
simple and such that k®o A is isomorphic to kAs. Assume that there is an isometry
@ : ZIrrg(A) = Z1rr g (OA4) which maps Proj(A) to Proj(OAy) such that the map sending
e(x) to e(®(x)) for every x € Irrg(A) induces an O-algebra isomorphism of the centers
Z(A) = Z(OAy). Then A is isomorphic to the unitary O-algebra with set of generators
{eo, €1, €2, B, v, 8, n, A, k} of A, such that ey, ey, e are pairwise orthogonal idempotents
whose sum is 1 and satisfying the following relations:

B =ep = Bei, y =er1y = yeo;
8§ =e18 =dey, n =en =ney;
A= e =Aey, K = ek = Key;
B8 = =2k +kAk; ny = =22+ Ak); SA = =2y + yBy;
kn = =28+ ByB; A= -2n+ndn; yk =28+ 8ns;
yBS = —48 +28n8; Sny = —dy +2yBy; Akn = —dn + 2ndn;
Byk = =4 + 2khk; ndh = —4r + 20k ); kA = —4B8 4+ 2ByB;
nyB = —4n+2ndn; Pon = —4B +2BypP; Sik = —45 + 28ns;
MBy = —4A 4+ 20k); knd = —4k + 2chi; YA = —4y + 2yBy;
BSAB = —8B + 4By B; 81BS = —83 +45n8; ABSA = —8 + dhich.

When reduced modulo 2, these relations seem to be more than those occuring in
Erdmann’s work [6] over k& (we recall these more precisely in §2); but they are not, since
the extra relations over k can be deduced from those given by Erdmann. We need to
add in extra relations over O in order to ensure that the algebra we construct is O-free
of the right rank.

Since O A4 fulfills the hypotheses of Theorem C it follows that 4 = ©A,, hence
Theorem C indeed implies Theorem B. The proof of Theorem C is given at the end of
Section 2.

NoOTATION. If 4 is an O-algebra such that K®p A4 is split semi-simple, denote
by Irrg(A) the set of characters of the simple K®p» A-modules, viewed as central
functions from A4 to O and denote by Irri(k® A) the set of isomorphism classes of
simple k®» A-modules. We denote by ZlIrrg(A4) the group of characters of 4, and
by Proj(A4) the subgroup of ZIrrg(A) generated by the characters of the projective
indecomposable 4-modules. We denote by L%(A4) the subgroup of Zlrrx(A) of all
elements which are orthogonal to Proj(4) with respect to the usual scalar product
in Zlrrg(A). For any x € Irrx(A4), we denote by e(y) the corresponding primitive
idempotent in Z(K®p A). If A = OG for some finite group G we have the well-known
formula

x(1) -
00 = g7 2 x .

xeG
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We refer to [1, 2] for the concept and basic properties of perfect isometries, and to [9]
for general block theoretic background material.

1. Characters and perfect isometries of OA4;. We identify A4 = Qg x Cs. Let t be
a generator of C; and let y be an element of order 4 in Qg. Set z = )?; that is, z is
the unique central involution of 44. Then the seven elements 1, z, y, ¢, 2, tz, *z are a
complete set of representatives of the conjugacy classes in Aj.

Let  be a primitive third root of unity in O. The character table of 4, is as follows:

1 z oy t £ otz Pz
n 1 1 1 1 I 1 1
T 1 1 w o o o
nm 1 1 1 0 0w o w
n 3 3 -1 0 0 0 0
ng 2 =2 0 - -0 o o
ns 2 =2 0 —»w -0 o o°
n 2 -2 0 -1 -1 1 1

The algebra OA4 has three simple modules Ty, 77, 7>, up to isomorphism.
Choosing for T the trivial module and after possibly exchanging the notation for
T\, T>, the ordinary decomposition matrix of @A, is as follows:

1 00
010
0 0 1
1 1 1
1 10
1 0 1
0 1 1

The Cartan matrix of @Ay is the product of the decomposition matrix with its
transpose, hence equal to

4
2
2

NSRS\

2
2
4

Let e, €1, e; be primitive idempotents in OA, such that OAe; is a projective cover
of T;, 0 < i < 2. By the above decomposition matrix, the characters of the projective
indecomposable OA44-modules OAye; are

no + 13+ na +1s,
nm + 13+ N4 + N6,
N2 + 13+ nNs + Ne,
respectively. Their norm is 4, and the differences of any two different characters

of projective indecomposable OA4;-modules yields the following further elements in
Proj(©04,) having also norm 4:

no — M + N5 — Ne,
Nno — N2+ Na — Ne,
n — N2+ N4 —1ns.
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It is easy to check, that up to signs, these are all the elements in Proj(OA4,) having
norm 4.

A self-isometry ® of ZIrrx(OA,) maps every n; to €y for some signs ¢; €
{1, —1} and a permutation 7 of {0, 1,...,6}. In other words, ® is determined by
the permutation 7 of the set {1, —1} x {0, 1, ..., 6} satisfying t(1, i) = (¢;, 7 (i)) and
t(—1,i) = (—€;, w(Q)) for all i, 0 <i < 6. If we write i, —i instead of (1,1), (—1, 1),
respectively, this becomes 7(i) = €;7 (i) and t(—i) = —e;7 (i), with the usual cancellation
rules for signs. In this way, every self-isometry ® of ZIrrx(OA,) gets identified to
a permutation of the set of symbols {i, —i|0 <i < 6}. A perfect self-isometry of
Z1rrg(OAy) is a self-isometry which is perfect in the sense of Broué [1]. Any such perfect
self-isometry preserves Proj(OA4,). The next Proposition implies that the converse is
true, too.

PROPOSITION 1.1. The group of all perfect self-isometries of ZIrrx(OAy) is equal to
the group of all self-isometries of Z1rrg(OAy4) which preserve Proj(OAy4). This group is
generated by —1d together with the set of permutations

(0,1,2)4,6,5),
(1,2)(4,5),
(2, =3)(5. —6).

Every algebra automorphism of O4, induces a permutation on Irrg(OA,) which
is in fact a perfect isometry on ZIrrx(©OA,). Since 1, has degree 1, it is an algebra
homomorphism from O44 to @, and hence the map sending x € OA44 to n(x)x is an
algebra automorphism of ©A44 whose inverse sends x € OA4 to n2(x)x. The following
statement is an immediate consequence from the character table of OA,.

LEMMA 1~.2. Let y be the algebra automorphism of OAy4 defined by y(x) = n1(x)x
Jor all x € OA4. The permutation 7w of {0, 1, ..., 6} defined by n; o y = 0z is equal to
7 =(0,1,2)4,6,5).

The anti-automorphism of ©O4,4 sending x € A4 to x~! induces also a permutation
of the set Irrx(OA4), and this is also a perfect isometry (this holds for any finite group).
This permutation can also be read off the character table.

LEMMA 1.3. Let t be the algebra anti-automorphism of OA4 mapping x € Ay to x~'.
The permutation w of {0, 1, ..., 6} defined by n; o t = ny) is equal to v = (1, 2)(4, 5).

Proof of 1.1. The first two permutations are perfect isometries by 1.2 and 1.3,
respectively. An easy but painfully long verification shows that the bicharacter sending
(g, h) € A4 x A4 to

no(gno(h) + n1(n1(h) — na(gInz(h) — n3(g)n2(h)
+ n4(@)na(h) — ns(2ne(h) — ne(g)ns(h)

is perfect; that is, its value at any (g, /) is divisible in O by the orders of Cj; (g) and
Cy,(h) and it vanishes if exactly one of g, 4 has odd order. Thus the isometry given by
the permutation (2, —3)(5, —6) is perfect. It remains to show that these permutations,
together with —Id, generate the group of all self-isometries which preserve
Proj(OAy).
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We described above a complete list of all elements in Proj(O44) having norm 4.
Since the characters of the projective indecomposable modules are in that list, a self-
isometry @ of ZIrrg(OA4) preserves Proj(OA4,) if and only if it permutes this set of
norm 4 elements.

Let ® be a self-isometry of ZIrrg(©OA,) which preserves Proj(OA4,;). Then ®
preserves also the group LY(OA4) of generalised characters which are orthogonal to all
characters in Proj(OA4,). Up to signs, the complete list of elements in L°(OA44) having
norm 3 is

no + N1 — N4, Mo+ N2 — N5, No — N3+ Ne,
N+ 2 —"ne N1 — N3+ N5, N2 —n3+ N4

Up to signs again, the complete list of elements in L%(OA4) having norm 4 is

no + n + n2 —n3,
no — N1 — N5+ N6, Mo — N2 — N4+ N6, Mo+ N3 —Na—1Ns,
M —n2—n4+ns, N1 +n3—n4—"n6, N2+ N3 — 05— Ne.

The first norm 4 element in this list, no + n; + 72 — 13, is the only norm 4 element
which is orthogonal to all other norm 4 elements in L°(OA4). Thus ® has to permute
the characters 7, 11, 172, n3 amongst each other.

Suppose first that @ fixes n3. Then, by composing & with a suitable product of
powers of the first two permutations in the statement, we may assume that @ fixes 7,
11, 12 up to signs. By considering the first of the above norm 4 elements in L(OA44) we
get that @ fixes 1o, 1, 7, all with positive signs. By considering the norm 3 elements
in L%(OAy), it follows that ® fixes also 14, 15 and n¢ with positive signs. Thus a self-
isometry of ZIrrg(OA4) which preserves Proj(©OA4,) and which fixes 73 is in the group
generated by the set of two permutations (0, 1, 2)(4, 6, 5) and (1, 2)(4, 5).

Suppose next that & does not fix 3. By precomposing ® with a suitable power
of (0,1, 2)(4, 6, 5) we may assume that ® sends 7, to —n3. By composing ® with a
suitable power of (0, 1, 2)(4, 5, 6) we may assume that @ fixes 7, up to a sign. Since ¢
preserves the norm 4 element 5y + 11 + 12 — 13, we necessarily have ®(n9) = ny. Then
® maps 7, either to n; or n, (with positive signs, again because of that same norm 4
element). In the first case, ® fixes both 5y, n;, and by checking the norm 3 elements in
L%(OAy) one gets ® = (2, —3)(5, —6). In the second case, again checking on norm 3
elements, one gets ® = (1, 2, —3)(4, 5, —6), but this is already the product of (1, 2)(4, 5)
and (2, —=3)(5, —06). O

2. The algebra A. Let A be a basic O-algebra fulfilling the hypotheses of Theorem
B; that is, K®p A4 is split semi-simple, k®o A is isomorphic to kA4, and there is
an isometry ZIrrg(4) = ZIrrg(OA4) mapping Proj(4) to Proj(O44) and inducing an
isomorphism Z(A4) = Z(OA4). There is a “compatible choice” for these isomorphisms.

PROPOSITION 2.1. There is an algebra isomorphisma : k®o A = kA4 and an isometry
® : ZIrrg(A) = ZIrrx(OA4) mapping Proj(A) to Proj(OA4) with the following properties:
(i) ® maps Irrg(A) onto Irrg(OA,), that is, all signs are +1.
(1) The map sending e(x) to e(®(x)) for every x € Irrg(A) induces an isomorphism
Z(A) = Z(OAy).
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(iii) For any primitive idempotentse € A andf € OAgandevery x € Irrg(A) such that
a(2) = f we have x(e) = ®(x)(f), that is, A and OA4 have the same decomposition
matrices through o and ®.

Proof. The O-rank of A4 is 24 and also the sum of the squares of the degrees of
the seven irreducible K-linear characters of A4; thus every irreducible character of A
has degree smaller than 5. Also, there is no character of degree 4 because 24 — 4> = 8
cannot be written as a sum of six squares of the degrees of the six remaining characters.
But there must be a character of degree 3; if not, 24 would be the sum of seven squares
all either 1 or 4, which is not possible. Thus the squares of the degrees of the six
remaining characters add up to 24 — 3% = 15, and the only way to do this is with three
characters of degree 1 and three characters of degree 2.

This proves that the character degrees of the irreducible characters of 4 and of
(A4 coincide for some bijection Irrg(4) = Irrx(OA4). Since the decomposition matrix
of A multiplied with its transpose yields the Cartan matrix of 4 — which is equal to that
of kA, - the algebra A has in fact the same decomposition matrix as A, for a suitable
bijection @ : Irrg(A4) = Irrg(OA4) and the bijection Irr(k®p A) = Irry(kA4) induced
by . Extend @ to a Z-linear isomorphism ZIrrg(A4) = ZIrrx(OAy), still denoted by ®.
By construction, ® sends the characters of the projective indecomposable 4-modules
to the characters of the projective indecomposable O44-modules; in particular, ® maps
Proj(A) to Proj(OA4,). It remains to see that the map sending e(x) to e(®(x)) for every
x € Irrg(A4) induces an isomorphism Z(A4) = Z(OA4). For any i, 0 < i < 6, denote
by x; the irreducible character of A4 such that ®(x;) = n;. As in the proof of 1.1, we
have a distinguished norm 4 element in 2°(4) which is orthogonal to all other norm 4
elements in L%(4), namely xo + x1 + x> — x3. Thus, if W : ZIrrg(A) = ZIrrg(OAy) is
some isometry mapping Proj(4) to Proj(O44) and inducing an isomorphism Z(A) =
Z(OAy), then W(xo + x1 + x2 — x3) = £(no + 11 + 12 — n3). By Proposition 1.1, there
is a perfect self-isometry . of ZIrrg(OA4) such that ® = p o W. O

REMARK 2.2. If we assume that 4 is Morita equivalent to some block algebra with
Qg as defect group, then Proposition 2.1 follows also from the work of Cabanes and
Picaronny in [4, 5].

Since k®o A = kA4, the quiver of A is the same as that of kA4, thus of the following

form:
B
0 1
%
K n
A 8
2
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Write a for the image of a € A4in 4 = k®p A = kA4. The generators B, v, 8, «, A,
n can be chosen such that their images in A fulfill the following relations:

>1 &l

(1.
> &I
KI>

I
=I

Rl > &I o S

Xl ™ 1 >R ol

1|

<

§,)' §«>|| Eall <
LSS~

and
7B8 =81y = xikij = 0.

In order to determine the algebra structure of 4, we have to “lift” these relations
over O.

We fix an algebra isomorphism « : k®p A4 = kA, and an isometry @ : ZIrrg(A4) =
ZTrrg(OAy) satisfying the conclusions of Proposition 2.1. We denote by x; the unique
irreducible K-linear character of 4 such that ®(x;) = n; foralli, 0 <i < 6.

The characters 19, 71, 172, n3 of OA4 have height zero, the characters 74, 15, 76
have height one. Thus, via the isomorphism of the centers induced by ®, it follows that
for 0 < i < 3 we have 8e(x;) € 4, and for 4 <j < 6 we have 4e(x;) € A. We can in fact
describe an O-basis of Z(A) in terms of the centrally primitive idempotents e(x;). The

strategy is now to play off the descriptions of Z(k®o A) in terms of the generators in
the quiver and of Z(A4) in terms of the centrally primitive idempotents e(y;).

LEMMA 2.3. The following elements of Z(K®@ A) are all contained in the radical
J(Z(A4)):

s = 2e(x4) + 2e(x5) + 2e(xe),
zo = 4e(x2) + 4e(x3) + 2e(xa),
z1 = 4e(x1) + 4e(x3) + 2e(xs),
2o = 4e(xo) + 4e(x3) + 2e(xo),
Yo = 4e(x1) + 4e(x2) + 2e(x4) + 2e(xs),
1 = 4e(xo) + 4e(x2) + 2e(xa) + 2e(Xe),
V2 = 4de(xo) + 4e(x1) + 2e(xs) + 2e(xe)-

Moreover, for any two different i, j in {0, 1, 2} the set

{1, zi, zj, 5, Be(x3), de(xiva), 4e(Xjta)}
is an O-basis of Z(A).

Proof. In view of Proposition 2.1 we may assume that 4 = OA4, and that x; = n;
for 0 < i < 6. This is just an explicit verification, using the character table of 44. One
verifies first that zyp € 4. By symmetry, this implies that z;, z; are also in 4. Then
Yo = 2o + z1 — 8e(x3) is in A, similarly for the y;, y». An equally easy computation
shows that s € 4. Thus all the given elements belong to Z(A). None of these elements
is invertible, so they all belong to J(Z(A4)) because Z(A) is local.
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In order to see the 1a§t statement on the basis of Z(A4), we may assume tha}t i=0
and j = 1. For any x € A4 denote by x the conjugacy class sum of x in OA44. The
orthogonality relations imply the well-known formula

Xm(x
= 2 m(1> Xm).

0<m=<6

Thus, for the seven conjugacy classes in A4, we have

1 =e(xo0) + e(x1) + e(x2) + e(x3) + e(xa) + e(xs) + e(xo);

z = e(xo) + e(x1) + e(x2) + e(x3) — e(xa) — e(xs) — e(xe);

Y = 6e(xo0) + 6e(x1) + 6e(x2) — 2e(x3);

t = 4e(x0) + 4o’e(x1) + 4we(x2) — 2we(xa) — 2w’e(xs) — 2e(xo):
Zz 4e(x0) + dwe(x1) + 4o’e(x2) — 2w7e(xs) — 2we(xs) — 2e(xs);

1z = de(x0) + 40’e(x1) + 4we(X2) + 2we(xs) + 2w’ e(xs) + 2e(xe);
12_2 4e(x0) + 4we(x1) + 4o’e(x2) + 2w e(xs) + 2we(xs) + 2e(xs)-
We show that they are all in the O-linear span of the elements in the set
{1, 20, 21, 5, 8e(x3), 4e(x4), 4e(x5)}-
Note first that

=4-1—zy—z; — s+ 8e(x3),
de(xe) = 25 — de(xq) — 4e(xs)

are in the O-linear span of this set. One easily verifies now that

z=1-s,

y=06-1-3s—8e(x3).

= wzp+ @’z + 25 — 4we(x4) — 4wze(x5) —4e(xs),
£ = w’zo + 021 + 2 — do’e(x4) — doe(xs) — de(x),

2
= wzy) + wz| + 23,

|N
[N
|

Z2

[N]

= w220 + wz1 + 2».

This concludes the proof of 2.3. O

The center of 4 = k®¢ A can easily be described in terms of the generators in the
quiver of A4:

LEMMA 2.4. The following set is a k-basis of Z(A).

{1, By + 7B, Kk + Ak, 718 + 37, B3X, 1B, XB3).

Proof. Straightforward verification, using (87)> = B8 and the similar relations
for the other elements in the given set. O

PROPOSITION 2.5. For any primitive idempotent e in A we have Z(A)e = eAe.
Moreover,
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(1) the set {ey, zoeo, z1€0, 4e(x4)eo} is an O-basis of ey Aey.
(i) the set {ey, zpey, z22e1, 4e(xa)e1} is an O-basis of ey Aey;
(iii) the set {ea, z1e3, zpe2, de(xs5)ea} is an O-basis of e;Aes.

Proof. Since Z(A) = Z(OA4) and Z(A) = Z(kA,), the canonical map A — A maps
Z(A) onto Z(A) and hence Z(A)e onto Z(A)e. By Nakayama’s Lemma, it suffices to
show that Z(A)e = ede. Now dimy(eA4e) = 4 by the Cartan matrix, and so we have
only to show that dimy(Z(A4)e) = 4. By the symmetry of the quiver of A, we may
assume that e corresponds to the vertex labelled 0. Then the set {e, B7, kA, BSA} is a
k-basis of Z(A)e by 2.4; in particular, dimy(Z(A4)e) = 4 as required. This shows that
eAe = Z(A)e.

In order to prove (i), note that the set

{eo, zoeoz1 €0, seo, 8e(x3)en, 4e(xa)eo, 4e(xs5)eo)

generates egAey as O-module, by the first statement and by the O-basis of Z(A)
described in 2.3. Now we have

8e(x3)eo = 2zpep — 4e(x4)eo,
de(xs)eo = 2zpeq — 2z1e9 + 4e(x4)eo,
seq = (z1 — zo + 4e(x4))eo.

Thus the set given in (i) generates epAey as O-module, and hence is a basis since the
O-rank of ¢gA4ey is 4. The same arguments show (ii) and (iii). ]

PROPOSITION 2.6. We can choose the generators B8, y, 8, n, A, k in such a way that
(1) Ay is the unique O-pure submodule of Aey with character x3 + x4,

(1) A is the unique O-pure submodule of Aey with character x3 + xs;

(ii1) An is the unique O-pure submodule of Aey with character x3 + x¢,

(iv) AB is the unique O-pure submodule of Aey with character x5 + xa,

(v) Ak is the unique O-pure submodule of Ae, with character x3 + xs,

(vi) AS is the unique O-pure submodule of Ae; with character x3 + xs.

Proof. We are going to prove (i); by the symmetry of the quiver of 4 one gets all
other statements. Observe first that Ay is the unique 5-dimensional submodule of Ae,
with composition factors 2[Sy], 2[S1], [S2]. Indeed, the set {7, B7, iy, ¥ BV, B7 By} is
a k-basis of A7, and we have 7, y By € eyAey, yielding the two composition factors
isomorphic to Sy, we have By, By By € e Aey, yielding the two composition factors
isomorphic to Sy, and finally 7y € &,4ey, yielding the remaining composition factor
isomorphic to Sy. One checks that there is no other submodule with exactly these
composition factors. Now there is exactly one O-pure submodule U of 4ey whose
reduction modulo J(O) has composition series 2[Sy] + 2[S1] + [S2], namely the unique
O-pure submodule of Aey with character y3 + x4; this is a direct consequence of the
decomposition matrix. One constructs U as follows: write KQp Aey = Xy D X3 ® Xy &
X5, where Xj is the unique submodule of K®¢ Aeq with character x; forj € {0, 3, 4, 5},
and then U = Aey N (X3 & Xy). Take now for y any inverse image in U of y. Then
Ay C Uand U C Ay + J(O)U. Thus Ay = U by Nakayama’s Lemma. ]

COROLLARY 2.7. If the generators B, v, 8 n, A, k are chosen such that they fulfill the
conclusions of 2.6 then, with the notation of 2.3, the following hold.

(i) 08 = yon = 0.
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(i) y1r = y1k = 0.
(iii) y2y =328 =0.

PROPOSITION 2.8. We can choose the generators 8, y, 8, n, A, k such that the following
hold:

By = zoeo = 4e(x3)eo + 2e(xa)eo;
yB = zoer = 4e(x3)er + 2e(xa)er;
8n = zer = 4e(x3)er + 2e(xo)er;
nd = zey = de(x3)ex + 2e(x6)e;
A = z1e = de(x3)ex + 2e(xs)ea;
KA = z1e0 = 4e(x3)eo + 2e(xs)eo;

Bdr = kny = 8e(x3)eo;

SAB = ykn = Be(x3)e1;

ABS = nyk = 8e(x3)ex.

Proof. In view of the decomposition matrix of 4 we have ey = e(xo)eo + e(x3)eo +
e(xa)eo + e(xs)eo. Moreover, the elements e(xo)eo, e(x3)eo, e(xa)eo, e(xs)ep are K-
linearly independent because they are pairwise orthogonal idempotents in KQp A.
Similar statements hold for e, e,.

We assume a choice of generators fulfilling 2.6. We have A8y C Ay, and the
submodule Ay of Aey has character x3 + x4 by 2.6. Thus Sy is a K-linear combination
of e(x3)e; and e(x4)e;. But also By is an O-linear combination of the basis elements
€0, zoeo z1€0, 4e(x4)ep given in 2.5 in which none of y;, xs shows up. Therefore Sy is in
fact an O-linear combination of the elements zgeg, 4e(x4)eo; say

By = (Kozoeo + 4voe(xa))eo = (4poe(xs) + 2(uo + 2vo)e(x4))eo
for some coefficients g, vo € O. Hence
(By)* = (16u5e(x3) + 4(io + 2v0)°e(xa)) o
Now (B¥)*> # 0, and therefore ;1o € O*. Set now
ap =1+ voug ' yo.

Since yg € J(Z(A)) by 2.3 we have ay € Z(A)*. A trivial verification, comparing
coefficients, shows that we have

By = ozoaoeo.
Since y = e;y = yey, multiplying this with y on the left yields
YBY = moZoaoery.
Now both yB and pgzpape; are contained in the pure submodule A8 of Ae; with

character x3 + x4, by 2.6 and the nature of the element z,. Right multiplication by y on
this submodule is therefore injective (the annihilator of y in Ae; is the pure submodule
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with character x; + x¢). Hence the previous equality implies also the equality

vB = rozoape;.

In an entirely analogous way one finds scalars 1, u, € O™ such that, setting a; =
1+ vlul_lyl anday =1+ vzuz_lyg, one gets the equalities

8n = pazmaer, 16 = przaazer,
AK = [1Z1@1€2, KA = [L1Z1d1€).

Moreover, the equalities in 2.7 imply the following equalities:

apd =38, aon =,

aA = A, a1k =K,

ay =y, mp=p.
If we replace now g by a;, 18, this is not going to change the properties stated in 2.6 and
also this is not changing the relations over k of the quiver. Similarly, we can replace

8 by a;lé and XA by afl)\. Then the generators 8, y, 8, n, A, « still fulfill 2.6, and in
addition, we have now the following equalities:

By = ozoeo, vB = wozoer,
dn = pazer, Né = urzzez,
A = [L1Z1€2, KA = [1Z1€0.

We have to get rid of the scalars g, 141, 42. Since x3 is the only character appearing in
the characters of all projective indecomposable 4-modules we have

Béx = 8ue(xs)eo

for some v € O. Then actually . € O* because B3 # 0. Moreover, B8A8 = Sue(x3)B,
and hence also

SAB = Bue(xs)er.
The same argument applied again yields
ABS = Bue(xs)ex.

Applying this argument to the arrows in the quiver in the opposite direction implies
that there is u’ € O* such that

kny = 8u'e(x3)eo,
nyk = 8u'e(x3)er,
ykn = 8u'e(x3)er.
Now B8A = kAkA = k7, and hence 1’ = u(1 + v) for some v € J(O). Note that we

can always multiply any of the generators by any scalar in 1 + J(O) without modifying
the relations over k. Thus, if we replace « by (1 4+ v)x, we may assume that u’ = u.
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Since the set {«, k Ak} 1s an O-basis of egAe,, we can write
B8 = ax + bk ik
for some unique scalars a, b € O. Multiplying this by A yields
Sue(x3)eo = Bor = akh + b(kA)* = (apiz) + bufz%)eo.

By comparing the coefficients at e(x3)eg and e(xs)eo of the left and right expression in
this equality, we get the equations

8u = dap, + 16bu?,
0 = 2ap; + 4bul.

An easy computation shows that b = Mi% Moreover, since B8A = (k1)> we have a = 0
and b = 1, hence b = /% € 1 + J(O). By repeating the same argument we find also
that the coefficients uﬁé’ li—‘% arein 1 + J(O).

Next, we compute S3Axny in two different ways: on one hand we have

(BSM)(kny) = 64u%e(x3)eo,
and on the other hand we have
BE(A)n)y = pop1pazozizoe(x3)eo = 6410 pae(x3)eo.

Together we get

W= popi o
RB o imi L _po
Thus 2= o € 1+ J(O). Similarly, o o € 14+ J(O). But then also
K12 Ky

= Z—E € 1 +J(0O). Since 2 € J(O) this implies that % € 1 4+ J(O). But then
< 0
actually u, = “;—’:Z—? € 1 + J(O). Similarly, o, u; € 1 + J(O). So we can replace
by g '8, or equivalently, we can assume that uo = 1. Similarly, we can assume that
w1 = o = 1. Then u? = 1.If u = —1 we multiply all generators by —1; since 2 € J(O),
this does not change the relations over &, but it does change the sign of any of the
above expressions 88X etc. involving three generators. Therefore, we can also assume
that u = 1. O

We can now prove Theorem C from the introduction.

Proof of Theorem C. 'We assume a choice of generators of A4 fulfilling Proposition
2.8. We show that A satisfies the relations given in Theorem C. Those in the first three
lines are obvious. Since the set {«, k Ak} is an O-basis of eyAe,, we can write
B8 = ax + bk ik
for some unique scalars a, b € O. Multiplying this by X yields

8e(x3)eo = BOA = akh + b(kA)* = (4a + 16b)e(x3)eo + (2a + 4b)e(xs)eo.
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By comparing the coefficients at e(x3)ep and e(xs)eq of the left and right expression in
this equality, we get the equations

8 =4a + 16b,
0 =2a+ 4b.
Thus the coefficients a, b have values
a=-2,b=1,
and from this we get the following relation in the statement of Theorem C:
B8 = =2k + KAk,

In exactly the same way we get the following five relations in the Theorem:

ny = =27 + Akh,
8a = =2y +vyBy,
kn = =2+ Byp,
AB = —2n+nén,
yk = =25 +8né.
A similar technique is going to yield the remaining relations: write y88 = ¢8 + déné

for some unique ¢, d € O; as before, this is possible since {8, §nd} is an O-basis of e; Ae;.
Multiplying by 7 yields

yB8N = cdn + d(n)* = czaer + dZ3er.
The left side is equal to (yB)(8n) = zpzze1, so comparing coefficients yields now

16 = 4c + 16d,
0=2c+4d,

and this implies ¢ = —4 and d = 2. Thus we get indeed
yB8 = —48 4+ 28nd

as claimed. The remaining relations of this type follow in exactly the same way.
Now consider the last three relations. Write 86A8 = r8 + sBy B, forr, s € O. Then

BéABy =By + sByBy. So
32e(x3)e0 = (4r + 165)e(x3)eo + (2r + 4s)e(x4)eo

which yields s = 4 and r = —8. The remaining two relations follow in exactly the same
way. Thus A satisfies all relations given in Theorem C.

Let A be the O-algebra described by the generators and relations given in Theorem
C. There is a surjective algebra morphism from A4 to A. In order to show that 4 and 4
are isomorphic it suffices therefore to show that the cardinality of a minimal generating
set for 4 as an O-module is at most 24. Thus it suffices to check that the set

S = {ep, e1,e2, B8,v,8, 1, k, By, yB,8n, nd, hk, kA,
ByB, yBy,énd, nén, Ak, KAk, BSA, SAB, LBS}
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spans A as O-module. This is an easy consequence of the given relations; we give some
details for the convenience of the reader. Let

G ={ey,e1,e2,B,7,8,n, A, k}.

From the given relations it is immediate that for any two elements x, y of G,
xy is in the O-span of S. Thus it suffices to show that for any two elements x, y
of G — {ey, €1, e2} and any element u of S — {eg, e1, €2, B, v, 8,1, A, k}, xu and uy are
in the O-span of S. From the given relations we may also assume that « is one of
ByB,yBv, énd, nén, Ak A, k ik or one of BSA, SAB, ABS.

First, note that the relations kn = —28 + ByB and A = —2y + yBy give that
kny = BdA. Similarly, we get nyx = AB8 and ykn = SA8.

Now suppose u = By 8. Then we may assume that x is one of y or A and that y is
one of y or §. The relation kn = —28 + By B gives ykn = —2yB + yByB, hence yBypB
is in the O-span of S. The relation kn = —2p + By B also gives Akn = —2A8 + A8y B.
It follows from the relation Akn = —4n + 2ndén that AByB is in the O-span of S. We
show similarly that 8yBy and By 86 are in the O-span of S.

The cases u = yBy, dns, nén, Ak, k ik are handled analogously.

Now suppose u = B3A. Then we may assume that x is one of A or y and y is one of
B or k. The relation A851 = —8A + 4ik A shows that A88A is in the O-span of S. From
the relation Y88 = —45 + 2608 we get yBSA = —43A + 26n8A. From yx = —268 + 818,
we get §ndA = yk A + 28A. Hence 8ndA is in the O-span of S, and so is y81. We argue
similarly to show that 8618 and S8éAk are in the O-span of S.

The cases u = §A8 and u = AB3S are handled in the same fashion. d

REMARK 2.9. An interesting consequence of 2.5 is the structure of e4e for any
primitive idempotent e in 4. We have an O-algebra isomorphism

eAe = O[X, Y]/(X? —Y?=2X —Y), XY —2X? +4X);

indeed, we may assume that e = ¢y, and then the assignment X > zpeg, Y — zje
induces the required isomorphism. In particular, we have an isomorphism of k-algebras

ede = k[X, Y]/(X* - Y%, XY).

This is, by Erdmann [6, III.1, III.3], up to isomorphism the unique 4-dimensional
symmetric k-algebra which is not isomorphic to the group algebra of the Klein
four group. One might be tempted to ask whether any symmetric O-algebra is the
endomorphism algebra of some projective module of some block algebra.
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