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Abstract
We give a detailed proof that locally Noetherian moduli stacks of sections carry canonical obstruction theories. As
part of the argument, we construct a dualising sheaf and trace map, in the lisse-étale topology, for families of tame
twisted curves when the base stack is locally Noetherian.
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1. Introduction

1.1. Overview

Let M be a locally Noetherian algebraic stack, and let C → M be a family of twisted curves as in
[AOV11, Def 2.1]. Let Z → C be a morphism of algebraic stacks such that Z →M is locally of finite
presentation, is quasi-separated and has affine stabilisers. By [HR19, Thm 1.3], there is an algebraic
stack SecM(Z/C) over M whose fibre over a scheme 𝑇 →M is

SecM (Z/C) (𝑇) := HomC (C ×M 𝑇,Z),

where the right-hand side is the groupoid of morphisms of stacks over C. Recall that an obstruction
theory for SecM(Z/C) is a morphism of complexes 𝜙 : 𝐸 → LSec/M in the derived category of
Sec := SecM (Z/C) whose mapping cone has vanishing cohomology sheaves in degrees [−1,∞) (see
Section 4.3). An implication of our main theorem is the following.

Theorem 1.1. The stack SecM (Z/C) carries a canonical obstruction theory.

We define the canonical obstruction theory in Section 4.4. Theorem 1.1 is generalised and stated
more precisely as Theorem 4.13 below. An important feature of the canonical obstruction theory is its
functoriality, as explained in [CJW21, Appendix A].

When the obstruction theory in Theorem 1.1 is perfect and Sec := SecM (Z/C) is Deligne-Mumford,
quasi-separated and locally finite type over a field, the machinery in [BF97] and [Kre99, Sec 5.2] defines
a virtual fundamental class on Sec. This is a key part of the construction of Gromov-Witten theory and
related enumerative theories: see, for example, [Beh97; AGV08; CCK15; CL12]. On the other hand,
Theorem 1.1 is used with a non-Deligne-Mumford instance of Sec to functorially compare different
obstruction theories on quasimap moduli spaces in [CJW21, Lem A.2.5]. This comparison is crucial for
the application of [CJW21] to quasimap theory and also for the computations of quasimap I-functions
in [Web18; Web21].

1.2. Discussion of Theorem 1.1

The usual argument supporting Theorem 1.1 when Sec is Deligne-Mumford is as follows (this is used,
for example, in [BF97, Prop 6.2]). First reduce to showing that for each affine 𝑓 : 𝑇 → Sec and square-
zero quasi-coherent ideal sheaf I on T, the induced map

Ext𝑖 (L 𝑓 ∗LSec/M, 𝐼) → Ext𝑖 (L 𝑓 ∗𝐸, 𝐼) (1.1)
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has the following properties (see [BF97, Thm 4.5]):

•When 𝑖 = 1, equation (1.1) is injective on obstructions. (1.2)
•When 𝑖 = 0 and there exists a deformation of 𝑓 by 𝐼, equation (1.1) is an isomorphism.

Second, use standard deformation theory to relate the groups Ext𝑖 (L 𝑓 ∗LSec/M, 𝐼) (respectively,
Ext𝑖 (L 𝑓 ∗𝐸, 𝐼)) to deformations of the morphism 𝑓 : 𝑇 → Sec (respectively, C ×M 𝑇 → Z). Since
morphisms 𝑇 → Sec are equivalent to morphisms C ×M 𝑇 → Z by definition of Sec, one concludes
that equation (1.1) is an injection (on obstructions) when 𝑖 = 1 and that the groups in equation (1.1)
are isomorphic (if the obstruction vanishes) when 𝑖 = 0. We note that this falls just shy of the second
requirement in list (1.2) since it is not clear that the morphism in equation (1.1) is itself an isomor-
phism.

In this paper, we copy the first step above in Lemma 4.11. However, in the second step, we analyse
the functoriality of the isomorphism of Picard categories

ExalY (X , 𝐼) � Ext0/−1(LX /Y , 𝐼 [1])) (1.3)

due to Illusie and Olsson ([Ill71; Ols06]), for X → Y a representable morphism of algebraic stacks.
(See Section 4.1 for the notation and Theorem 4.4 for the precise statement.) Our proof shows that when
𝑖 = 0, not only are the groups in equation (1.1) isomorphic (in the case of vanishing obstruction), but in
fact the morphism in equation (1.1) is an isomorphism, completing the proof of the second requirement
in list (1.2). Our proof also covers the case when Sec → M is not representable or even relatively
Deligne-Mumford.

The correct approach to Theorem 1.1 is likely through derived algebraic geometry, as in [STV15,
Sec 2.2]. The functoriality properties of the obstruction theory proved in [CJW21, Appendix A] would
be natural consequences of such a construction. Unfortunately, this author is not equipped to produce
the argument. Although the statement of Theorem 1.1 is certainly familiar, we note that there does not
seem to be a reference in the literature for the generality in which we have stated it here.

1.3. Duality for twisted curves

A key ingredient for the construction of the obstruction theory in Theorem 1.1 is the following (stated
more precisely as Proposition 3.14 below).

Theorem 1.2. For every family 𝑝 : C →M of tame twisted curves on a locally Noetherian algebraic
stack M, there is a functorial pair (𝜔M, 𝑡𝑟M) with 𝜔M a quasi-coherent sheaf on C and 𝑡𝑟M :
R𝑝∗𝜔M → 𝒪M [−1]. When M is a quasi-separated Noetherian algebraic space, the pair (𝜔M, 𝑡𝑟M)
agrees with the right adjoint to R𝑝∗.

We restate the last sentence of the theorem more precisely: if 𝑝 : C → M is a family of twisted
curves, a right adjoint 𝑝! to R𝑝∗ exists by [HR17, Thm 4.14(1)] (see also Lemma 3.6 below). The last
sentence of Theorem 1.2 says that if M is a quasi-separated Noetherian algebraic space, we have that
𝜔M [1] = 𝑝!𝒪M and 𝑡𝑟M is the counit of the (R𝑝∗, 𝑝

!) adjunction.
The reason we do not have this agreement for arbitrary locally Noetherian M is that it seems

difficult to show that 𝑝! is compatible with arbitrary basechange. Following the exposition of [Lip09] for
schemes, we prove basechange for the right adjoint to pushforward for certain morphisms of algebraic
stacks in Lemma 3.7 below (see also [Nee17] for a complementary result). However, in applications,
one would like to have basechange for 𝑝! for families of curves over arbitrary morphisms of algebraic
stacks.

The basechange problem arises for nontwisted prestable curves as well, and [Stacks, Tag 0E5W]
addresses the issue by ‘glueing’ the pairs (𝜔M, 𝑡𝑟M) to get a functorial construction of a dualising
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complex and trace map. We adopt the same strategy to prove Theorem 1.2. Again, while the statement
of Theorem 1.2 is well-known, we do not know a reference for twisted curves, even over the complex
numbers.

1.4. Contents of the paper

The main goal of Section 2 is to derive a certain commuting diagram (Lemma 2.14), which will be used
in our proof of Theorem 1.1. Because the notation is simpler and because we can reuse various parts of
the argument in other parts of the paper, we work in the setting of abstract closed symmetric monoidal
categories.

In Section 3, we prove Theorem 1.2. The proof requires us to construct a special kind of hypercover
of an algebraic stack and an associated lisse-étale topos. This is an application of the general results
proved in [Stacks], and we explain the details in Appendix A.

We explain equation (1.3) and prove Theorem 1.1 in Section 4. The proof itself is fairly short, granting
the existence of the dualising complex and the functoriality of equation (1.3). We reserve our proof of
the functoriality of equation (1.3) for Appendix B. Since the functoriality is critical to our argument,
we include the details, but said details are unsurprising.

1.5. The locally Noetherian hypothesis

We expect that the locally Noetherian assumption on M can be relaxed. It is used only in the proof
of Lemma 3.4 to show that pushing forward to the coarse moduli space of a twisted curve preserves
pseudo-coherent objects. See Remark 3.5.

1.6. Conventions and notation

We collect some conventions and recurring notation. Our list of notation here is not exhaustive.

Algebraic stacks. We follow the conventions in [Stacks, Tag 0260]; in particular, an algebraic stack need
not be quasicompact or quasi-separated.

Twisted curves. A morphism 𝑝 : C →M of algebraic stacks is a family of twisted curves if smooth-
locally on M it is a twisted curve in the sense of [AOV11, Def 2.1].

Notation for closed categories and internal hom

Notation Category Internal hom

Mod(𝐴) Category of A-modules for a sheaf of rings A on a site 𝒮 H𝑜𝑚𝐴

D(𝐴) Unbounded derived category of Mod(𝐴) RH𝑜𝑚𝐴

Derived global hom functor (valued in the derived category ofΓ(𝒮, 𝐴)-modules). Notated
RHom𝐴

Xlis-et
(respectively, Xet)

Category of sheaves on the lisse-étale (respectively, étale) site of an algebraic
(respectively, Deligne-Mumford) stack X

Not needed

QCoh(Xlis-et)
(respectively, QCoh(Xet))

Category of quasi-coherent sheaves on the lisse-étale (respectively, étale) site of an
algebraic (respectively, Deligne-Mumford) stack X

Not needed

D(Xlis-et)
(respectively, D(Xet))

Unbounded derived category of 𝒪X -modules in Xlis-et (respectively, Xet) RH𝑜𝑚𝒪X

Derived global hom functor (valued in the derived category ofΓ(X ,𝒪X )-modules) Notated
RHom𝒪X

Dqc (Xlis-et)
(respectively, Dqc (Xet))

Full subcategory of D(Xlis-et) (respectively, D(Xet)) on objects with quasi-coherent
cohomology sheaves

RH𝑜𝑚
qc
𝒪X
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Operations on sheaves on topoi and algebraic stacks

Notation Meaning

𝐻 𝑖 (F ) The 𝑖𝑡ℎ cohomology sheaf of a complex F .
RΓ(F ) The derived global sections functor applied to a complex F , commonly notated RΓ(𝑋,F ) , where X is a topos.
( 𝑓 −1 , 𝑓∗) Adjoint functors defined by a morphism of topoi 𝑓 : 𝒞 → 𝒟.

𝑓 ∗ For 𝑓 : (𝒞,𝒪𝒞) → (𝒟,𝒪𝒟) a morphism of ringed topoi, set 𝑓 ∗ (−) := 𝑓 −1 (−) ⊗ 𝑓 −1𝒪𝒟
𝒪𝒞 .

L 𝑓 ∗ For 𝑓 : X → Y a morphism of algebraic stacks, we denote by L 𝑓 ∗ : Dqc (Ylis-et) → Dqc (Xlis-et) the functor L 𝑓 ∗qc in
[HR17, Sec 1.3].

R 𝑓∗ For 𝑓 : (𝒞,𝒪𝒞) → (𝒟,𝒪𝒟) a morphism of ringed topoi, this is the usual direct image functor D(𝒪𝒞) → D(𝒪𝒟) .
R 𝑓∗ For 𝑓 : X → Y a concentrated morphism of algebraic stacks, this is the functor

R( 𝑓qc)∗ : Dqc (Xlis-et) → Dqc (Ylis-et) of [HR17, Sec 1.3] that is right adjoint to L 𝑓 ∗. By [HR17, Thm 2.6(2)], it
agrees with the restriction of the usual direct image functor R( 𝑓lis-et)∗ : D(Xlis-et) → D(Ylis-et) .

2. A formal framework for dualising objects and trace maps

2.1. Closed symmetric monoidal categories

Because notation is simpler in an abstract setting, we work for a moment with closed symmetric monoidal
categories. If 𝒞 is such a category, we will write 𝒪𝒞 for the unit, ⊗ for the product and Hom for internal
hom, using 𝒞(𝑋,𝑌 ) to denote the set of morphisms between two objects 𝑋,𝑌 ∈ 𝒞 and 1𝑋 to denote
the identity morphism on X. We will suppress mention of the associativity, commutativity and identity
isomorphisms that are part of the definition of 𝒞. If 𝒞 and 𝒟 are any two categories and 𝑅 : 𝒞 → 𝒟

is a functor with a left adjoint L, then for 𝑋 ∈ 𝒟 and 𝑌 ∈ 𝒞, we will denote the unit and counit of the
adjunction by

𝜂𝐿𝑋 : 𝑋 → 𝑅𝐿(𝑋) 𝜖𝐿𝑌 : 𝐿𝑅(𝑌 ) → 𝑌,

omitting the decorations on 𝜂 and 𝜖 when there is no risk of confusion.
We will use many specific instances of the following abstract situation.

Situation 2.1. We are given 𝒞, 𝒟 be closed symmetric monoidal categories with 𝑓 ∗ : 𝒟 → 𝒞 strong
monoidal and 𝑓∗ a right adjoint.1 This means we have natural isomorphisms

𝑓 ∗(𝑋) ⊗ 𝑓 ∗(𝑌 ) → 𝑓 ∗(𝑋 ⊗ 𝑌 ) (2.1)

𝒪𝒞 → 𝑓 ∗𝒪𝒟. (2.2)

When we are in Situation 2.1, we have the following three morphisms at our disposal. The first we
recall from [FHM03, (3.4)]: given 𝑌 ∈ 𝒞 and 𝑋 ∈ 𝒟, there is a functorial isomorphism

Hom(𝑋, 𝑓∗𝑌 )
∼
−→ 𝑓∗(Hom( 𝑓 ∗(𝑋), 𝑌 )). (2.3)

The second is the composition

𝑓∗Hom(𝑋,𝑌 ) → 𝑓∗Hom( 𝑓 ∗ 𝑓∗𝑋,𝑌 )
(2.3)
←−−−
∼

Hom( 𝑓∗𝑋, 𝑓∗𝑌 ), (2.4)

where the first morphism is induced by the counit of the adjunction. The third is

Hom(𝑋,𝑌 ) → Hom(𝑋, 𝑓∗ 𝑓 ∗𝑌 )
(2.3)
−−−→
∼

𝑓∗Hom( 𝑓 ∗𝑋, 𝑓 ∗𝑌 ), (2.5)

1Moreover, 𝑓∗ is lax monoidal by [FHM03, (3.2)], so our setup is consistent with that used in [Lip09, Sec 3.5].
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where the first morphism is induced by the unit of the adjunction; it is an isomorphism if 𝑓 ∗ is fully
faithful. One can check that equation (2.5) is functorial in X, Y and the adjoint pair ( 𝑓 ∗, 𝑓∗) (see [Lip09,
Exercise 3.7.1.1]).

We present Example 2.2 as the first instance of Situation 2.1; more instances can be found in Examples
3.1, B.3, B.4, and B.8.

Example 2.2. The following is an example of Situation 2.1. Let 𝐵′ → 𝐵 be a homomorphism of rings,
and set 𝒞 = Mod(𝐵′) and 𝒟 = Mod(𝐵). Define 𝑓 ∗ to be the extension of scalars functor − ⊗𝐵′ 𝐵, and
define 𝑓∗ to be restriction of scalars (−)𝐵′ . The functor − ⊗𝐵′ 𝐵 is strong symmetric monoidal. One can
check from the definition in [FHM03, (3.4)] that equation (2.3) sends 𝑋 → (𝑌 )𝐵′ to its adjoint arrow
𝑋⊗𝐵′𝐵→ 𝑌 , that equation (2.4) sends a B-module homomorphism 𝑔 : 𝑋 → 𝑌 to (𝑔)𝐵′ : (𝑋)𝐵′ → (𝑌 )𝐵′
and that equation (2.5) sends a 𝐵′-module homomorphism ℎ : 𝑋 → 𝑌 to ℎ ⊗𝐵′ 𝐵 : 𝑋 ⊗𝐵′ 𝐵→ 𝑌 ⊗𝐵′ 𝐵.

We recall a formal framework for basechange. We do not need monoidal structures here.

Situation 2.3. We have a diagram of categories and functors

𝒮 𝒞

𝒯 𝒟

𝑔∗

𝑚′∗

𝑓∗

𝑚∗

(2.6)

where the functors 𝑓∗, 𝑔∗, 𝑚∗, 𝑚
′
∗ have left adjoints 𝑓 ∗, 𝑔∗, 𝑚∗, 𝑚′∗, and we are given a natural transfor-

mation 𝑚′∗ 𝑓 ∗ � 𝑔∗𝑚∗.

In this situation, we get a unique natural transformation 𝑚∗𝑔∗ � 𝑓∗𝑚
′
∗ such that the adjunctions for

(𝑚′∗ 𝑓 ∗, 𝑓∗𝑚
′
∗) and (𝑚∗𝑔∗, 𝑔∗𝑚∗) are compatible (see [Lip09, Sec 3.6]). We define the basechange map

𝑚∗ 𝑓∗𝑋 → 𝑔∗𝑚
′∗𝑋 for 𝑋 ∈ 𝒮 (2.7)

as in [Lip09, Prop 3.7.2(i)]. It may not be an isomorphism in general.

Lemma 2.4. For 𝑌 ∈ 𝒟 and 𝑋 ∈ 𝒞, there are commuting diagrams

𝑚′∗ 𝑓 ∗ 𝑓∗𝑋 𝑚′∗𝑋

𝑔∗𝑚∗ 𝑓∗𝑋 𝑔∗𝑔∗𝑚
′∗𝑋

𝑚′∗ 𝜖

(2.7)

𝜖

𝑚∗𝑌 𝑚∗ 𝑓∗ 𝑓
∗𝑌

𝑔∗𝑔
∗𝑚∗𝑌 𝑔∗𝑚

′∗ 𝑓 ∗𝑌

𝑚∗𝜂

𝜂 (2.7) (2.8)

Proof. We show that the first diagram commutes; the second one may be checked similarly. The
commutativity of the first follows from the following commuting diagram:

𝑔∗𝑚∗ 𝑓∗𝑋 𝑔∗𝑚∗ 𝑓∗𝑚
′
∗𝑚
′∗𝑋 𝑔∗𝑚∗𝑚∗𝑔∗𝑚

′∗𝑋 𝑔∗𝑔∗𝑚
′∗𝑋

𝑚′∗ 𝑓 ∗ 𝑓∗𝑋 𝑚′∗ 𝑓 ∗ 𝑓∗𝑚
′
∗𝑚
′∗𝑋

𝑚′∗𝑋 𝑚′∗𝑚′∗𝑚
′∗𝑋 𝑚′∗𝑋

𝑔∗𝑚∗ 𝑓∗𝜂 𝑔∗ 𝜖𝑚∗

𝜖 𝑔
∗

𝑚′∗ 𝑓 ∗ 𝑓∗𝜂

𝑚′∗ 𝜖 𝑚′∗ 𝜖

𝑚′∗𝜂 𝜖𝑚′∗

(2.9)

The perimeter of the diagram from 𝑚′∗ 𝑓 ∗ 𝑓∗𝑋 to 𝑚′∗𝑋 along the bottom is equal to 𝑚′∗𝜖 using a triangle
identity, while the composition along the top is equal to the composition of the other three arrows in the
desired square. The commutativity of the big cell in diagram (2.9) is compatibility of the (𝑚′∗ 𝑓 ∗, 𝑓∗𝑚′∗)
and (𝑚∗𝑔∗, 𝑔∗𝑚∗) adjunctions—see [Lip09, (3.6.2)]. �
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2.2. An ideal setup

We recall the formal framework of [FHM03, Rmk 5.10].

Situation 2.5. We are given closed symmetric monoidal categories 𝒞,𝒟 and functors 𝑓∗, 𝑓! : 𝒞 → 𝒟

and 𝑓 ∗, 𝑓 ! : 𝒟→ 𝒞 such that ( 𝑓 ∗, 𝑓∗) and ( 𝑓!, 𝑓 !) are adjoint pairs. Moreover, these functors satisfy

◦ 𝑓 ∗ is strong symmetric monoidal,
◦ 𝑓∗ = 𝑓!,
◦ The canonical projection formula morphism

𝜋 : 𝑌 ⊗ 𝑓∗(𝑋) → 𝑓∗( 𝑓
∗𝑌 ⊗ 𝑋) (2.10)

defined in [Hal, Appendix A] is an isomorphism,
◦ The object 𝐶 := 𝑓 !𝒪𝒟 is invertible, and
◦ The canonical morphism

𝜑 : 𝑓 ∗𝑌 ⊗ 𝑓 !𝒪𝒟 → 𝑓 !𝑌 (2.11)

defined in [FHM03, (5.5)] is an isomorphism.

Example 2.6. Let 𝑝 : C → 𝑇 be a family of prestable curves on a quasi-separated Noetherian scheme
T, in the sense of [Stacks, Tag 0E6T]. Let 𝒞 = Dqc (Cet), 𝒟 = Dqc(𝑇et), 𝑓∗ = R𝑝∗, and 𝑓 ∗ = L𝑝∗.
Then 𝑓∗ has a right adjoint 𝑓 ! and 𝑓 !𝒪𝑇 is equal to the relative dualising sheaf 𝜔C/𝑇 [1]. These data
are an example of Situation 2.5. We will extend this example to families C → 𝑇 of twisted curves in
Example 3.11.

Lemma 2.7. For every 𝑋 ∈ 𝒞, the (⊗,Hom)-unit

𝜂𝑋 : 𝑋 → Hom(𝐶, 𝑋 ⊗ 𝐶) (2.12)

is an isomorphism.

Proof. Since C is invertible, it follows from [May01, Lem 2.9] that C is dualisable and that the
coevaluation map defined there is an isomorphism. It follows from the definition of the coevaluation
map that the unit in equation (2.12) is an isomorphism when 𝑋 = 𝒪𝒞 . For general X, there is a commuting
square

𝒪𝒞 ⊗ 𝑋 Hom(𝐶,𝒪𝒞 ⊗ 𝐶) ⊗ 𝑋 Hom(𝐶,𝐶) ⊗ 𝑋

𝑋 Hom(𝐶, 𝑋 ⊗ 𝐶) Hom(𝐶,𝐶 ⊗ 𝑋)

𝜂𝒪𝒞 ⊗1𝑋

𝜈∼

𝜂𝑋

where the map labelled 𝜈 (defined in [Lew86, p. 120]) is an isomorphism since C is dualisable (see
[Lew86, Prop III.1.3(ii)]). This implies that 𝜂𝑋 is an isomorphism. The commutativity of the square
follows immediately from the definition of 𝜈 and the functoriality of 𝜂. �

Following [FHM03, Def 5.6], we define twisted functors 𝑓 !
𝐶 (𝑋) := Hom(𝐶, 𝑓 !(𝑋)) and 𝑓 𝐶! (𝑋) :=

𝑓!(𝑋 ⊗ 𝐶). We have an isomorphism 𝑓 ∗𝑌 → 𝑓 !
𝐶 (𝑌 ) for 𝑌 ∈ 𝒞 equal to the composition

𝑓 ∗(𝑌 )
(2.12)
−−−−→ Hom(𝐶, 𝑓 ∗𝑌 ⊗ 𝐶)

𝜑
−→ Hom(𝐶, 𝑓 !𝑌 ), (2.13)

where equation (2.12) is an isomorphism by Lemma 2.7 and 𝜑 is an isomorphism by assumption.
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Since ( 𝑓 𝐶! , 𝑓 !
𝐶 ) is an adjoint pair, we’ve realised 𝑓 𝐶! as a left adjoint to pullback. Moreover, there is

a projection isomorphism

𝜋𝐶 : 𝑌 ⊗ 𝑓 𝐶! (𝑋)
∼
−→ 𝑓 𝐶! ( 𝑓

∗(𝑌 ) ⊗ 𝑋)

defined by replacing X with 𝑋 ⊗ 𝐶 in 𝜋.
In this setting, we prove commutativity of some diagrams that will be useful to us.

Lemma 2.8. There is a commuting diagram

𝑋 ⊗ 𝑓 𝐶! 𝑓 ∗(𝑌 ) 𝑋 ⊗ 𝑓 𝐶! 𝑓 !
𝐶 (𝑌 ) 𝑋 ⊗ 𝑌

𝑓 𝐶! ( 𝑓
∗(𝑋) ⊗ 𝑓 ∗(𝑌 )) 𝑓 𝐶! 𝑓 ∗(𝑋 ⊗ 𝑌 ) 𝑓 𝐶! 𝑓 !

𝐶 (𝑋 ⊗ 𝑌 )

(2.13)
∼

𝜋𝐶∼

𝜖

∼

(2.13)
∼

𝜖 (2.14)

where the arrows labelled 𝜖 are counits for the ( 𝑓 𝐶! , 𝑓 !
𝐶 ) adjunction.

Proof. For any 𝑍 ∈ 𝒟, the composition

𝑓 𝐶! 𝑓 ∗(𝑍)
(2.13)
−−−−→ 𝑓 𝐶! 𝑓 !

𝐶 (𝑍)
𝜖
𝑓 𝐶!
−−−−→ 𝑍

is equal to

𝑓 𝐶! 𝑓 ∗(𝑍) = 𝑓∗( 𝑓
∗(𝑍) ⊗ 𝐶)

𝜋
←−
∼

𝑍 ⊗ 𝑓∗(𝐶)
𝜖
𝑓!
𝒪𝒟
−−−→ 𝑍.

To see this, expand the ( 𝑓 𝐶! , 𝑓 𝐶! )-counit in terms of the (⊗,Hom)-counit and the ( 𝑓!, 𝑓 !)-counit;
commute the morphism 𝜑 in the definition of equation (2.13) with the (⊗,Hom)-counit; and finally, use
the triangle identity 1 𝑓 ∗𝑍 ⊗𝐶 = 𝜖 ⊗𝑓 ∗𝑍 ⊗𝐶 ◦ (𝜂

⊗
𝑓 ∗𝑍 ⊗ 1𝐶 ), where 𝜂 and 𝜖 here denote the unit and counit

of the (⊗,Hom) adjunction. Now equation (2.14) is equivalent to the diagram

𝑋 ⊗ 𝑓∗( 𝑓
∗(𝑌 ) ⊗ 𝐶) 𝑋 ⊗ 𝑌 ⊗ 𝑓∗(𝐶) 𝑋 ⊗ 𝑌

𝑓∗( 𝑓
∗(𝑋) ⊗ 𝑓 ∗(𝑌 ) ⊗ 𝐶) 𝑓∗( 𝑓

∗(𝑋 ⊗ 𝑌 ) ⊗ 𝐶)

𝜋

𝜋

𝜋

𝜖

whose commutativity is proved in [Lip09, Lem 3.4.7(iv)]. �

Lemma 2.9. Suppose we are in Situation 2.5. Then there is an isomorphism 𝛾 : 𝑓∗Hom( 𝑓 ∗𝑋, 𝑓 !
𝐶 (𝑌 )) →

Hom( 𝑓 𝐶! ( 𝑓
∗𝑋), 𝑌 ) making the following diagram commute:

Hom( 𝑓 𝐶! 𝑓 !
𝐶 (𝑋), 𝑌 ) Hom(𝑋,𝑌 )

𝑓∗Hom( 𝑓 ∗𝑋, 𝑓 ∗𝑌 )

Hom (𝜖 ,1𝑌 )

(2.5)
𝛾

(2.15)

Here, 𝜖 is the counit for the ( 𝑓 𝐶! , 𝑓 !
𝐶 )-adjunction.

Proof. The definition of 𝛾 will come out in the course of the proof: it will be ‘conjugate’ to 𝜋 via various
adjoints (see also [FHM03, (4.1)] and [Stacks, Tag 0A9Q]). For future reference, we summarise it in the
final paragraph of the proof. To simplify notation, when there is no risk of confusion, if F is a functor
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between categories and 𝛼 is a morphism of the source category, we will notate 𝐹 (𝛼) by 𝛼. For example,
we may use 𝜖 as the label for the horizontal arrow in diagram (2.15).

To show the commutativity of diagram (2.15), we use the Yoneda embedding: for an arbitrary𝑇 ∈ 𝒟,
it suffices to show the commutativity of

3𝒟(𝑇,Hom( 𝑓 𝐶! 𝑓 !
𝐶 (𝑋), 𝑌 )

1𝒟(𝑇,Hom(𝑋,𝑌 ))

2𝒟(𝑇, 𝑓∗Hom( 𝑓 ∗𝑋, 𝑓 ∗𝑌 ))

𝜖
𝑓 𝐶!

(2.5)
𝛾

We do this by demonstrating that it is equivalent to the commutativity of

6𝒟(𝑇 ⊗ 𝑓 𝐶! 𝑓 !
𝐶 (𝑋), 𝑌 )

4𝒟(𝑇 ⊗ 𝑋,𝑌 )

5𝒟( 𝑓 𝐶! 𝑓 !
𝐶 (𝑇 ⊗ 𝑋), 𝑌 )

𝜖
𝑓 𝐶!

𝜖
𝑓 𝐶!

�̃�

where �̃� is defined to equal the isomorphisms in diagram (2.14). This second diagram commutes by
Lemma 2.8.

There are isomorphisms 1 = 4 and 3 = 6 given by (⊗,Hom) adjunction and an isomorphism 2 = 5
given by

2𝒟(𝑇, 𝑓∗Hom( 𝑓 ∗𝑋, 𝑓 ∗𝑌 )) = 𝒞( 𝑓 ∗𝑇,Hom( 𝑓 ∗𝑋, 𝑓 ∗𝑌 )) = 𝒞( 𝑓 ∗𝑇 ⊗ 𝑓 ∗𝑋, 𝑓 ∗𝑌 )

= 7𝒞( 𝑓 ∗(𝑇 ⊗ 𝑋), 𝑓 ∗𝑌 ) = 𝒞( 𝑓 !
𝐶 (𝑇 ⊗ 𝑋), 𝑓 !

𝐶𝑌 ) =
5𝒟( 𝑓 𝐶! ( 𝑓

!
𝐶 (𝑇 ⊗ 𝑋)), 𝑌 ),

(2.16)

where the equalities are ( 𝑓 ∗, 𝑓∗)-adjunction, (⊗,Hom)-adjunction, the isomorphism in equation (2.1),
the isomorphism in equation (2.13) and ( 𝑓 𝐶! , 𝑓 !

𝐶 )-adjunction. The square with corners 1, 3, 4, and 6
commutes by functoriality of the (⊗,Hom) adjunction. We take the commutativity of the square with
corners 2, 3, 5, and 6 as the definition of 𝛾. The final square commutes as follows. By the definition of
the vertical map in diagram (2.15) and adjunction, the composition 1→ 2→ 7 is equal to

𝒟(𝑇,Hom(𝑋,𝑌 ))
𝑓 ∗

−−→ 𝒞( 𝑓 ∗𝑇, 𝑓 ∗Hom(𝑋,𝑌 ))
⊗ 𝑓 ∗𝑋
−−−−−→ 𝒞( 𝑓 ∗𝑇 ⊗ 𝑓 ∗𝑋, 𝑓 ∗Hom(𝑋,𝑌 ) ⊗ 𝑓 ∗𝑋)

(2.1)
====== 𝒞( 𝑓 ∗(𝑇 ⊗ 𝑋), 𝑓 ∗(Hom(𝑋,𝑌 ) ⊗ 𝑋))

𝑓 ∗ 𝜖 ⊗

−−−−→ 𝒞( 𝑓 ∗(𝑇 ⊗ 𝑋), 𝑓 ∗𝑌 ).

By functoriality of equation (2.1), this composition is equivalent to

1𝒟(𝑇,Hom(𝑋,𝑌 )) ⊗𝑋−−−→ 𝒟(𝑇 ⊗ 𝑋,Hom(𝑋,𝑌 ) ⊗ 𝑋)
𝜖 ⊗

−−→ 4𝒟(𝑇 ⊗ 𝑋,𝑌 )
𝑓 ∗

−−→ 7𝒞( 𝑓 ∗(𝑇 ⊗ 𝑋), 𝑓 ∗𝑌 ).

The first two arrows are precisely the (⊗,Hom) adjunction 1 = 4. Finally, the composition

4𝒟(𝑇 ⊗ 𝑋,𝑌 )
𝑓 ∗

−−→ 7𝒞( 𝑓 ∗(𝑇 ⊗ 𝑋), 𝑓 ∗𝑌 )
(2.13)
======= 𝒞( 𝑓 !

𝐶 (𝑇 ⊗ 𝑋), 𝑓 !
𝐶𝑌 ) =

5𝒟( 𝑓!( 𝑓
!
𝐶 (𝑇 ⊗ 𝑋)), 𝑌 ),

where the arrow comes from the previous formula and the two equalities come from equation (2.16), is
induced by the counit 𝜖 𝑓 𝐶

! as desired.
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To conclude, we summarise the definition of 𝛾 as promised. After cancelling assorted isomorphisms
with their inverses, we see that it is given under the Yoneda embedding by

𝒟(𝑇, 𝑓∗Hom( 𝑓 ∗𝑋, 𝑓 ∗𝑌 )) = 𝒞( 𝑓 ∗𝑇,Hom( 𝑓 ∗𝑋, 𝑓 ∗𝑌 )) = 𝒞( 𝑓 ∗𝑇 ⊗ 𝑓 ∗𝑋, 𝑓 ∗𝑌 )

= 𝒞( 𝑓 ∗𝑇 ⊗ 𝑓 ∗𝑋, 𝑓 !
𝐶𝑌 ) = 𝒟( 𝑓 𝐶! ( 𝑓

∗𝑇 ⊗ 𝑓 ∗𝑋), 𝑌 )
∼
−→ 𝒟(𝑇 ⊗ 𝑓 𝐶! 𝑓 ∗𝑋,𝑌 )

= 𝒟(𝑇,Hom( 𝑓 𝐶! 𝑓 ∗𝑋,𝑌 )) = 𝒟(𝑇,Hom( 𝑓 𝐶! 𝑓 !
𝐶𝑋,𝑌 )),

where the equalities are ( 𝑓 ∗, 𝑓∗) adjunction, (⊗,Hom) adjunction, the isomorphism in equation (2.13),
( 𝑓 𝐶! , 𝑓 !

𝐶 ) adjunction, the projection formula, (⊗,Hom) adjunction and finally the isomorphism in
equation (2.13) again. In particular, if we follow 𝛾 with the inverse of the last equality, we have defined
a natural isomorphism

𝑓∗ Hom(𝑍, 𝑓 ∗𝑌 ) ∼−→ Hom( 𝑓 𝐶! 𝑍,𝑌 ) (2.17)

that is functorial in both arguments. (The content of this statement is that to define equation (2.17), it is
not necessary for Z to be of the form 𝑓 ∗𝑋 .) �

2.3. A modification of the ideal situation

When C → X is a family of twisted curves on an algebraic stack X , we would like to apply Situation 2.5
by setting 𝒟 = Dqc(Xlis-et) and 𝒞 = Dqc (Clis-et). Unfortunately, we do not know a proof that the right
adjoint 𝑓 ! in Situation 2.5 exists in the generality we would like (see Lemma 3.6 and the discussion
following it). Instead, we work in the following weaker situation, replacing 𝑓 ! with a dualising complex
and trace map.

Situation 2.10. We are given closed symmetric monoidal categories 𝒞, 𝒟, a functor 𝑓∗ : 𝒞 → 𝒟 with
a right adjoint 𝑓 ∗, and an invertible object 𝐶 ∈ 𝒞 with a trace map 𝑡𝑟 : 𝑓∗𝐶 → 𝒪𝒟. These data satisfy

◦ 𝑓 ∗ is strong symmetric monoidal.
◦ The canonical morphism 𝜋 : 𝑌 ⊗ 𝑓∗(𝑋) → 𝑓∗( 𝑓

∗𝑌 ⊗ 𝑋) is an isomorphism.

In this situation, we define an adjunction-like map 𝑎 : 𝒞(𝑋, 𝑓 ∗𝑌 ) → 𝒟( 𝑓∗(𝑋 ⊗ 𝐶), 𝑌 ) as follows
(see also [CJW21, Sec A.2.1]).2 Given 𝜙′ ∈ 𝒞(𝑋, 𝑓 ∗𝑌 ), define 𝑎(𝜙′) to be the composition

𝑓∗(𝑋 ⊗ 1𝐶 )
𝑓∗ (𝜙

′ ⊗𝐶)
−−−−−−−→ 𝑓∗( 𝑓

∗𝑌 ⊗ 𝐶)
𝜋
←−
∼
𝑌 ⊗ 𝑓∗𝐶

𝑖𝑑⊗𝑡𝑟𝐶
−−−−−−→ 𝑌 . (2.18)

Observe that a is functorial in both arguments, by which we mean the following:

1. Given 𝑋 ′ ∈ 𝒞 and 𝜓 ∈ 𝒞(𝑋 ′, 𝑋), we have 𝑎(𝜙′ ◦ 𝜓) = 𝑎(𝜙′) ◦ 𝑓∗(𝜓 ⊗ 1𝐶 ).
2. Given 𝑌 ′ ∈ 𝒟 and 𝜓 ∈ 𝒟(𝑌,𝑌 ′), we have 𝑎( 𝑓 ∗𝜓 ◦ 𝜙′) = 𝜓 ◦ 𝑎(𝜙′).

The next example explains why we call a ‘adjunction-like’.

Example 2.11. Suppose we are in Situation 2.5, with an adjoint pair ( 𝑓 ∗, 𝑓∗) and object 𝐶 = 𝑓 !𝒪𝒟 ∈ 𝒞.
Then we have the data of Situation 2.10: we can define 𝑡𝑟𝐶 : 𝑓∗𝐶 → 𝒪𝒟 to be the counit of the ( 𝑓!, 𝑓 !)
adjunction. Under the isomorphism in equation (2.13), the adjunction-like map 𝑎 : 𝒞(𝑋, 𝑓 ∗𝑌 ) →
𝒟( 𝑓∗(𝑋 ⊗ 𝐶), 𝑌 ) is identified with the adjunction 𝒞(𝑋, 𝑓 !

𝐶𝑌 ) � 𝒟( 𝑓 𝐶! 𝑋,𝑌 ). To see this, let 𝜙′ ∈
𝒞(𝑋, 𝑓 ∗𝑌 ). The ( 𝑓 𝐶! , 𝑓 !

𝐶 )-adjoint of (2.13) ◦𝜙′ is equal to the ( 𝑓!, 𝑓 !)-adjoint of

𝑋 ⊗ 𝐶
𝜙′ ⊗1𝐶
−−−−−→ 𝑓 ∗𝑌 ⊗ 𝐶

𝜑
−→ 𝑓 !𝑌 .

2Informally, we think of a as realising 𝑓 𝐶! = 𝑓∗ ( · ⊗ 𝐶) as a left adjoint to 𝑓 ∗ = 𝑓 !
𝐶

.
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Since 𝑓∗ = 𝑓!, said adjoint is equal to the composition

𝑓∗(𝑋 ⊗ 𝐶)
𝑓∗ (𝜙

′ ⊗1𝐶 )
−−−−−−−−→ 𝑓∗( 𝑓

∗𝑌 ⊗ 𝐶)
�̂�
−→ 𝑌,

where �̂� is the ( 𝑓!, 𝑓 !)-adjoint of 𝜑. By the definition of 𝜑 in [FHM03, (5.5)], this last composition is
equal to 𝑎(𝜙′).

2.4. Basechange

We introduce a setting where the adjunction-like morphism a is compatible with pullback.

Situation 2.12. We have a diagram of closed symmetric monoidal categories as in diagram (2.6) such
that the left adjoints 𝑓 ∗, 𝑔∗, 𝑚∗, 𝑚′∗ are strong symmetric monoidal. We are given objects 𝑆 ∈ 𝒮, 𝐶 ∈ 𝒞
and morphisms 𝑡𝑟𝑆 : 𝑔∗𝑆 → 𝒪𝒯 , 𝑡𝑟𝐶 : 𝑓∗𝐶 → 𝒪𝒟 such that the data for each column of diagram (2.6)
are in Situation 2.10, and these data are compatible as follows:

◦ The basechange map in equation (2.7) is an isomorphism.
◦ We are given an isomorphism 𝛼 : 𝑚′∗𝐶 → 𝑆, making this diagram commute:

𝑚∗ 𝑓∗𝐶 𝒪𝒯

𝑔∗𝑚
′∗𝐶 𝑔∗𝑆

(2.7)

𝑚∗𝑡𝑟𝐶

𝑔∗𝛼

𝑡𝑟𝑆 (2.19)

In this situation, Lemma 2.13 explains a precise sense in which 𝑚∗𝑎(𝜙′) = 𝑎(𝑚′∗𝜙′).

Lemma 2.13. Suppose we are in Situation 2.12. Let 𝜙′ : 𝑋 → 𝑓 ∗(𝑌 ) be an arrow in 𝒞. Then we have
𝑚′∗𝜙′ : 𝑚′∗𝑋 → 𝑚′∗ 𝑓 ∗𝑌 = 𝑔∗𝑚∗𝑌 , and the following diagram commutes:

𝑚∗ 𝑓∗(𝑋 ⊗ 𝐶) 𝑚∗𝑌

𝑔∗(𝑚
′∗𝑋 ⊗ 𝑆)

𝑚∗𝑎 (𝜙′)

𝔞𝑚∗ ∼
𝑎 (𝑚′∗𝜙′)

The isomorphism 𝔞 is equal to equation (2.7) followed by equation (2.1) and finally 𝛼, and in particular
it is functorial in X. Moreover, suppose we have a diagram

𝒞1 𝒞2 𝒞3

𝒟1 𝒟2 𝒟3

𝑓1∗

𝑚′∗12
𝑓2∗

𝑚′∗23
𝑓3∗

𝑚∗12 𝑚∗23

(2.20)

together with distinguished objects 𝐶𝑖 ∈ 𝒞𝑖 and trace maps 𝑡𝑟𝑖 : 𝑓𝑖∗𝐶𝑖 → 𝒪𝒟𝑖 for each i, and
isomorphisms 𝛼𝑖 𝑗 : 𝑚′∗𝑖 𝑗𝐶 𝑗 → 𝐶𝑖 for 𝑖 < 𝑗 . Suppose that with these data, both squares and the outer
rectangle of diagram (2.20) are in Situation 2.12 and that 𝛼13 = 𝛼12 ◦ 𝑚

′∗
12 (𝛼23). Then 𝔞𝑚∗12◦𝑚

∗
23

=
𝔞𝑚∗12
◦ 𝑚′∗12 (𝔞𝑚∗23

).

Proof. The proof of [CJW21, Lem A.2.1] works in this more general situation. �

Lemma 2.14. Suppose we are in Situation 2.12, except the left column of diagram (2.6) is actually in
Situation 2.5: this means we are given a right adjoint 𝑔! for 𝑔∗ =: 𝑔! with 𝑔!𝒪𝒯 = 𝑆 and 𝑡𝑟𝑆 : 𝑔∗𝑆 → 𝒪𝒯
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equal to the counit for the (𝑔!, 𝑔
!) adjunction. Let 𝜙′ : 𝑋 → 𝑓 ∗(𝑌 ) be an arrow in 𝒞, and set 𝜙 := 𝑎(𝜙′).

Let I be an object of 𝒯. Then the following diagram commutes:

Hom(𝑚∗ 𝑓∗(𝑋 ⊗ 𝐶), 𝐼) Hom(𝑚∗𝑌, 𝐼)

𝑔∗ Hom(𝑚′∗𝑋, 𝑔∗𝐼) 𝑔∗Hom(𝑚′∗ 𝑓 ∗𝑌, 𝑔∗𝐼)

𝑚∗𝜙

𝑚′∗𝜙′

(2.21)

In this diagram, the equality is comprised of equation (2.7), 𝛼 and equation (2.17). The right vertical
arrow is equation (2.5) followed by equation (2.7).

Proof. The desired commuting diagram is derived from the composition of two. On the left, we have

Hom(𝑔𝑆! (𝑚
′∗𝑋), 𝐼) Hom(𝑔𝑆! (𝑚

′∗ 𝑓 ∗𝑌 ), 𝐼) Hom(𝑔𝑆! 𝑔
∗(𝑚∗𝑌 ), 𝐼)

𝑔∗Hom(𝑚′∗𝑋, 𝑔∗𝐼) 𝑔∗ Hom(𝑚′∗ 𝑓 ∗𝑌, 𝑔∗𝐼) 𝑔∗ Hom(𝑔∗𝑚∗𝑌, 𝑔∗𝐼)

(2.7)

(2.17) (2.17)
(2.7)

(2.17) (2.22)

Here, the arrows pointing left are induced by 𝑚′∗𝜙′. On the right, we have

Hom(𝑔𝑆! 𝑔
∗(𝑚∗𝑌 ), 𝐼) Hom(𝑚∗𝑌 ⊗ 𝑔𝑆! (𝒪𝒯), 𝐼) Hom(𝑚∗𝑌, 𝐼)

Hom(𝑔𝑆! 𝑔
!
𝑆 (𝑚

∗𝑌 ), 𝐼)

𝑔∗ Hom(𝑔∗𝑚∗𝑌, 𝑔∗𝐼)

𝜋𝑆
∼

(2.13)

𝑡𝑟𝑆

𝜖

(2.5)

𝛾

(2.23)

The commutativity of the top triangle is Lemma 2.8 with 𝑋 = 𝑚∗𝑌 and 𝑌 = 𝒪𝒯 , and the commutativity
of the bottom triangle is Lemma 2.9. We note that the definition in equation (2.17) is equal to 𝛾 followed
by the equality induced by equation (2.13). Finally, by Lemma 2.13, the top row of diagram (2.22)
followed by the top row of diagram (2.23) agrees with the top row of diagram (2.21) (after inserting a
copy of equation (2.7)). �

3. Duality for twisted curves

We explain how the formal discussion of Section 2 will generally be used in the remainder of this article.
In this section and the remainder of the paper, we define pseudo-coherent and perfect objects of lisse-
étale sites as in [Stacks, Tag 08FT] and [Stacks, Tag 08G5], respectively. Note that if X is an algebraic
stack, pseudo-coherent and perfect objects of D(Xlis-et) are always in Dqc(Xlis-et).

Example 3.1. If 𝑓 : X → Y is a morphism of algebraic stacks, we have closed symmetric monoidal
categories 𝒞 = Dqc (Xlis-et) and 𝒟 = Dqc(Ylis-et) and a strong monoidal functor L 𝑓 ∗ : 𝒟 → 𝒞. If f
is concentrated, we also have R 𝑓∗ : 𝒞 → 𝒟 that is a right adjoint to L 𝑓 ∗. In this context, the functor
notated Hom in Section 2 translates to internal hom for Dqc(Xlis-et). However, we note that by [HR17,
Lem 4.3(2)], for any algebraic stack X , we have equality

RH𝑜𝑚
qc
𝒪X
(P ,F) � RH𝑜𝑚𝒪X (P ,F)

for any F ∈ Dqc(Xlis-et) and any perfect complex P ∈ Dqc (Xlis-et).
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3.1. Background on twisted curves

Recall from Section 1.6 that a morphism 𝑝 : C →M of algebraic stacks is a family of twisted curves if
smooth-locally on M it is a twisted curve in the sense of [AOV11, Def 2.1]: in particular, p is flat and
proper and the diagonal C → C×MC is quasi-finite. If 𝑟 : C → 𝐶 is the coarse moduli map and 𝑐 → 𝐶 is
a geometric point, the fibre product Spec(𝒪𝐶,�̄�) ×𝐶 C is moreover required to have a certain description
(see the full definition in [AOV11, Def 2.1]). We recall some properties of families of twisted curves.

Our first lemma ‘spreads out’ the local quotient description of a twisted curve at a geometric point
to an étale neighbourhood of that point.

Lemma 3.2. Let C → 𝑇 be a family of twisted curves over an affine scheme T, and let 𝑞 : 𝐶 → 𝑇
be the coarse moduli space. Let 𝑐 → 𝐶 be a geometric point. Then there is an integer 𝑛 ≥ 1 and an
affine scheme 𝑉 = Spec(𝐴) with an action of 𝜇𝑛 such that if 𝑅 = 𝐴𝜇𝑛 is the ring of invariants and
𝑈 := Spec(𝑅), there is a commuting diagram

𝑉 [𝑉/𝜇𝑛] 𝑈

C 𝐶

𝜎 𝜏

𝑟

(3.1)

where the square is fibred and the vertical maps are étale. Moreover, one of the following holds:

1. 𝐴 = 𝑅[𝑥]/(𝑥𝑛 − 𝑡) for some 𝑡 ∈ 𝑅, and 𝜇𝑛 acts by 𝜁 · 𝑝(𝑥) = 𝑝(𝜁𝑥).
2. 𝐴 = 𝑅[𝑥, 𝑦]/(𝑥𝑦 − 𝑡, 𝑥𝑟 − 𝑢, 𝑦𝑟 − 𝑣) for some 𝑡, 𝑢, 𝑣 ∈ 𝑅, and 𝜇𝑛 acts by 𝜁 · 𝑝(𝑥, 𝑦) = 𝑝(𝜁𝑥, 𝜁−1𝑦).

Proof. We prove the lemma when 𝑐 maps to a node of C; the case when 𝑐 maps to a smooth point is
similar. By definition [AOV11, Def 2.1(v)], there is a fibre square

[(Spec(𝒪𝑇 ,𝑞 (�̄�) [𝑥, 𝑦]/(𝑥𝑦 − 𝑡))/𝜇𝑛] C

Spec(𝒪𝐶,�̄�) 𝐶

(3.2)

for some 𝑡 ∈ 𝒪𝑇 ,𝑞 (�̄�) , where 𝜁 ∈ 𝜇𝑛 acts by 𝑥 ↦→ 𝜁 · 𝑥 and 𝑦 ↦→ 𝜁−1 · 𝑦. Since C is tame, formation of
the coarse space commutes with arbitrary basechange [AOV08, Cor 3.3], and we have

𝒪𝐶,�̄� � (𝒪𝑇 ,𝑞 (�̄�) [𝑥, 𝑦]/(𝑥𝑦 − 𝑡))
𝜇𝑛 � 𝒪𝑇 ,𝑞 (�̄�) [𝑥

𝑛, 𝑦𝑛]/(𝑥𝑛𝑦𝑛 − 𝑡𝑛).

If we set 𝑢 := 𝑥𝑛 and 𝑣 := 𝑦𝑛 in𝒪𝐶,�̄� , then we may write the top-left corner of diagram (3.2) as the stack

[(Spec(𝒪𝐶,�̄� [𝑥, 𝑦]/(𝑥𝑛 − 𝑢, 𝑦𝑛 − 𝑣, 𝑥𝑦 − 𝑡))/𝜇𝑛] . (3.3)

Now write 𝒪𝐶,�̄� as the inverse limit of affine schemes Spec(𝑅𝑖) with étale maps to C. Since
Spec(𝒪𝐶,�̄� [𝑥, 𝑦]/(𝑥𝑛 − 𝑢, 𝑦𝑛 − 𝑣, 𝑥𝑦 − 𝑡)) → Spec(𝒪𝐶,�̄�) is finitely presented, there is an index 𝑖0
and elements 𝑢, 𝑣, 𝑡 ∈ 𝑅𝑖0 such that Spec(𝑅𝑖0 [𝑥, 𝑦]/(𝑥𝑛 − 𝑢, 𝑦𝑛 − 𝑣, 𝑥𝑦 − 𝑡)) pulls back to the affine
scheme in equation (3.3). Define 𝜇𝑛 to act on Spec(𝑅𝑖0 [𝑥, 𝑦]/(𝑥𝑛 − 𝑢, 𝑦𝑛 − 𝑣, 𝑥𝑦 − 𝑡)) by the same rule
𝑥 ↦→ 𝜁 · 𝑥 and 𝑦 ↦→ 𝜁−1 · 𝑦.

Let C𝑅𝑖 denote the pullback of C to Spec(𝑅𝑖). Observe that for 𝑖 ≥ 𝑖0, we have two stacks
[(Spec(𝑅𝑖 [𝑥, 𝑦]/(𝑥𝑛 − 𝑢, 𝑦𝑛 − 𝑣, 𝑥𝑦 − 𝑡))/𝜇𝑛] and C𝑅𝑖 defined over Spec(𝑅𝑖) and an isomorphism
between their pullbacks to Spec(𝒪𝐶,�̄�). By [LM00, Prop 4.18(i)], there is an index 𝑗 ≥ 𝑖0 and an iso-
morphism [(Spec(𝑅 𝑗 [𝑥, 𝑦]/(𝑥

𝑛 − 𝑢, 𝑦𝑛 − 𝑣, 𝑥𝑦 − 𝑡))/𝜇𝑛] � C𝑅 𝑗 . We may set 𝑅 := 𝑅 𝑗 . �

We refer the reader to Section 1.6 for definitions of the direct and inverse image functors in the next
lemma.
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Lemma 3.3. Let 𝑝 : C →M be a family of twisted curves on an algebraic stack M.

1. The morphism p has cohomological dimension ≤ 1 (in the sense of [HR17, Def 2.1]).
2. The morphism p is concentrated (in the sense of [HR17, Def 2.4]).
3. ForF ∈ Dqc (Clis-et) andG ∈ Dqc (Mlis-et), the projection morphismG⊗R𝑝∗ (F)

(2.10)
−−−−→ R𝑝∗(𝑝

∗G⊗F)
is an isomorphism.

4. Given a fibre square of algebraic stacks

C ′ C

M′ M

𝑚′

𝑝′ 𝑝

𝑚

and F ∈ Dqc (Clis-et), the basechange map L𝑚∗R𝑝∗F
(2.7)
−−−→ R𝑝′∗L𝑚′

∗F is an isomorphism.
5. If M is locally Noetherian, then the functor R𝑝∗ sends perfect complexes to perfect complexes.

Proof. For part (1), by flat basechange [HR17, Lem 1.2(4)], we may assume M is an affine scheme, but
this is [AOV11, Prop 2.6]. Now (1) implies part (2) by definition, part (3) by [HR17, Cor 4.12] and part
(4) by [HR17, Cor 4.13]. For part (5), we recall that perfection is a flat-local property of complexes in
the sense of [HR17, Lem 4.1], so we may use basechange [HR17, Cor 4.13] to reduce to the case when
M is a Noetherian affine scheme. Now the result follows from Lemma 3.4 below. �

Lemma 3.4. Let 𝑝 : C → 𝑇 be a family of twisted curves over a Noetherian affine scheme T, and let
𝑟 : C → 𝐶 be the map to the coarse moduli space.

1. The exact functor 𝑟∗ sends pseudo-coherent objects in Dqc(Clis-et) to pseudo-coherent objects in
Dqc (𝐶lis-et).

2. The functor R𝑝∗ sends perfect objects in Dqc(Clis-et) to perfect objects in Dqc (𝑇lis-et).

Remark 3.5. We expect that the locally Noetherian hypothesis can be removed using absolute Noetherian
approximation for algebraic stacks as in [Stacks, Tag 0CN4] (see the proof of [Stacks, Tag 01AH]). We
do not, however, know a reference that allows us to assume the approximating morphism has properties
(1) and (2) of Lemma 3.4. Since we are not aware of an application of the non-Noetherian setting, we
omit this investigation.

Proof of Lemma 3.4. We will repeatedly use the fact that if X is a scheme, there are equivalences
of categories QCoh(𝑋lis-et) � QCoh(𝑋zar) and Dqc (𝑋lis-et) � Dqc(𝑋zar), where 𝑋zar is the category of
sheaves on the small Zariski site of X, and that these equivalences preserve coherence, pseudo-coherence
and perfection.

To prove (1), let F ∈ Dqc(Clis-et) be pseudo-coherent. Let 𝑓 : 𝑈 → C be a smooth cover by a scheme.
Since f defines a morphism of lisse-étale sites and 𝑓 ∗ is exact, 𝑓 ∗F is pseudo-coherent by [Stacks,
Tag 08H4]. By [Stacks, Tag 08E8], the sheaves 𝐻𝑖 ( 𝑓 ∗F) are coherent and vanish for 𝑖 � 0. It follows
from [Ols07, Rmk 6.10, Prop 6.12] that the sheaves 𝐻𝑖 (F) are coherent and vanish for 𝑖 � 0. By
[Alp13, Thm 4.16(x)], the sheaves 𝑟∗𝐻𝑖 (F) have these same properties, but since 𝑟∗ is exact, we know
𝑟∗𝐻

𝑖 (F) = 𝐻𝑖 (𝑟∗F). Hence by [Stacks, Tag 08E8] again, the object 𝑟∗F is pseudo-coherent.
To prove (2), let F ∈ Dqc (Clis-et) be perfect—by [Stacks, Tag 08G8] this is equivalent to pseudo-

coherent and locally of finite tor dimension. By part (1) of this lemma and [Stacks, Tag 0CTL],
the pushforward R𝑝∗F is pseudo-coherent. To see that R𝑝∗F locally has finite tor dimension, by

[Stacks, Tag 08EA], it suffices to show that for G ∈ QCoh(𝑇), the sheaves 𝐻𝑖 (R𝑝∗F
L
⊗ G) vanish for

i outside a finite range. By the projection formula [HR17, p. 4.12] and flatness of p, these are equal to
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𝐻𝑖 (R𝑝∗(F
L
⊗ 𝑝∗G)). Since F is a perfect complex on a quasi-compact space, it has finite tor amplitude,

so the spectral sequence

R𝑚𝑝∗𝐻
𝑛 (F) =⇒ R𝑚+𝑛𝑝∗F

of [Stacks, Tag 015J] and the fact that p is concentrated finish the proof. �

3.2. Background on right adjoint to pushforward

We recall some statements about right adjoint to pushforward that hold for purely formal reasons.

Lemma 3.6. Let 𝑓 : X → Y be a concentrated morphism of algebraic stacks. Then a right adjoint 𝑓 !

to R 𝑓∗ : Dqc (Xlis-et) → Dqc (Ylis-et) exists, and for dualisable G ∈ Dqc(Ylis-et) the canonical morphism
𝑓 ∗G ⊗ 𝑓 !𝒪Y → 𝑓 !G defined in equation (2.11) is an isomorphism. Moreover, for F ∈ Dqc(Xlis-et) and
G ∈ Dqc(Ylis-et), there is a functorial isomorphism

R 𝑓∗RH𝑜𝑚
qc
𝒪X
(F , 𝑓 !G) → RH𝑜𝑚

qc
𝒪Y
(R 𝑓∗F ,G). (3.4)

Proof. Existence of 𝑓 ! is [HR17, Thm 4.14(1)], and that equation (2.11) is an isomorphism follows
from [FHM03, Prop 5.4]. The isomorphism in equation (3.4) is [FHM03, Prop 4.3] (see also [Stacks,
Tag 0A9Q]). �

We now explain what it means for 𝑓 ! to be compatible with basechange. While lemma 3.6 applies to
arbitrary families of twisted curves C →M, we will see that we need additional assumptions for the
basechange property to hold.

Suppose we have a fibre square of algebraic stacks as below with m and f tor-independent (see [HR17,
Sec 4.5]) and f concentrated.

X ′ X

Y ′ Y

𝑚′

𝑔 𝑓

𝑚

(3.5)

Then 𝑓 ! and 𝑔! exist as recalled in Lemma 3.6. By [HR17, Cor 4.13], the basechange map in equation (2.7)
is an isomorphism (we take the closed symmetric monoidal categories in equation (2.6) to be Dqc (Xlis-et),
etc.). This lets us define the functorial basechange map L𝑚′∗ 𝑓 ! → 𝑔!L𝑚∗ to be the composition

L𝑚′∗ 𝑓 ! → 𝑔!R𝑔∗L𝑚′∗ 𝑓 ! (2.7)
−−−→ 𝑔!L𝑚∗R 𝑓∗ 𝑓

! → 𝑔!L𝑚∗. (3.6)

We are interested in when equation (3.6) is an isomorphism.

Lemma 3.7. Suppose we have the tor-independent fibre square (3.5) of quasi-compact algebraic stacks
with quasi-finite and separated diagonals, and suppose Y ′ and Y are concentrated with quasi-affine
diagonals. If f is concentrated and R 𝑓∗ sends perfect complexes to perfect complexes, then equation
(3.6) is an isomorphism.

Remark 3.8. The hypotheses of the lemma are satisfied if all the stacks in diagram (3.5) are quasi-
compact tame Deligne-Mumford with separated diagonals, with additional conditions on f as above.

Remark 3.9. The preprint [Nee17] proves that equation (3.6) is an isomorphism under very general
conditions. Compared with [Nee17], our Lemma 3.7 imposes stricter conditions on the stacks X , X ′,
Y , Y ′ and morphism f, but we allow m to be arbitrary, whereas [Nee17] requires m to be flat.

Remark 3.10. The proof of Lemma 3.7 relies on our ability to find a compact generator for the algebraic
stack X . By [HR17, Thm A], our assumptions that X is quasi-compact with quasi-finite and separated
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diagonal imply that Dqc (Xlis-et) is compactly generated by a single perfect complex P . This means for
any F ∈ Dqc (Xlis-et), we have F = 0 if and only if HomDqc (Xlis-et) (P [𝑛],F) = 0 for every 𝑛 ∈ Z (here,
HomDqc (Xlis-et) denotes the hom-set in the (additive) category Dqc(Xlis-et)). Since Dqc (Xlis-et) is a full
subcategory of D(Xlis-et), we may compute the hom set in the larger category. But these hom sets are
computed by the cohomology of the derived global hom functor. We conclude that for any morphism
𝑓 : F → G, we have that f is an isomorphism if and only if RHom𝒪X (P , 𝑓 ) is an isomorphism.
Proof of Lemma 3.7. We explain why the proof of [Lip09, Cor 4.4.3] also works in this setting.

The first step is to reduce to the case where m is quasi-affine. Indeed, by [Lip09, Prop 4.6.8], the
morphism in equation (3.6) satisfies a cocycle condition for squares stacked horizontally. This implies
that it is enough to prove the Lemma when Y ′ is an affine scheme and m is smooth or when Y ′ and Y
are both affine (see [Lip09, pp. 182–4] for more details). By assumption, Y has quasi-affine diagonal,
so in either case, the morphism m is quasi-affine.

Now we assume m is quasi-affine. Let F ∈ Dqc (Ylis-et), and let P be a perfect, compact generator for
Dqc (Xlis-et) (see Remark 3.10). Since Y ′ and Y are concentrated by assumption, the morphisms m and
𝑚′ are also concentrated [HR17, Lem 2.5], and we have functors R𝑚∗ and R𝑚′∗. To show that equation
(3.6) is an isomorphism, we claim that it suffices to show the induced map

R 𝑓∗R𝑚′∗RH𝑜𝑚
qc
𝒪X ′
(L𝑚′∗P , L𝑚′∗ 𝑓 !F) → R 𝑓∗R𝑚′∗RH𝑜𝑚

qc
𝒪X ′
(L𝑚′∗P , 𝑔!L𝑚∗F) (3.7)

is an isomorphism. First, L𝑚′∗P is perfect,3 so we may replace the functors RH𝑜𝑚
qc
𝒪X ′

with RH𝑜𝑚𝒪X ′

(see Example 3.1). Next, if equation (3.7) is an isomorphism, we get an isomorphism of global derived
homs by applying the global sections functor. But L𝑚′∗P is a perfect generator for Dqc (X ′lis-et) by
[HR17, Cor 2.8]—this is where we use that m (hence 𝑚′) is quasi-affine. We conclude that equation
(3.6) is an isomorphism (see Remark 3.10).

To show that equation (3.7) is an isomorphism, we cite the bottom two cells of the commuting
diagram on [Lip09, p. 182] to reduce to proving a certain morphism

R𝑚∗R𝑔∗RH𝑜𝑚
qc
𝒪X ′
(L𝑚′∗P , L𝑚′∗ 𝑓 !F)

R𝑚∗ (4.4.1)∗pc
−−−−−−−−−−→ R𝑚∗RH𝑜𝑚

qc
𝒪Y′
(R𝑔∗L𝑚′∗P , L𝑚∗F)

is an isomorphism.4 (In the cited diagram, the map notated 𝑢∗𝛿 is, in our notation, equal to L𝑚∗ applied
to the isomorphism in equation (3.4).) We will not bother to write the definition of R𝑚∗(4.4.1)∗pc because
[Lip09, Lem 4.6.4] gives a commuting diagram

R 𝑓 ′∗RH𝑜𝑚
qc
𝒪X ′
(L𝑚′∗P , L𝑚′∗ 𝑓 !𝑐𝐹) RH𝑜𝑚

qc
𝒪Y′
(R 𝑓 ′∗L𝑚′∗P , L𝑚∗F)

R 𝑓 ′∗L𝑚′∗RH𝑜𝑚
qc
𝒪X
(P , 𝑓 !F) RH𝑜𝑚

qc
𝒪Y′
(L𝑚∗R 𝑓∗P , L𝑚∗F)

L𝑚′∗R 𝑓∗RH𝑜𝑚
qc
𝒪X
(P , 𝑓 !F) L𝑚∗RH𝑜𝑚

qc
𝒪Y
(R 𝑓∗P ,F)

(4.4.1)∗pc

𝜌 (2.7)

(2.7)

L𝑚∗(3.4)

𝜌

(3.8)

The arrows labelled (2.7) are isomorphisms by [HR17, Cor 4.13]. The arrows labelled 𝜌 are defined in
[FHM03, (3.3)]; and by [FHM03, Prop 3.2], all instances in this diagram are isomorphisms since P and
R 𝑓∗P are perfect complexes by assumption. We note that our definition of 𝜌 agrees with the definition

3To see this, note that the equivalence in Proposition A.4 sends perfect objects to perfect objects—one reason is that this is an
equivalence of symmetric monoidal categories, and the perfect objects are the dualisables [Stacks, Tag 0FPP]. Now apply [Stacks,
Tag 08H6] to the morphism of strictly simplicial étale topoi.

4One may check that Lipman’s discussion of the relevant commuting diagram here and in diagram (3.8) uses only formal
properties of adjoint symmetric functors as discussed in [Lip09, Sec 3.5]. The setup in [Lip09, Sec 3.5] is compatible with our
Situation 2.1 by footnote 1.
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in [Lip09, (3.5.4.5)] by [Lip09, Exercise 3.5.6(a)]. Finally, in diagram (3.8), we know that equation (3.4)
is an isomorphism; this concludes the proof. �

3.3. Example of Situation 2.5

We realise Situation 2.5 as duality for families of twisted curves on Noetherian algebraic spaces.

Example 3.11. Let 𝑝 : C → 𝑇 be a family of twisted curves on a quasi-separated Noetherian algebraic
space T. Let 𝒞 = Dqc(Cet), 𝒟 = Dqc(𝑇et), 𝑓∗ = R𝑝∗, and 𝑓 ∗ = L𝑝∗. We will write 𝑝∗ for L𝑝∗ since p
is flat (this is justified by [HR17, (1.9)]). The projection map in equation (2.10) is an isomorphism by
Lemma 3.3.

The right adjoint 𝑝! exists by Lemma 3.6. Moreover, by [HR17, Thm A], the category Dqc (Clis-et) is
compactly detected by a single perfect complex. Since R𝑝∗ preserves perfect complexes (by Lemma 3.3)
and perfect objects in Dqc (𝑇et) are also compact, it follows from [FHM03, Thm 8.4] and [FHM03, Lem
7.4] that equation (2.11) is an isomorphism for all Y.

It remains to show that 𝑝!𝒪𝑇 is invertible. This follows from Lemma 3.7 and Lemma 3.12 below.

Lemma 3.12. Let 𝑝 : C → 𝑇 be a family of twisted curves on a Noetherian affine scheme T. Then 𝑝!𝒪𝑇
is represented by a rank one locally free sheaf in degree -1.

Proof. Let 𝑞 : 𝐶 → 𝑇 be the coarse moduli space of C, and let 𝑟 : C → 𝐶 be the coarse moduli map.
By [Stacks, Tag 0E6P, 0E6R], we know 𝑞!𝒪𝑇 is invertible and supported in degree -1. In particular, it
is dualisable, so we have

𝑝!𝒪𝑇 = 𝑟 !𝑞!𝒪𝑇 = 𝑟∗𝑞!𝒪𝑇 ⊗ 𝑟
!𝒪𝐶 ,

where the second equality uses [FHM03, Thm 8.4] and the fact that 𝑞!𝒪𝑇 is dualisable. Hence to prove
the lemma, it suffices to show that 𝑟 !𝒪𝐶 is invertible and supported in degree 0.

Let 𝑐 → 𝐶 be a geometric point. By Lemma 3.2, we have a local description of C → 𝐶 near 𝑐 given
by the diagram (3.1). Note that a right adjoint to pushforward exists for every horizontal map in diagram
(3.1). It follows from [Nee17, Lem 0.1] that the pullback of 𝑟 !𝒪𝐶 to [𝑉/𝜇𝑛] is equal to 𝜏!𝒪𝑈 (note that
[Nee17, Lem 0.1] applies since 𝑈 → 𝐶 is étale and 𝑟∗ preserves pseudo-coherent objects by Lemma
3.4). Since [𝑉/𝜇𝑛] → C is flat, the complex 𝑟 !𝒪𝐶 is represented by a quasi-coherent sheaf if and only
if 𝜏!𝒪𝑈 is; and by [Stacks, Tag05B2] (applied on strictly simplicial étale sites as in Proposition A.4),
𝑟 !𝒪𝐶 is invertible if and only if 𝜏!𝒪𝑈 is.

To compute 𝜏!𝒪𝑈 , set 𝜌 = 𝜏 ◦ 𝜎; we observe that we have an equality

𝜌!𝒪𝑈 = 𝜎∗𝜏!𝒪𝑈 ⊗ 𝜎!𝒪[𝑉 /𝜇𝑛 ] ,

so it suffices to show that 𝜌!𝒪𝑈 and 𝜎!𝒪[𝑉 /𝜇𝑛 ] are both invertible and supported in degree 0. In Lemma
3.13 below, we prove the statement about 𝜌!𝒪𝑈 as well as the statement that 𝑝𝑟 !𝒪𝑉 is a line bundle in
degree 0, where 𝑝𝑟 : 𝜇𝑛 × 𝑉 → 𝑉 is the projection. The statement about 𝑝𝑟 !𝒪𝑉 is equivalent to the
statement about 𝜎!𝒪[𝑉 /𝜇𝑛 ] by an argument identical to the one used in the previous paragraph. �

Lemma 3.13. The complexes 𝜌!𝒪𝑈 and 𝑝𝑟 !𝒪𝑉 are represented by line bundles supported in degree 0.

Proof. We use the statement of finite duality in [Stacks, Tag 0AX2] and translate it to a statement
about rings using [Stacks, Tag 06Z0]. These results imply that for a morphism of affine schemes
Spec(𝐵) → Spec(𝐴), the image of 𝒪Spec(𝐴) under the right adjoint to pushforward is induced by the
complex of B-modules

RH𝑜𝑚𝐴(𝐵, 𝐴). (3.9)

For 𝑝𝑟 , the relevant ring map is the diagonal 𝐴→
∏

𝑔∈𝐺 𝐴, and 𝐵 =
∏

𝑔∈𝐺 𝐴 is a free A-module so
equation (3.9), is supported in degree 0. One checks that there is an isomorphism 𝐵→ RH𝑜𝑚𝐴(𝐵, 𝐴)
given by sending 1𝐵 to the projection to the identity factor.
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For 𝜌, let 𝑅 = 𝐴𝐺 , the ring of G-invariants. Lemma 3.2 lists two possibilities for A. In case (1), the
computation of equation (3.9) is similar to that for 𝑝𝑟 since in this case, A is a free R-module with basis
1, 𝑥, . . . , 𝑥𝑟−1 and RH𝑜𝑚𝑅 (𝐴, 𝑅) is generated as an A-module by projection to the 𝑥𝑟−1-factor.

The computation in case (2) is more involved since we have to take a free resolution of A. One may
use the resolution

. . .
𝑑3
−−→ 𝑅⊕2𝑟−2 𝑑2

−−→ 𝑅⊕2𝑟−2 𝑑1
−−→ 𝑅⊕2𝑟−1 𝑑0

−−→ 𝐴→ 0,

with maps given as follows. If { 𝑓𝑖 , 𝑔𝑖}𝑟−1
𝑖=1 denotes a free basis for 𝑅⊕2𝑟−2 and e is the additional basis

element of 𝑅⊕2𝑟−1, then 𝑑𝑖 is defined by

𝑑0 : 𝑒 ↦→ 1 𝑑𝑖 , 𝑖 odd : 𝑓𝑖 ↦→ 𝑣 𝑓𝑖 − 𝑡
𝑖𝑔𝑟−𝑖 𝑑𝑖 , 𝑖 > 0 even: 𝑓𝑖 ↦→ 𝑢 𝑓𝑖 + 𝑡

𝑖𝑔𝑟−𝑖
𝑓𝑖 ↦→ 𝑥𝑖 𝑔𝑟−𝑖 ↦→ 𝑢𝑔𝑟−𝑖 − 𝑡

𝑟−𝑖 𝑓𝑖 𝑔𝑟−𝑖 ↦→ 𝑡𝑟−𝑖 𝑓𝑖 + 𝑣𝑔𝑟−𝑖
𝑔𝑖 ↦→ 𝑦𝑖

For details, see [Web20, pp. 25–28]. �

3.4. Example of Situation 2.12

We realise Situation 2.12 for families of twisted curves on algebraic stacks. We use the dualising sheaf
and trace map (as in Situation 2.10) as a substitute for the full duality in Example 3.11 because we are
unable to show that the basechange morphism in equation (3.6) is an isomorphism in general.

Proposition 3.14. For every family C →M of twisted curves on a locally Noetherian algebraic stack
M, there is a pair (𝜔•M, 𝑡𝑟M) with 𝜔•M = 𝜔M [1], where 𝜔M ∈ QCoh(Clis-et) is locally free and
𝑡𝑟M : R𝑝∗𝜔

•
M → 𝒪M, such that the following hold:

1. The pair is functorial in the following sense. Given a fibre square

CN CM

N M

𝑚′

𝑚

(3.10)

there is a canonical isomorphism

𝑚′∗𝜔•M
∼
−→ 𝜔•N (3.11)

such that the following square commutes:

L𝑚∗R𝑝∗𝜔
•
M 𝒪N

R𝑝∗L𝑚′∗𝜔•M R𝑝∗𝜔
•
N

L𝑚∗𝑡𝑟M

(2.7)∼

(3.11)
∼

𝑡𝑟N (3.12)

Moreover, if 𝑛 : K → N is a morphism of algebraic stacks and CK = CN ×N K is the pullback
and 𝑛′ : CK → CN the projection, then the isomorphism (𝑚′ ◦ 𝑛′)∗𝜔•M → 𝜔N is equal to the
composition 𝑛′∗𝑚′∗𝜔•M → 𝑛′∗𝜔•N → 𝜔•K.

2. If M is a quasi-separated Noetherian algebraic space, then 𝜔•M = 𝑝!𝒪M and 𝑡𝑟M is the counit of
the (R𝑝∗, 𝑝

!) adjunction.

For a general base M, we do not know if our construction of (𝜔•M, 𝑡𝑟M) agrees with the right adjoint
to pushforward.
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Remark 3.15. To see that Proposition 3.14 gives an example of Situation 2.12 compatible with Example
3.11, we use the fact that L𝑚∗ : Dqc (Mlis-et) → Dqc (Nlis-et) has a right adjoint even when m is not
concentrated; see [HR17, Sec 1.3].

Proof of Proposition 3.14. The idea is as follows. We will define the pair (𝜔•M, 𝑡𝑟M) when M is an
algebraic space as required by part (2) of the proposition. When M is an algebraic stack, we will take
this as the smooth-local definition of (𝜔•M, 𝑡𝑟M); and using the notion of a very smooth hypercover
explained in Appendix A, we will show that these local pairs ‘glue’ to a global one with the correct
properties.

We now proceed with the proof. When M is a quasi-separated Noetherian algebraic space, we define
𝜔•M and 𝑡𝑟M as required in part (2) of the proposition (see Example 3.11). When both N and M
are quasi-separated Noetherian algebraic spaces, we define equation (3.11) to be the basechange map
in equation (3.6) (it is an isomorphism by Lemma 3.7). The commuting diagram (3.12) follows from
the definition of equation (3.6); see [Lip09, Rmk 4.4(d)]. The cocycle condition on equation (3.11) is
[Lip09, Prop 4.6.8].

Let M be a locally Noetherian algebraic stack. In this paragraph, we define 𝜔M. Let 𝑀• → M
be a very smooth hypercover (see Definition A.12), and let C𝑀,• be its pullback to CM (see Remark
A.13). We have associated categories of quasi-coherent sheaves QCoh(𝑀•,lis-et) and QCoh(C𝑀,•,lis-et)
as in Section A.3.2. By Remark A.14, we may assume that each 𝑀𝑖 is a disjoint union of affine schemes
(each Noetherian by [Stacks, Tag 06R6]). In particular, each 𝑀𝑖 is a disjoint union of qcqs Noetherian
schemes. For each 𝑛 ∈ Z≥0, we have families of twisted curves C𝑀,𝑛 → 𝑀𝑛, and hence the system
of locally free sheaves 𝜔𝑀𝑛 (defined by applying the construction in the previous paragraph to the
Noetherian components of 𝑀𝑛) together with the isomorphisms in equation (3.11) defines an object
𝜔𝑀,• of QCoh(C𝑀,•,lis-et). By Proposition A.18, the sheaf 𝜔𝑀,• corresponds to a unique quasi-coherent
sheaf 𝜔M in QCoh(CM,lis-et) whose restriction to C𝑀𝑖 is 𝜔𝑀𝑖 . Let 𝜔•M = 𝜔M [1] .

In this paragraph, we define 𝑡𝑟M. By Remark A.20, the complex R𝑝∗𝜔
•
M is represented by the

element of Dqc(𝑀•,lis-et) whose 𝑛𝑡ℎ component is R𝑝∗𝜔
•
𝑀𝑛

(see also [Stacks, Tag 0D9P]). We have trace
maps 𝑡𝑟𝑀𝑛 : R𝑝∗𝜔

•
𝑀𝑛
→ 𝒪𝑀𝑛 for each n, and these are compatible with the transition maps of 𝑀• by

diagram (3.12). Now, from Proposition A.18 combined with the argument in [Stacks, Tag 0DL9], we
obtain 𝑡𝑟M : R𝑝∗𝜔

•
M → 𝒪M (the required Ext groups vanish since R𝑝∗𝜔

•
M is a complex in degrees

[-1,0] by Lemma 3.3).
Now we check that the pair (𝜔M, 𝑡𝑟M) has the properties required in part (1) of the proposition.

Suppose we have a fibre square (3.10) where N and M are algebraic stacks. Let 𝑁• → N and 𝑀• →M
be very smooth hypercovers with 𝑀𝑖 and 𝑁𝑖 disjoint unions of affine schemes, with a morphism 𝑁• → 𝑀•
commuting with the augmentations and 𝑚 : N →M (see Remark A.15). Let C𝑀,• and C𝑁 ,• be the
pullbacks of 𝑀• and 𝑁• to CM and CN , respectively. For each 𝑛 ∈ Z≥0, the twisted curve C𝑁 ,𝑛 → 𝑁𝑛 is
the pullback of C𝑀,𝑛 → 𝑀𝑛, and we have isomorphisms 𝑚′∗𝑛 𝜔𝑀𝑛

(3.11)
−−−−→ 𝜔𝑁𝑛 . Under the identifications

(𝑎∗𝑚′∗𝜔M) |𝑀𝑛 � 𝑚′∗𝑛 𝜔𝑀𝑛 of Remark A.20, these isomorphisms are compatible with the transition
maps for the sheaves 𝑎∗𝑚′∗𝜔M and 𝑎∗𝜔N in QCoh(C𝑁 ,•,lis-et) because equation (3.11) satisfies the
cocycle condition. By descent, we get an isomorphism 𝑚′∗𝜔•M → 𝜔•N . To check that this definition
makes diagram (3.12) commute, apply the equivalences 𝑎∗ and use Remark A.20 to get a collection of
commuting diagrams indexed by 𝑛 ∈ Z≥0. �

4. Obstruction theories via the Fundamental Theorem

4.1. Some Picard categories

Let 𝒮 be a site. We recall the notion of Picard stacks from [73, Sec XVIII.1.4.5] and observe that a
Picard category is just a Picard stack on the punctual site (see also [73, Def XVIII.1.4.2]). If 𝑓 : P → Q
is a morphism of Picard stacks on 𝒮, we define the kernel to be the fibre product K = •×𝑒,Q, 𝑓 P , where
• is the trivial Picard stack (a constant sheaf with all its fibres equal to a single point) and 𝑒 : • → Q is
the identity.
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Example 4.1. Let D(𝒮) be the unbounded derived category of abelian sheaves on 𝒮. As in [73, Sec
XVIII.1.4.11], we have a functor 𝑐ℎ from the subcategory D[−1,0] (𝒮) to the category of Picard stacks
on 𝒮 (in the latter category, arrows are isomorphism classes of morphisms of stacks). Suppose A is a
sheaf of rings on 𝒮 and D(𝐴) is the unbounded derived category of sheaves of A-modules. For two
complexes 𝐹 ∈ D[−∞,𝑎] (𝐴) and 𝐺 ∈ D[𝑎−1,∞] (𝐴), we define

Ext0/−1
𝐴 (𝐹, 𝐺) := 𝑐ℎ(𝜏≤0RHom𝐴(𝐹, 𝐺)) = 𝑐ℎ(𝜏≤0RΓRH𝑜𝑚𝐴(𝐹, 𝐺)), (4.1)

where RHom𝐴 is derived global hom for D(𝐴); we have omitted the pushforward from the derived
category of Γ(𝒮, 𝐴)-modules to the category of abelian groups. Observe that 𝑐ℎ is applied here over the
site with one object and one morphism, so Ext0/−1

𝐴 (𝐹, 𝐺) is actually a Picard category (and the prestack
𝑝𝑐ℎ(𝜏≤0RΓRH𝑜𝑚𝐴(𝐹, 𝐺) of [73, Sec XVIII.1.4.11] is actually a stack). If the ring A is clear, we will
omit it from the notation. It follows from [73, (XVIII.1.4.11.1)] that isomorphism classes of objects
of Ext0/−1

𝐴 (𝐹, 𝐺) are equal to Ext0𝐴(𝐹, 𝐺) and from [73, (XVIII.1.4.11.2)] that automorphisms of the
identity element are Ext−1

𝐴 (𝐹, 𝐺).
Example 4.2. Let X → Y be a representable morphism of algebraic stacks, and let I be a quasi-coherent
sheaf on X . We recall from [Ols06, Sec 2.2, 2.12] the Picard category ExalY (X , 𝐼) on Xet: objects are
square-zero extensions X ↩→ X ′ of stacks over Y , together with an isomorphism 𝐼 → ker(𝒪X ′ → 𝒪X )
(see [Ols06, Sec 2.2] for details, e.g., arrows).

Now suppose we have the following commuting diagram of algebraic stacks where 𝑞 : X ↩→ X ′ is
a square-zero extension by a quasi-coherent sheaf I, the maps f and g are representable, and we have
fixed 2-morphism 𝛾 : 𝑟 ◦ 𝑓 → 𝑔 ◦ 𝑞:

X Y

X ′ Z

𝑓

𝑞 𝑟

𝑔

(4.2)

The morphism r induces a morphism 𝑅 : ExalY (X , 𝐼) → ExalZ (X , 𝐼), and the perimeter of diagram
(4.2) defines an element of ExalZ (X , 𝐼) (i.e., a functor • → ExalZ (X , 𝐼), where • is the groupoid with
one object and one arrow). We define the Picard category Def ( 𝑓 ) to be the fibre product

Def( 𝑓 ) ExalY (X , 𝐼)

• ExalZ (X , 𝐼)

𝑅 (4.3)

where the bottom arrow • → ExalZ (X , 𝐼) is the section induced by diagram (4.2). We use Def ( 𝑓 ) to
denote the set of isomorphism classes of Def( 𝑓 ). Explicitly, objects of Def ( 𝑓 ) are triples (𝑘, 𝜖, 𝛿) such
that 𝑘 : X ′ → Y is a 1-morphism, and 𝜖 : 𝑓 → 𝑘 ◦ 𝑞 and 𝛿 : 𝑟 ◦ 𝑘 → 𝑔 are 2-morphisms satisfying
𝑞∗(𝛿) ◦ 𝑟 (𝜖) = 𝛾. A morphism from (𝑘1, 𝜖1, 𝛿1) to (𝑘2, 𝜖2, 𝛿2) is a natural transformation 𝜏 : 𝑘1 → 𝑘2
such that 𝑞∗(𝜏) ◦ 𝜖1 = 𝜖2 and 𝛿1 = 𝛿2 ◦ 𝑟 (𝜏) (for details see [Web20, Lem 2.4.3]).

Example 4.3. As an example of diagram (4.2), let X 𝑓
−→ Y 𝑟

−→ Z be morphisms of algebraic stacks
with X an algebraic space, and let 𝐼 ∈ QCoh(Xet). Define 𝑞 : X → X ′ to be the trivial extension by I,
so we have 𝑞′ : X ′ → X such that 𝑞′ ◦ 𝑞 = 1X . Now 𝑔 := 𝑟 ◦ 𝑓 ◦ 𝑞′ is representable, and 𝑘 = 𝑓 ◦ 𝑞′

defines an element of Def( 𝑓 ).

4.2. The Fundamental Theorem

The fundamental property of the cotangent complex is that it provides a description of the Picard
category in Example 4.2 in terms of the construction in Example 4.1.
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Theorem 4.4 [Ols06]. Let X → Y be a representable morphism of algebraic stacks. Then there is an
isomorphism of Picard categories:

ExalY (X , 𝐼)
∼
−→ Ext0/−1

𝒪X
(LX /Y , 𝐼 [1]) (4.4)

The definition of equation (4.4) is technical, and we defer it to Section B.3. For us, the key property
of equation (4.4) is that it is functorial under pullback and basechange as stated in the next two lemmas.

Lemma 4.5. Suppose we have maps Z 𝑓
−→ W 𝑔

−→ Y , with f and 𝑔 ◦ 𝑓 representable. Then given
𝐼 ∈ QCoh(Zlis-et), there is a commuting diagram of Picard categories:

Ext0/−1(LZ/W , 𝐼 [1]) Ext0/−1(LZ/Y , 𝐼 [1])

ExalW (Z , 𝐼) ExalY (Z , 𝐼)

𝐴

𝐵

(4.4) (4.4) (4.5)

Here A is induced by the canonical map LZ/Y → LZ/W , and B is induced by composition with g.

Lemma 4.5 is a special case of [Ols06, (2.33.3)], but that result is stated only for isomorphism classes
of objects. We will prove Lemma 4.5 in Appendix B. For the second functoriality lemma, suppose we
have a fibre square of algebraic stacks

Z X

W Y

𝑝

(4.6)

where the map W → Y is flat and X → Y is representable. Then given a quasi-coherent sheaf
𝐼 ∈ QCoh(Xlis-et), there is a morphism of Picard categories

ExalY (X , 𝐼) → ExalW (Z , 𝑝∗𝐼) (4.7)

sending X ′ → Y to the pullback Z ′ := X ′ ×Y W →W (observe that, since diagram (4.6) is fibred, we
have an induced map Z ↩→ Z ′ with the desired kernel).

Lemma 4.6. Given the fibre square (4.6) and 𝐼 ∈ QCoh(Xlis-et), there is a commuting diagram of Picard
categories:

Ext0/−1(LX /Y , 𝐼 [1]) Ext0/−1(𝑝∗LX /Y , 𝑝
∗𝐼 [1]) Ext0/−1(LZ/W , 𝑝∗𝐼 [1])

ExalY (X , 𝐼) ExalW (Z , 𝑝∗𝐼)

𝐶
∼
𝐷

(4.4)

𝐸

(4.4) (4.8)

Here C is induced by equation (2.5) in the context of Example B.4,5 the arrow D is induced by the
canonical map of cotangent complexes (an isomorphism in this case), and E is equation (4.7).

We will prove Lemma 4.6 in Appendix B. We conclude this section with a corollary to Theorem 4.4
that may be read as a relative version of the same theorem.

Corollary 4.7. Consider a diagram (4.2) of algebraic stacks where X → X ′ is a square-zero extension
with ideal sheaf I, and f and g are representable:

5Example B.4 differs from Example 3.1 because it uses general sheaves of 𝒪-modules and hence the RH𝑜𝑚 functor instead of
RH𝑜𝑚qc.
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1. There is an obstruction 𝑜( 𝑓 ) ∈ Ext1(L 𝑓 ∗LY/Z , 𝐼) whose vanishing is necessary and sufficient for
the set Def ( 𝑓 ) to be nonempty.

2. If 𝑜( 𝑓 ) = 0, then there is an isomorphism Def ( 𝑓 ) � Ext0/−1(L 𝑓 ∗LY/Z , 𝐼).

Remark 4.8. It follows from the corollary that if 𝑜( 𝑓 ) = 0, we get an isomorphism of groups between
Ext−1(L 𝑓 ∗LY/Z ) and the automorphism group of any element of Def ( 𝑓 ). One can extract from the
proof of the corollary that Def ( 𝑓 ) is a torsor for Ext0(L 𝑓 ∗LY/Z , 𝐼).

Proof. Applying Lemma 4.5 to the maps X → Y 𝑟
−→ Z , we get a commuting diagram

Ext0/−1(LX /Y , 𝐼 [1]) Ext0/−1(LX /Z , 𝐼 [1])

ExalY (X , 𝐼) ExalZ (X , 𝐼)

∼ ∼

𝑅

(4.9)

where 𝑅 is the same as the map B in the lemma. When we restrict diagram (4.9) to isomorphism classes
of objects, we get the commuting square in the following diagram:

Ext1(LX /Y , 𝐼) Ext1 (LX /Z , 𝐼) Ext1 (L 𝑓 ∗LY/Z , 𝐼)

ExalY (X , 𝐼) ExalZ (X , 𝐼)

∼ ∼𝛼

𝑜𝑏

𝑅

(4.10)

The top row of the diagram comes from applying Ext1(−, 𝐼) to the distinguished triangle

L 𝑓 ∗LY/Z → LX /Z → LX /Y . (4.11)

The set Def ( 𝑓 ) is nonempty if and only if, in diagram (4.10), the fibre of R over the element [𝑔] ∈
ExalZ (X , 𝐼) defined by diagram (4.2) is nonempty. From the long exact sequence for Ext𝑖 (−, 𝐼) applied
to equation (4.11), we see that this happens if and only if the image of [𝑔] in Ext1(L 𝑓 ∗LY/Z , 𝐼) (under
the maps given in diagram (4.10)) is 0. We define

𝑜( 𝑓 ) = 𝑜𝑏(𝛼−1 ([𝑔])). (4.12)

If Def ( 𝑓 ) is not empty, then by Lemma 4.9 below, Def ( 𝑓 ) is isomorphic to the kernel of the morphism
of Picard categories

𝑅 : ExalY (X , 𝐼) → ExalZ (X , 𝐼).

It follows from diagram (4.9) and [Ols06, Lem 2.29] applied to the distinguished triangle

RHom(LX /Z , 𝐼 [1])
𝛽
−→ RHom(LX /Y , 𝐼 [1]) → RHom(L 𝑓 ∗LY/Z , 𝐼 [1]) →

induced from equation (4.11) that this kernel is canonically isomorphic to 𝑐ℎ((𝜏≤−1𝐶𝑜𝑛𝑒(𝜏≤0𝛽)) [−1]),
where 𝐶𝑜𝑛𝑒 denotes the mapping cone of a morphism. But we compute

(𝜏≤−1𝐶𝑜𝑛𝑒(𝜏≤0𝛽))) [−1] = (𝜏≤−1𝐶𝑜𝑛𝑒(𝛽)) [−1] = 𝜏≤0𝐶𝑜𝑛𝑒(𝛽[−1]),

so we get that this kernel is isomorphic to Ext0/−1(L 𝑓 ∗LY/Z , 𝐼). �

Lemma 4.9. Let 𝑓 : P → Q be a morphism of Picard stacks on a stack X , and let K denote the kernel.
Let 𝑞 : X → Q be a section and F = P ×Q,𝑞 X the fibre product. If the set of global objects of F is not
empty, then F is noncanonically isomorphic to K.
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Proof. A global object of F defines a section 𝜎 : X → F . One can check that the composition
K ×X F → P ×X P 𝜇

−→ P , where 𝜇 is the group operation, factors through F . We obtain a morphism

K (1K ,𝜎)
−−−−−−→ K ×X F → F . (4.13)

On the other hand, we have the composition

F (𝑝𝑟1 ,−𝜎)
−−−−−−−→ P ×X P 𝜇

−→ P 𝑓
−→ Q, (4.14)

where 𝑝𝑟1 : F → P is the canonical morphism and −𝜎 is 𝜎 followed by the inverse morphism. The
composition of equation (4.14) factors through the identity 𝑒 : X → Q, so we get an induced map
F → K. One may check that this is inverse to equation (4.13). �

4.3. Equivalent definitions of an obstruction theory

Let Y → Z be a morphism of algebraic stacks. If 𝜙 : 𝐸 → 𝐹 is a morphism in Dqc(Ylis-et), let
𝐻𝑖 (𝜙) : 𝐻𝑖 (𝐸) → 𝐻𝑖 (𝐹) denote the induced morphism on cohomology sheaves. The following
definition generalises [BF97, Def 4.4].

Definition 4.10. A morphism 𝜙 : 𝐸 → LY/Z in Dqc (Ylis-et) is an obstruction theory if 𝐻−1(𝜙) is a
surjection and 𝐻0 (𝜙), 𝐻1(𝜙) are isomorphisms.

Given a morphism 𝜙 : 𝐸 → LY/Z in Dqc (Ylis-et), for every diagram (4.2), we have induced homo-
morphisms of groups (computed a priori in the lisse-étale topology)

Φ𝑖 : Ext𝑖 (L 𝑓 ∗LY/Z , 𝐼) → Ext𝑖 (L 𝑓 ∗𝐸, 𝐼). (4.15)

We now present a well-known local criterion for a morphism 𝜙 to be an obstruction theory. Similar
criteria have appeared in [BF97, Thm 4.5], [AP19, Cor 8.5] and [Pom15, Thm 3.5]. However, we found
the wording in these criteria to be vague in that they do not explicitly require compatibility between
various morphisms. Since proving said compatibility is a major part of the paper (it comprises the
functoriality computations in Appendix B), we give the precise statement of the local criterion and a
fully detailed proof.

Lemma 4.11. The following conditions are equivalent:

1. The morphism 𝜙 is an obstruction theory.
2. For every diagram (4.2) with X a scheme, the following hold:

(a) the element Φ1(𝑜( 𝑓 )) ∈ Ext1(L 𝑓 ∗𝐸, 𝐼) vanishes if and only if Def ( 𝑓 ) is nonempty.
(b) if Φ1(𝑜( 𝑓 )) = 0, then Φ0 and Φ−1 are isomorphisms.

3. For every affine scheme X and smooth map X → Z , the following hold:
(a) For every ambient diagram (4.2) using X , the element Φ1(𝑜( 𝑓 )) ∈ Ext1(L 𝑓 ∗𝐸, 𝐼) vanishes if

and only if Def ( 𝑓 ) is nonempty.
(b) For every 𝐼 ∈ QCoh(Xlis-et), the maps Φ0 and Φ−1 are isomorphisms.

Remark 4.12. In Lemma 4.11, conditions (2) and (3) may be computed in Xet—so in (3b), one checks
every 𝐼 ∈ QCoh(Xet) (see, e.g., [Ols16, Prop 9.2.16]).

Proof of Lemma 4.11. The proof of this lemma seems to be well-known; many parts were explained to
me by Bhargav Bhatt. Let C be the mapping cone of 𝜙 : 𝐸 → LY/Z . Then condition (1) is equivalent to

(1’) 𝐻𝑖 (𝐶) = 0 for 𝑖 ≥ −1.
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Assume (1’). Then 𝐻𝑖 (L 𝑓 ∗𝐶) also vanish for 𝑖 ≥ −1, so a spectral sequence [Stacks, Tag 07AA] for
Ext𝑖 (−, 𝐼) implies Ext𝑖 (L 𝑓 ∗𝐶, 𝐼) = 0 for 𝑖 ≤ 1 and any I. Now the long exact sequence of Ext groups
arising from the distinguished triangle

L 𝑓 ∗𝐸 → L 𝑓 ∗LY/Z → L 𝑓 ∗𝐶 → (4.16)

implies that Φ1 is injective and Φ0 and Φ−1 are isomorphisms. Combined with Corollary 4.7, this proves
(2) (with X an arbitrary scheme). Now (2) implies (3) using Example 4.3.

Assume (3). Condition (1’) may be checked smooth-locally on Y , so let 𝑓 : X → Y be a smooth
morphism from an affine scheme, and let 𝐼 ∈ QCoh(Xlis-et) be arbitrary. We will show that if 𝑖 ≥ −1,
then Ext0(𝐻𝑖 (L 𝑓 ∗𝐶), 𝐼) = 0, which implies 𝑓 ∗𝐻𝑖 (𝐶) = 𝐻𝑖 (L 𝑓 ∗𝐶) = 0 (the first equality is [HR17,
(1.9)] and uses flatness of f ).

By assumption (3b), the morphisms Φ0 and Φ−1 are isomorphisms. We show that Φ1 is injective. It
follows from Corollary 4.7 and assumption (3a) that if Φ1(𝑜( 𝑓 )) = 0, then 𝑜( 𝑓 ) = 0, so it suffices to
show that every element of Ext1(L 𝑓 ∗LY/Z , 𝐼) is equal to 𝑜( 𝑓 ) for some diagram (4.2), or equivalently
that the map 𝑜𝑏 in equation (4.12) is surjective. This follows from the long exact sequence

→ Ext1(LX /Z , 𝐼)
𝑜𝑏
−−→ Ext1(L 𝑓 ∗LY/Z , 𝐼) → Ext2(LX /Y , 𝐼) →

since LX /Y = Ω1
X /Y [0] is a locally free sheaf in degree 0.

Since Φ1 is injective and Φ0 and Φ−1 are isomorphisms, the long exact sequence of Ext groups for
equation (4.16) shows that Ext𝑖 (L 𝑓 ∗𝐶, 𝐼) = 0 for every 𝑖 ≤ 1. By [Stacks, Tag 07AA], there is a spectral
sequence whose second page is

Ext𝑖 (𝐻− 𝑗 (L 𝑓 ∗𝐶), 𝐼) =⇒ Ext𝑖+ 𝑗 (L 𝑓 ∗(𝐶), 𝐼).

A priori we know 𝐻𝑖 (L 𝑓 ∗𝐶) = 0 for 𝑖 ≥ 2. By the above spectral sequence, the group Ext0 (𝐻1(L 𝑓 ∗𝐶), 𝐼)
is equal to Ext−1(L 𝑓 ∗𝐶, 𝐼), which vanishes for every I. This forces 𝐻1 (L 𝑓 ∗𝐶) to vanish. Inductively
applying the same argument to Ext0(L 𝑓 ∗𝐶, 𝐼) and then Ext1 (L 𝑓 ∗𝐶, 𝐼) shows that 𝐻0(L 𝑓 ∗𝐶) and
𝐻−1 (L 𝑓 ∗𝐶) vanish as well. �

4.4. Moduli of sections

Consider a tower of algebraic stacks

Z → C 𝑝
−→M

as in Section 1. There we defined the moduli of sections SecM (Z/C). By [HR19, Thm 1.3] and our
assumption that M is locally Noetherian, the stack SecM (Z/C) is also locally Noetherian. The stack
SecM (Z/C) has a universal curve CSecM (Z/C) and a universal section 𝑓SecM (Z/C) ∈ HomC (CSec(Z) ,Z)
(we will omit the subscript on f when possible).

Now suppose we have a tower of algebraic stacks

Z →W → C 𝑝
−→M,

where Z , C and M are as before and W → M is locally finitely presented, is quasi-separated and
has affine stabilisers. To simplify the notation, let 𝔖(Z) := SecM(Z/C) and 𝔖(W) := SecM (W/C).
We have an induced map 𝔖(Z) → 𝔖(W), and over this map we have a canonical relative obstruction
theory defined as follows. We have a morphism in Dqc(C𝔖 (Z) ) consisting of canonical morphisms of
cotangent complexes:

L 𝑓 ∗LZ/W → LC𝔖 (Z ) /C𝔖 (W )
∼
←− 𝑝∗L𝔖 (Z)/𝔖 (W) . (4.17)
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Using the pair (𝜔•𝔖 (Z) , 𝑡𝑟𝔖 (Z) ) defined in Proposition 3.14, we may apply the adjunction-like morphism
a defined in Section 2.3 to equation (4.17), obtaining

𝜙𝔖 (Z)/𝔖 (W) : E𝔖 (Z)/𝔖 (W) → L𝔖 (Z)/𝔖 (W) , E𝔖 (Z)/𝔖 (W) := R𝑝∗(L 𝑓 ∗LZ/W ⊗ 𝜔•𝔖 (Z) ). (4.18)

For example, when W = C, we have𝔖(W) = M, and we obtain an obstruction theory on𝔖(Z) relative
to M. We refer the reader to [CJW21, Appendix A] for functoriality properties of SecM (Z/C) and the
obstruction theories in equation (4.18).

The main theorem of this article is the following.

Theorem 4.13. The morphism in equation (4.18) is an obstruction theory.

4.4.1. Proof of Theorem 4.13
We prove condition (3) of Lemma 4.11. To begin, fix a solid commuting diagram

𝑇 𝔖(Z)

𝑇 ′ 𝔖(W)

𝑚

(4.19)

with m a smooth morphism and 𝑇 → 𝑇 ′ a square-zero extension of affine schemes with ideal sheaf 𝐼 ∈
QCoh(𝑇lis-et). Let C𝑇 (respectively, C𝑇 ′) denote the pullback of the universal curve to T (respectively,𝑇 ′).
We first observe that from the definition of the moduli stacks, we have a commuting diagram of algebraic
stacks:

C𝑇 Z W

C𝑇 ′ C𝑇 C𝔖 (Z) C𝔖 (W)

C𝑇 ′ 𝑇 𝔖(Z) 𝔖(W)

𝑇 ′

𝑓𝑇

𝑝

𝑚′

𝑝

𝑓 𝑓𝔖 (W )

𝑝

𝑚

(4.20)

Claim 4.14 (Step 1). Diagram (4.20) leads to a commuting diagram of Picard categories

Def ( 𝑓𝑇 ) ExalZ (C𝑇 , 𝑝∗𝐼) ExalW (C𝑇 , 𝑝∗𝐼)

Def (𝑚) Exal𝔖 (Z) (𝑇, 𝐼) Exal𝔖 (W) (𝑇, 𝐼)

𝐵

Ψ 𝐵◦𝐸

𝐵

𝐵◦𝐸 (4.21)

where the arrows B and E are as in Lemmas 4.5 and 4.6, the terms in the leftmost column are fibres of
the top and bottom horizontal maps and Ψ is an isomorphism.

Proof. The right square in the diagram follows from the bottom two (fibred) squares of diagram (4.20)
and the definitions of B and E. Moreover, the element of Exal𝔖 (W) (𝑇, 𝐼) defined by m and its horizontal
square in diagram (4.20) maps under 𝐵 ◦ 𝐸 to the element of ExalW (C𝑇 , 𝑝∗𝐼) defined by 𝑓𝑇 and its
horizontal square. By definition (4.3) of Def, we get the left square of diagram (4.21).

To prove that Ψ is an isomorphism, it suffices to check étale-locally on T; that is, it suffices to show
that Ψ induces an equivalence of categories Def (𝑚) → Def ( 𝑓𝑇 ). For this, we construct an inverse
functor. Let (𝑘, 𝜖, 𝛿) be an element of Def ( 𝑓𝑇 ). We get an arrow 𝑘 𝛿 : 𝑇 ′ →𝔖(Z) determined by k and
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𝛿, making the resulting triangle over 𝔖(W) strictly commutative. The 2-morphism 𝜖 determines a 2-
morphism (also denoted 𝜖) from m to the composition 𝑇 → 𝑇 ′

𝑘𝛿
−−→𝔖(Z). Hence our functor sends the

object (𝑘, 𝜖, 𝛿) to the object (𝑘 𝛿 , 𝜖 , 𝑖𝑑). We leave it to the reader to check that this is inverse to Ψ. �

Claim 4.15 (Step 2). Diagram (4.20) leads to a morphism of distinguished triangles

R𝑝∗RH𝑜𝑚(L 𝑓 ∗𝑇 LZ/W , 𝑝∗𝐼) R𝑝∗RH𝑜𝑚(LC𝑇 /Z , 𝑝
∗𝐼 [1]) R𝑝∗RH𝑜𝑚(LC𝑇 /W , 𝑝∗𝐼 [1])

RH𝑜𝑚(L𝑚∗L𝔖 (Z)/𝔖 (W) , 𝐼) RH𝑜𝑚(L𝑇 /𝔖 (Z) , 𝐼 [1]) RH𝑜𝑚(L𝑇 /𝔖 (W) , 𝐼 [1])
(4.22)

where the leftmost vertical arrow has the property that there exists a composition

RH𝑜𝑚(L𝑚∗L𝔖 (Z)/𝔖 (W) , 𝐼) → R𝑝∗RH𝑜𝑚(L 𝑓 ∗𝑇 LZ/W , 𝑝∗𝐼)
∃
−→
∼

RH𝑜𝑚(L𝑚∗ (R𝑝∗LZ/W ⊗ 𝜔•𝔖 (Z) ), 𝐼)

(4.23)

equal to the map induced by 𝜙𝔖 (Z)/𝔖 (W) : R𝑝∗LZ/W ⊗ 𝜔•𝔖 (Z) → L𝔖 (Z)/𝔖 (W) . Applying the functor
𝑐ℎ ◦ 𝜏≤0 ◦ RΓ to diagram (4.22) yields a commuting diagram of Picard categories

Ext0/−1(L 𝑓 ∗𝑇 LZ/W , 𝑝∗𝐼) Ext0/−1(LC𝑇 /Z , 𝑝
∗𝐼 [1]) Ext0/−1(LC𝑇 /W , 𝑝∗𝐼 [1])

Ext0/−1(L𝑚∗L𝔖 (Z)/𝔖 (W) , 𝐼) Ext0/−1(L𝑇 /𝔖 (Z) , 𝐼 [1]) Ext0/−1(L𝑇 /𝔖 (W) , 𝐼 [1])

𝐴

Φ 𝐴◦𝐷−1◦𝐶

𝐴

𝐴◦𝐷−1◦𝐶 (4.24)

where the arrows 𝐴, 𝐷 and C are defined as in Lemmas 4.5 and 4.6, the terms in the leftmost column
are the kernels of the top and bottom horizontal maps and, if Φ is an isomorphism, then Φ0 and Φ−1
(defined in equation (4.15)) are isomorphisms.

Proof. There is a morphism of distinguished triangles (see [Web20, Lem 2.2.12])

LC𝑇 /W LC𝑇 /Z L 𝑓 ∗𝑇 LZ/W [1]

𝑝∗L𝑇 /𝔖 (W) 𝑝∗L𝑇 /𝔖 (Z) 𝑝∗L𝑚∗L𝔖 (Z)/𝔖 (W) [1]

(note that the vertical arrows are only defined in the derived category). Applying R𝑝∗RH𝑜𝑚qc (−, 𝑝∗𝐼 [1])
to this diagram and composing with the morphism in equation (2.5) yields diagram (4.22), but with
RH𝑜𝑚qc in place of RH𝑜𝑚. Now Lemma 2.14 (applied in the context of Example 3.1) produces the
composition in equation (4.23) that is isomorphic to the map induced by 𝜙𝔖 (Z)/𝔖 (W) , but still with
RH𝑜𝑚qc in place of RH𝑜𝑚. To replace RH𝑜𝑚qc with RH𝑜𝑚, we observe that all stacks in in diagram
(4.20) are locally Noetherian and all morphisms are locally of finite type; so by [Stacks, Tag 08PZ],
all cotangent complexes are pseudo-coherent (in fact, in the derived category D−𝐶𝑜ℎ of the appropriate
topos), and we may make the replacement by [Stacks, Tag 0A6H] (recall that we are working on an affine
scheme T). Now diagram (4.24) is produced by applying 𝑐ℎ ◦ 𝜏≤0 ◦ RΓ and using [Stacks, Tag 08J6],
and arguing as at the end of the proof of Corollary 4.7. The map Φ being an isomorphism implies Φ0
(respectively, Φ−1) is an isomorphism by restricting Φ to isomorphism classes of objects (respectively,
automorphisms of the identity). �

Claim 4.16 (Step 3). Condition (3) in Lemma 4.11 holds.
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Proof. We study the commuting cube formed by mapping the right square of diagram (4.24) (on the
top floor) to the right square of diagram (4.21) (on the ground) via equation (4.4) (vertical maps):

Ext0/−1(LC𝑇 /Z , 𝑝
∗𝐼 [1]) Ext0/−1(LC𝑇 /W , 𝑝∗𝐼 [1])

Ext0/−1(L𝑇 /𝔖 (Z) , 𝐼 [1]) Ext0/−1(L𝑇 /𝔖 (W) , 𝐼 [1])

ExalZ (C𝑇 , 𝑝∗𝐼) ExalW (C𝑇 , 𝑝∗𝐼)

Exal𝔖 (Z) (𝑇, 𝐼) Exal𝔖 (W) (𝑇, 𝐼)

(4.25)
This cube commutes by Lemmas 4.5 and 4.6. We note that Theorem 4.4 applies because the maps
C𝑇 → Z and C𝑇 → W are representable: for example, representability of C𝑇 → Z follows from the
fact that 𝑚′ is representable and [Stacks, Tag 04Y5].

To prove (3a), restrict diagram (4.25) to isomorphism classes of objects. As in diagram (4.10), we
extend this diagram by the obstruction maps, obtaining a commutative diagram

ExalW (C𝑇 , 𝑝∗𝐼) Ext1(LC𝑇 /W , 𝑝∗𝐼) Ext1 (L 𝑓 ∗𝑇 LZ/W , 𝑝∗𝐼)

Exal𝔖 (W) (𝑇, 𝐼) Ext1(L𝑇 /𝔖 (W) , 𝐼) Ext1 (L𝑚∗L𝔖 (Z)/𝔖 (W) , 𝐼)

(4.4)
∼

𝑜𝑏

𝐵◦𝐸

(4.4)
∼

𝑜𝑏

Φ′1

where the left square is a side of our cube and the right square is obtained by applying the derived global
sections functor RΓ to diagram (4.22) and then taking cohomology. By the definition of 𝐵 ◦ 𝐸 and
commutativity of the diagram, the map labelled Φ′1 sends 𝑜(𝑚) to 𝑜( 𝑓𝑇 ). By equation (4.23), the map
Φ′1 is quasi-isomorphic to Φ1, where Φ1 is defined as in Lemma 4.11. By Corollary 4.7, the element
𝑜( 𝑓𝑇 ) (respectively, 𝑜(𝑚)) vanishes if and only if Def( 𝑓𝑇 ) (respectively, Def (𝑚)) is nonempty. Since
the map Ψ : Def (𝑚) → Def ( 𝑓𝑇 ) from diagram (4.21) is an isomorphism, we see that (3a) holds.

To prove (3b), we may assume that diagram (4.25) was formed from the trivial example of diagram
(4.19) (see Example 4.3). In this case, the terms in the left column of diagram (4.21) are kernels (not just
fibres) of the horizontal maps, so diagram (4.25) induces the following commuting square of kernels:

Ext0/−1(L 𝑓 ∗𝑇 LZ/W , 𝑝∗𝐼) Def ( 𝑓𝑇 )

Ext0/−1(L𝑚∗L𝔖 (Z)/𝔖 (W) , 𝐼) Def (𝑚)

∼

Φ

∼

Ψ

The horizontal maps are induced by the instances of equation (4.4) in diagram (4.25), and they are iso-
morphisms because equation (4.4) is an isomorphism. Since Ψ is an isomorphism, Φ is an isomorphism
as well. �

A. Descent theorems for lisse-étale sheaves on algebraic stacks

In this section, we recall the unbounded cohomological descent theorem in [LO08, Ex 2.2.5] for quasi-
coherent sheaves in the lisse-étale site of an algebraic stack (Proposition A.4), and then we use it to
prove a new descent theorem (Propositions A.18) that is needed in this paper. In this section, if X is
an algebraic stack, we use Le(X ) to denote the lisse-étale site, and if U is an algebraic space, we use
Et(𝑈) to denote its small étale site ([Stacks, Tag 03ED]).
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A.1. Morphisms from étale to lisse-étale sites

If U is an algebraic space and 𝑚 : 𝑈 → X is a smooth morphism, there is an induced functor of sites
Et(𝑈) → Le(X ) (also denoted m) that sends a scheme V with an étale map 𝑉 → 𝑈 to the composition
𝑉 → 𝑈 → X .

Remark A.1. We make the following observations about the functor m:

1. The functor 𝑚 : Et(𝑈) → Le(X ) is cocontinuous and hence induces a morphism of topoi 𝑚 : 𝑈et →
Xlis-et by [Stacks, Tag 00XI]. The functor 𝑚−1 : Xlis-et → 𝑈et is just restriction.

2. Since 𝑚−1 is restriction, we have 𝑚−1𝒪X = 𝒪𝑈 and 𝑚−1F = 𝑚∗F when F is a sheaf of𝒪X -modules.
3. The functor 𝑚 : Et(𝑈) → Le(X ) is also continuous, and hence 𝑚−1 has a left adjoint by [Stacks,

Tag 04BG]. Since m commutes with fibre products and equalisers, the left adjoint is exact by [Stacks,
Tag 04BH]. In particular, 𝑚−1 preserves injectives.

Suppose we have the following commuting diagram of algebraic stacks where V and U are algebraic
spaces and m is smooth:

𝑉 𝑈

𝑋 X
𝑚′

𝑓 ′

𝑚

𝑓

4. If f is representable and 𝑉 = 𝑈 ×X 𝑋 , then for F ∈ 𝑋lis-et, we have a canonical identification
𝑓 ′∗𝑚

′−1F = 𝑚−1 𝑓∗F , where 𝑓 ′∗ : 𝑉et → 𝑈et (respectively, 𝑓∗ : 𝑋lis-et → Xlis-et) is the usual
pushforward of étale (respectively, lisse-étale) sheaves induced by a continuous functor of sites.
(Note that 𝑓∗ may not have an exact left adjoint.) Indeed, if W is a scheme and 𝑊 → 𝑈 is étale, then
we have

( 𝑓 ′∗𝑚
′−1F) (𝑊) = F (𝑊 ×𝑈 𝑉) (𝑚−1 𝑓∗F) (𝑊) = F (𝑊 ×X 𝑋)

but there is a natural identification of algebraic spaces 𝑊 ×𝑈 𝑉 � 𝑊 ×X 𝑋 .
5. If f is smooth, then 𝑓∗ has an exact left adjoint, and we let 𝑓 ∗ : Mod(𝒪Xlis-et ) → Mod(𝒪𝑋lis-et ) be the

induced pullback of 𝒪-modules. In this case, 𝑓 ′∗𝑚′∗F = 𝑚∗ 𝑓 ∗F for F ∈ QCoh(Xlis-et). Indeed, by
part (2) above (since f is representable), the functors 𝑚∗ and 𝑚′∗ 𝑓 ∗ are just restriction, but 𝑓 ′∗ is the
pullback functor from QCoh(𝑈et) to QCoh(𝑈𝑋,et). Hence the desired equality holds by the Cartesian
property of F .

A.2. The first descent theorem

In this section, we recall Lazslow-Olsson’s theorem for unbounded cohomological descent for lisse-étale
sheaves on an algebraic stack (Proposition A.4). To begin, we recall the following general construction
(which will be used multiple times in this appendix).

Construction A.2. Let I be a category, and let C be a functor from I to the 2-category of categories (see
[Stacks, Tag 003N]); that is, for each 𝑖 ∈ 𝐼, we have a category C𝑖 , and for each morphism 𝜙 : 𝑖 → 𝑗 in
I, we have a functor 𝜙∗C : C𝑖 → C 𝑗 , and these are compatible with compositions. We define a category
of systems C𝑡𝑜𝑡𝑎𝑙 whose objects are tuples F := (F𝑖 ,F (𝜙)) with F𝑖 ∈ C𝑖 and F (𝜙) : 𝜙∗CF𝑖 → F 𝑗 , such
that the following diagrams commute:
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𝜙∗C𝜓
∗
CFℓ F𝑛

𝜙∗CF𝑚

F (𝜓◦𝜙)

𝜙∗CF (𝜓) F (𝜙)

A morphism from (F𝑖 ,F (𝜙)) to (G𝑖 ,G (𝜙)) in C𝑡𝑜𝑡𝑎𝑙 is a collection of morphisms 𝛼𝑖 : F𝑖 → G𝑖
compatible with the F (𝜙) and G (𝜙). The category of Cartesian systems C𝑐𝑎𝑟𝑡𝑡𝑜𝑡𝑎𝑙 is the full subcategory of
C𝑡𝑜𝑡𝑎𝑙 whose objects have the property that every F (𝜙) is an isomorphism.

Remark A.3. Suppose we are given two functors C,D from I to the 2-category of categories, and
suppose we have functors Λ𝑖 : C𝑖 → D𝑖 such that the squares

C𝑖 D𝑖

C 𝑗 D 𝑗

Λ𝑖

𝜙∗𝐶 𝜙∗𝐷
Λ 𝑗

2-commute and the 2-morphisms respect (vertical) compositions of squares. Then we have a functor
Λ : C𝑡𝑜𝑡𝑎𝑙 → D𝑡𝑜𝑡𝑎𝑙 given by the rule Λ(F𝑖 ,F (𝜙)) = (Λ𝑖 (F𝑖),Λ 𝑗 (F (𝜙))).

Let X be an algebraic stack, and let 𝑈 → X be a smooth cover by an algebraic space. Let 𝑈• be the
simplicial algebraic space that is equal to the 0-coskeleton of𝑈 → X . We apply Construction A.2 to the
category 𝐼 := Δ+, where Δ+ is the subcategory of the simplicial category Δ with the same objects but
only the injective morphisms. For 𝑖 ∈ Δ+, we set C𝑖 := 𝑈𝑖,et; and for 𝜙 : 𝑖 → 𝑗 , we let 𝜙∗ : 𝑈𝑖,et → 𝑈 𝑗 ,et
be the usual inverse image functor for this morphism of topoi. The resulting category of systems is
called the strictly simplicial topos in [Ols07, Sec 2.1] and [LO08, Ex 2.1.5], and we notate it 𝑈+•,et. The
structure sheaves𝒪𝑈𝑖 define a distinguished ring object𝒪𝑈+• in𝑈+•,et. A quasi-coherent sheaf in𝑈+•,et is an
𝒪𝑈+• -module (F𝑖 ,F (𝜙)) such that each F𝑖 is in QCoh(𝑈𝑖,et) and the morphism 𝜙∗F𝑖 ⊗𝜙∗𝒪𝑈𝑖

𝒪𝑈 𝑗 → F 𝑗

induced by F (𝜙∗) is an isomorphism. Observe that the category of quasi-coherent sheaves QCoh(𝑈+•,et)
is equal to the category of Cartesian systems with C𝑖 = QCoh(𝑈𝑖,et) and 𝜙∗ equal to the usual pullback
of quasi-coherent sheaves.

There is a functor 𝜛∗ : Mod(𝒪Xlis-et ) → Mod(𝒪𝑈+•,et
) given as follows: for F ∈ Xlis-et, set (𝜛∗F)𝑖 =

𝑚−1
𝑖 F ⊗𝑚−1

𝑖 𝒪X
𝒪𝑈𝑖 , where 𝑚−1

𝑖 : Xlis-et → 𝑈𝑖,et is defined using the projection 𝑈𝑖 → X and Remark
A.1.1, and let F (𝜙) be the identity for each 𝜙. Note that 𝜛∗ is exact and sends quasi-coherent sheaves
to quasi-coherent sheaves. The following proposition is due to Laszo-Olsson.

Proposition A.4 (Laszlo-Olsson). The morphism 𝜛∗ : QCoh(Xlis-et) → QCoh(𝑈+•,et) is an exact
equivalence of categories. We use 𝜛∗ to denote the quasi-inverse. Moreover, 𝜛∗ : Dqc(Xlis-et) →
Dqc (𝑈

+
•,et) is an equivalence, and we use R𝜛∗ to denote the quasi-inverse.

Remark A.5. The equivalence of categories of quasi-coherent sheaves is proved in [Ols16, Prop 9.2.13].
The equivalence of unbounded derived categories is proved in [LO08, Ex 2.2.5] (using [Ols07, Thm
6.14]) under the assumption that X is quasi-separated (a standing assumption for both [Ols07] and
[LO08]). This assumption is not needed for Proposition A.4. Indeed, [LO08, Thm 2.2.3] appears
as [Stacks, Tag 0D7V] without the quasi-separated hypothesis, and one may check directly that the
necessary portions of [Ols07] (namely Proposition 4.4, Lemma 4.5 and Lemma 4.8) do not use this
hypothesis.

Remark A.6. The equivalences (𝜛∗, 𝜛∗) are functorial as follows. Let 𝑋 → X be a smooth morphism
of algebraic stacks (inducing a morphism of lisse-étale topoi), let 𝑉 → 𝑋 be a smooth surjective
morphism from a scheme V, and let𝑉 → 𝑈 be a morphism commuting with maps to X . It follows from
Remark A.1.5 that there is an identification 𝑓 ∗•,et𝜛

∗ � 𝜛∗ 𝑓 ∗ (where 𝑓 ∗•,et is given by 𝑓 ∗𝑖 at level i), and
since 𝜛∗ is an equivalence, we also have 𝜛∗ 𝑓

∗
•,et � 𝑓 ∗𝜛∗.
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A.3. The second descent theorem: hypercovers

In this section, we prove an unbounded cohomological descent theorem in the lisse-étale topology for
very smooth hypercovers of algebraic stacks (Proposition A.18).

A.3.1. Very smooth hypercovers
Recall that if U → X and V → X are representable morphisms of algebraic stacks, then the category
HomX (U ,V) is isomorphic to a set.

Definition A.7. The enlarged smooth site Es(X ) of X is the category with objects given by morphisms
𝑓 : U → X , where U is an algebraic stack and f is smooth and representable, and with arrows from
U → X to V → X given by the set HomX (U ,V). A covering is a set of smooth maps {U𝑖 → U }𝑖∈𝐼 that
are jointly surjective.

Remark A.8. The site Es(X ) contains 𝑖𝑑 : X → X as the final object.

Remark A.9. The morphisms in Es(X ) are all representable.

Definition A.10. A smooth hypercover of X is a simplicial object 𝑋• in Es(X ) such that

1. 𝑋0 → X is surjective (note that it will also be smooth).
2. 𝑋𝑛+1 → (cosk𝑛sk𝑛𝑋•)𝑛+1 is smooth and surjective for 𝑛 ≥ 0.

Remark A.11. A smooth hypercover of X is a hypercover of the final object in Es(X ) in the sense of
[Stacks, Tag 01G5]. Moreover, if X is an algebraic space, then a smooth hypercover of X is also an fppf
hypercover in the sense of [Stacks, Tag 0DH4].

Definition A.12. A very smooth hypercover of X is a smooth hypercover 𝑋• such that every degeneracy
and face map 𝑋𝑖 → 𝑋 𝑗 is smooth.

If 𝑋• is a smooth hypercover of X and 𝑓 : Y → X is a morphism of algebraic stacks, we can pullback
𝑋• to a simplicial object 𝑌• in Es(Y): define 𝑌𝑖 = 𝑋𝑖 ×X Y .

Remark A.13. If Y → X is a morphism of algebraic stacks and 𝑋• is a (very) smooth hypercover of
X , then 𝑌• is a (very) smooth hypercover of Y . This follows from [Stacks, Tag 0DAZ].

Remark A.14. From [Stacks, Tag 0DEQ] and the proof of [Stacks, Tag 0DAV], it follows that if X is
an algebraic stack, then a very smooth hypercover of X exists. In fact, we may take 𝑋𝑖 to be a disjoint
union of affine schemes.

Remark A.15. Let X → Y be a morphism of algebraic stacks. Then we can find very smooth hypercov-
ers 𝑋• → X and 𝑌• → Y with 𝑋𝑖 and 𝑌𝑖 disjoint unions of affine schemes, with a morphism 𝑋• → 𝑌•
commuting with the augmentations and the given morphism X → Y . This follows from analysing the
construction of 𝑋• and 𝑌• in [Stacks, 0DAV], using the fact that the functors cosk𝑛 are finite limits and
hence commute with pullback (see the proof of [Stacks, Tag 0DAZ]).

A.3.2. The lisse-etale topos of a very smooth hypercover
Recall that if X → Y is a smooth morphism of algebraic stacks, then there is a morphism of sites
LeX → LeY (see, e.g., [Stacks, Tag 00X1] and [Ols07, Sec 3.3]) and in fact a morphism of ringed
topoi (Xlis-et,𝒪X ) → (Ylis-et,𝒪Y ). We follow [Stacks, Tag 09WB] by defining the category of sites to be
the category whose objects are sites and whose morphisms are morphisms of sites. If C• is a simplicial
object in this category, then for each morphism 𝜑 : [𝑖] → [ 𝑗] of the simplicial category Δ , we have a
morphism of sites 𝑓𝜑 : C𝑖 → C 𝑗 .
Definition A.16. Let 𝑋• be a very smooth hypercover of X . We construct an associated site Le(𝑋•)
as follows: let C• be the simplicial object in the category of sites with C𝑖 := Le(𝑋𝑖) and 𝑓𝜑 equal to
the given morphism of sites (it is important that all the face and degeneracy maps are smooth). Define
Le(𝑋•) to be the site C𝑡𝑜𝑡𝑎𝑙 in [Stacks, Tag 09WC], and use 𝑋•,lis-et to denote the corresponding topos.
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Remark A.17. By [Stacks, Tag 09WF], a sheaf on Le(𝑋•) is given by a system (F𝑖 ,F (𝜑)), where F𝑖

is a sheaf on Le(𝑋𝑖) and F (𝜑) : 𝑓 −1
𝜑 F𝑖 → F 𝑗 are compatible morphisms.

Using Remark A.17, define a sheaf𝒪𝑋•,lis-et on 𝑋•,lis-et to be the sheaf equal to𝒪𝑋𝑖 on 𝑋𝑖 with transition
maps induced by the morphisms of ringed topoi already given. This makes 𝑋•,lis-et a ringed site. An
𝒪𝑋•,lis-et -module F on 𝑋•,lis-et is quasi-coherent if for each i the sheaf F𝑖 is a quasicoherent 𝒪𝑋𝑖 -module
and if for each 𝜑 : [𝑖] → [ 𝑗] the induced maps

𝑓 −1
𝜑 F𝑖 ⊗ 𝑓 −1𝒪𝑋𝑖

𝒪𝑋 𝑗 → F 𝑗

are isomorphisms.

A.3.3. The descent theorem
For 𝑋• a very smooth hypercover of X , let 𝑎𝑖 : 𝑋𝑖 → X denote the given (smooth) morphism of
algebraic stacks.

The morphism 𝑋0 → X induces an augmentation of Le(𝑋•) towards Le(X ) in the sense of [Stacks,
Tag 0D6Z]. By [Stacks, Tag 0D70], we get a morphism of topoi

𝑎 : 𝑋•,lis-et → Xlis-et (A.1)

such that 𝑎−1F is given by the system with (𝑎−1F)𝑖 := 𝑎−1
𝑖 F and the natural transition maps (they are

all isomorphisms), and 𝑎∗G is given by the equaliser of the two maps 𝑎0∗G0 → 𝑎1∗G1.
Using the maps 𝑎−1

𝑖 𝒪X → 𝒪𝑋𝑖 , we get a morphism 𝑎−1𝒪X → 𝒪𝑋•,lis-et that makes a a morphism of
ringed topoi. Define 𝑎∗ : Mod(𝒪X ) → Mod(𝒪𝑋•,lis-et ) by

𝑎∗F := 𝑎−1F ⊗𝑎−1𝒪X 𝒪𝑋•,lis-et .

It is clear that 𝑎∗ is exact and sends QCoh(Xlis-et) to QCoh(𝑋•,lis-et).

Proposition A.18. Let 𝑋• → X be a very smooth hypercover. Then

𝑎∗ : QCoh(Xlis-et) → QCoh(𝑋•,lis-et) (A.2)

is an equivalence of categories with quasi-inverse 𝑎∗. Moreover, the functors R𝑎∗ and 𝑎∗ are inverse
equivalences of Dqc(Xlis-et) and Dqc (𝑋•,lis-et).

Proof. We first show that 𝑎∗ is an equivalence of categories of quasi-coherent sheaves with quasi-
inverse 𝑎∗. Let 𝑈 → X be a smooth map from an algebraic space U, and let 𝑈+•,et be the strictly
simplicial étale topos defined in Section A.2. We apply Construction A.2 to the category 𝐼 = Δ × Δ+.
For (𝑖, 𝑗) ∈ Δ × Δ+, we set C𝑖, 𝑗 = QCoh

(
(𝑋𝑖 ×X 𝑈 𝑗 )et

)
(observe that the fibre product is an algebraic

space), and we let 𝜙∗ : (𝑋𝑖 ×X 𝑈 𝑗 )et → (𝑋𝑘 ×X 𝑈ℓ)et be the usual pullback of quasi-coherent sheaves.
Let QCoh((𝑋• ×X 𝑈+• )et) denote the resulting category of Cartesian systems.

Let 𝑈𝑋𝑖 = 𝑋𝑖 ×X 𝑈. By viewing QCoh(𝑋•,lis-et) and QCoh((𝑋• ×X 𝑈+• )et) both as categories of
systems with 𝐼 = Δ , we define functors

QCoh(𝑋•,lis-et) QCoh((𝑋• ×X 𝑈+• )et)
𝜛∗•

𝜛•,∗

induced via Remark A.3 by the inverse equivalences

QCoh(𝑋𝑖,lis-et) QCoh(𝑈+𝑋𝑖 ,•,et)
𝜛∗

𝜛∗

of Proposition A.4. The rules 𝜛∗• and 𝜛∗,• are indeed functors of categories of systems by Remark A.6,
and one checks that they are inverse equivalences.
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Similarly, let 𝑋𝑈𝑖 ,• be the pullback of the hypercover 𝑋• → X to 𝑈𝑖 as in Remark A.13. By viewing
𝑈+•,et and QCoh((𝑋• ×X 𝑈+• )et) as categories of systems with 𝐼 = Δ+, we define functors

QCoh(𝑈+•,et) QCoh((𝑋• ×X 𝑈+• )et)
𝑎∗•

𝑎•,∗

induced via Remark A.3 by the functors

QCoh(𝑈𝑖,et) QCoh(𝑋𝑈𝑖 ,•,et)
𝑎∗

𝑎∗
(A.3)

defined in analogy with equation (A.1) above. The functors 𝑎∗ and 𝑎∗ in equation (A.3) are inverse
equivalences by [Stacks, Tag 0DHD].

We have constructed a diagram

QCoh(𝑋•,lis-et) QCoh((𝑋• ×X 𝑈+• )et)

QCoh(Xlis-et) QCoh(𝑈+•,et)

𝜛∗•

𝑎∗

𝜛•,∗

𝑎•,∗𝑎∗

𝜛∗

𝜛∗

𝑎∗•

where three of the four pairs of morphisms are known to be inverse equivalences. It follows from Remark
A.1.5 that 𝜛∗•𝑎∗ = 𝑎∗•𝜛

∗, so 𝑎∗ is an equivalence with inverse 𝜛∗𝑎•,∗𝜛
∗
• . Using Remark A.1.5 and the

fact that 𝜛∗ is exact, one can check that 𝑎•,∗𝜛∗• = 𝜛∗𝑎∗, so 𝑎∗ = 𝜛∗𝑎•,∗𝜛
∗
• . This shows that 𝑎∗ and 𝑎∗

are inverse equivalences of quasi-coherent sheaves.
To finish the proof of the Proposition, we use [Stacks, Tag 0D7V]. To do so, we must verify its five

hypotheses. The category QCoh(𝑋•,lis-et) is a weak Serre subcategory of Mod(𝒪𝑋•,lis-et ), and conditions
(1), (4), and (5) of [Stacks, Tag 0D7V] hold as in the proof of [Stacks, Tag 0DHF]. Condition (2) is the
inverse equivalence of 𝑎∗ and 𝑎∗ that we just proved. The final condition, number (3), is the statement that
for F ∈ QCoh(Xlis-et), the unit F → R𝑎∗𝑎∗F is an isomorphism. Since we already know F → 𝑎∗𝑎

∗F
is an isomorphism, it suffices to show R𝑛𝑎∗𝑎

∗F = 0 for 𝑛 > 0.
For any smooth map 𝑚 : 𝑈 → X from a scheme U, let 𝑈• → 𝑈 be the very smooth hypercover

equal to the pullback of 𝑋•. We have a diagram of morphisms of topoi

𝑈•,et 𝑈•,lis-et 𝑋•,lis-et

𝑈et 𝑈lis-et Xlis-et

𝑎′′

𝑚•,lis-et

𝑎′ 𝑎

𝑚lis-et

where the site𝑈•,et is constructed with [Stacks, Tag 09WC] and 𝑎′′ and 𝑎′ are defined as in equation (A.1).
The top horizontal morphisms come from [Stacks, Tag 0DH0]. It follows from [73, V.5.1(1)], [Ols07,
Lem 3.5] and Lemma A.19 that R𝑛𝑎∗𝑎

∗F is the sheafification of the presheaf that associates to an smooth
map 𝑚 : 𝑈 → X from a scheme U the group 𝐻𝑛 (𝑈•,lis-et, 𝑚

−1
•,lis-et𝑎

∗F). Since restriction to the étale site
is exact and preserves injectives, this is equal to 𝐻𝑖 (𝑈•,et, 𝑚

∗
•𝑎
∗F), where𝑚• : 𝑈•,et → 𝑋•,lis-et is defined

as in Remark A.1. Finally, by Remark A.1.5 (since F is quasi-coherent), this equals 𝐻𝑛 (𝑈•,et, 𝑎′′
∗𝑚∗F).

On the other hand, it follows from [73, V.5.1(1)] and Lemma A.19 that R𝑛𝑎′′∗𝑎′′
∗(𝑚∗F) is the

sheafification of the presheaf that associates to an étale map 𝑓 : 𝑉 → 𝑈 from a scheme V the group
𝐻𝑛 (𝑉•,et, 𝑎′′

∗𝑚∗F). This group is equal to 𝐻𝑖 (𝑉•,et, 𝑎′′
∗
𝑉 (𝑚 ◦ 𝑓 )∗F), where 𝑎′′𝑉 : 𝑉•,et → 𝑉et is the

usual morphism in equation (A.1). It follows that if 𝑚 : 𝑈 → X is a smooth cover by a scheme, the
étale sheaves 𝑚∗(R𝑛𝑎∗𝑎

∗F) and R𝑛𝑎′′∗𝑎′′
∗(𝑚∗F) are the sheafification of the same presheaf, hence

isomorphic. But it follows from [Stacks, Tag 0DHE] that R𝑛𝑎′′∗𝑎′′
∗(𝑚∗F) = 0. �
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Lemma A.19. Consider a fibre square of algebraic stacks

𝑈𝑋 X

𝑈 Y
𝑏

𝑚

such that U is an algebraic space.

1. If m and b are smooth and representable and �̃� is the sheaf represented by U on Xlis-et, then 𝑏−1�̃� is
represented by 𝑈𝑋 .

2. If Y is representable, m is étale, and b is representable, and if �̃� is the sheaf represented by U on
Xet, then the étale sheaf 𝑏−1�̃� is represented by 𝑈𝑋 .

Proof. We first sketch the proof of (1). The sheaf 𝑏−1�̃� is the sheafification of the presheaf that assigns
to a scheme T with a smooth map 𝑔 : 𝑇 → X the set colim Hom𝑌 (𝑊,𝑈), where the colimit is taken
over schemes W fitting into diagrams

𝑇 X

𝑊 Y

𝑔

𝑏

smooth
(A.4)

Composition induces a map

colim HomY (𝑊,𝑈) → HomY (𝑇,𝑈), (A.5)

which is an isomorphism since 𝑇 → 𝑌 is smooth and hence defines the final object in the category over
which we take the colimit. Finally, we note that Hom𝑌 (𝑇,𝑈) = Hom𝑌 (𝑇,𝑈𝑋 ). For (2), the map 𝑇 → X
is now étale, and the colimit is over diagrams (A.4) with 𝑊 → Y étale, so 𝑇 → Y is not an object of the
colimit category. However, the map in equation (A.5) is still surjective. It is injective as well because
an element of HomY (𝑊,𝑈) must be étale, so if we have elements of HomY (𝑊1,𝑈) and HomY (𝑊2,𝑈)
that yield the same map 𝑇 → 𝑈, we may compare them via the étale U-scheme 𝑊1 ×𝑈 𝑊2. �

Remark A.20. Let 𝑋• → X and 𝑌• → Y be very smooth hypercovers of algebraic stacks X and Y , and
suppose we are given a morphism 𝑓• : 𝑋• → 𝑌• of simplicial algebraic stacks and 𝑓 : X → Y such that
these maps commute with the augmentations. Then for F ∈ Dqc(Ylis-et), we have

(𝑎∗L 𝑓 ∗F) |𝑋𝑛 = L 𝑓 ∗𝑛 (𝑎
∗F) |𝑋𝑛 ,

and if f is concentrated and G ∈ Dqc(Xlis-et), then

(𝑎∗R 𝑓∗G) |𝑌𝑛 = R 𝑓𝑛∗(𝑎
∗G) |𝑌𝑛 ,

where the functor L 𝑓 ∗𝑛 (respectively, R 𝑓𝑛∗) is the usual pullback functor (respectively, direct image)
between Dqc(𝑌𝑛,lis-et) and Dqc(𝑋𝑛,lis-et). Indeed, the functor (𝑎∗−)|𝑋𝑛 is just 𝑎∗𝑛 (−), so the desired
equalities are equivalent to

𝑎∗𝑛L 𝑓 ∗F = L 𝑓 ∗𝑛𝑎
∗
𝑛F and 𝑎∗𝑛R 𝑓∗G = R 𝑓𝑛∗𝑎

∗
𝑛G .

These follow from the naturality of derived pullback and [HR17, Cor 4.13], respectively.

B. Functoriality of the Fundamental Theorem

In this section, we prove Lemmas 4.5 and 4.6.
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B.1. Categories of algebra extensions

In this section, 𝒮 is a site with 𝐴 → 𝐵 a morphism of sheaves of rings on 𝒮, and I is a sheaf of
B-modules.

B.1.1. Categories
The Picard category Exal𝐴(𝐵, 𝐼) was defined in [Ill71, Sec III.1.1.2.3]: an object is a surjective
A-algebra map 𝐸 → 𝐵 whose kernel is (1) square-zero as an ideal of E, and (2) isomorphic to I
as a B-module. We write these objects as short exact sequences of abelian sheaves

0→ 𝐼 → 𝐸 → 𝐵→ 0. (B.1)

A morphism in Exal𝐴(𝐵, 𝐼) is a commuting diagram

0 𝐼 𝐸 𝐵 0

0 𝐼 𝐸 ′ 𝐵 0

𝑔

where f is a morphism of B-modules and 𝑔, ℎ are morphisms of A-algebras.

B.1.2. Functors
If 𝐼 → 𝐼 ′ is a morphism of B-modules, 𝐵′ → 𝐵 is a morphism of A-algebras and 𝐴′ → 𝐴 is a morphism
of rings, then we have natural functors

Exal𝐴(𝐵, 𝐼) → Exal𝐴(𝐵, 𝐼
′) (B.2)

Exal𝐴(𝐵, 𝐼) → Exal𝐴(𝐵
′, 𝐼𝐵′ ) (B.3)

Exal𝐴(𝐵, 𝐼) → Exal𝐴′ (𝐵, 𝐼) (B.4)

defined in [Ill71, Equ III.1.1.5.2], [Ill71, Equ III.1.1.5.3] and [Ill71, Equ III.1.1.5.4], respectively. Here,
𝐼𝐵′ denotes the sheaf I considered as a 𝐵′-module. Let 𝒮′ → 𝒮 be a continuous morphism of sites
inducing a morphism of topoi (𝑝−1, 𝑝∗). Then we have an induced morphism

Exal𝐴(𝐵, 𝐼) → Exal𝑝−1𝐴(𝑝
−1𝐵, 𝑝−1𝐼) (B.5)

sending equation (B.1) to its image under 𝑝−1. We are using that 𝑝−1 is an exact functor.

Lemma B.1. The morphisms in equations (B.2), (B.3), (B.4) and (B.5) commute pairwise.

Proof. The most involved pair to check is equations (B.2) and (B.3). We work it out in detail and offer
a few words about the remaining pairs at the end of the proof. When we say equations (B.2) and (B.3)
commute, we mean if 𝐵′ → 𝐵 is a morphism of rings and 𝐼 → 𝐼 ′ is a morphism of B-modules; then
the diagram

Exal𝐴(𝐵, 𝐼) Exal𝐴(𝐵
′, 𝐼𝐵′ )

Exal𝐴(𝐵, 𝐼
′) Exal𝐴(𝐵

′, 𝐼 ′𝐵′ )

(B.3)

(B.2) (B.2)
(B.3)

(B.6)

commutes up to a natural transformation.
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Given an element (B.1) of Exal𝐴(𝐵, 𝐼), we have a diagram

𝐼 ′ 𝑃

0 𝐼 𝐸 𝐵 0

𝐹 𝐵′

𝑎′

(0,𝑏)

𝑎

(𝑎,0)

𝜄𝐸

𝑏

𝑝𝐸

𝑏′

(B.7)

where 𝑃 = 𝐼 ′ ⊕𝐼 𝐸 and 𝐹 = 𝐸 ×𝐵 𝐵′: as abelian groups, P and F are the colimit and limit of the usual
diagrams, while the ring structures are described in [GD67, 0IV.18.2.8] and [GD67, 0IV.18.1.5]. Set
𝑄 = 𝐼 ′ ⊕𝐼 𝐹 and 𝐺 = 𝑃 ×𝐵 𝐵′. Then

0→ 𝐼 ′ → 𝑄 → 𝐵′ → 0

is the image of equation (B.1) under the composition → ↓ in diagram (B.6), and likewise G defines the
image under the composition ↓ →. An arrow from Q to G in the groupoid Exal𝐴(𝐵

′, 𝐼 ′) is given by four
dashed arrows so that this diagram commutes:

𝐼 𝐼 ′ 𝑃

𝐹 𝐵′ 𝐵

(B.8)

(To check commutativity, it suffices to check that the quadrilaterals 𝐼 ′𝐼𝐹𝑃 and 𝐼 ′𝐼𝐹𝐵′ and the perimeter
commute.) The required collection of dotted arrows is given by 𝑎′ : 𝐼 ′ → 𝑃, 0 : 𝐼 ′ → 𝐵′, 𝜄𝐸 ◦ 𝑝𝐸 :
𝐹 → 𝑃, and 𝑏′ : 𝐹 → 𝐵′.

To show that the resulting arrows in Exal𝐴(𝐵
′, 𝐼 ′) define a natural transformation (in this groupoid),

suppose we are given an arrow

0 𝐼 𝐸1 𝐵 0

𝐸2

𝑎1

𝑎2
𝑓

𝑏1

𝑏2

in Exal𝐴(𝐵, 𝐼). Let 𝑓𝑃 : 𝑃1 → 𝑃2 and 𝑓𝐹 : 𝐹1 → 𝐹2 be the maps induced by f, where 𝑃𝑖 and 𝐹𝑖 are
defined as in equation (B.7). Likewise let 𝑄𝑖 and 𝐺𝑖 be the images of 𝐸𝑖 in Exal𝐴(𝐵

′, 𝐼 ′) under the maps
in diagram (B.6). We must compare two maps from 𝑄1 to 𝐺2 in Exal𝐴(𝐵

′, 𝐼 ′). Such maps are given by
diagrams of the form in diagram (B.8), with F replaced by 𝐹1 and P replaced by 𝑃2. In the situation at
hand, one of the maps from 𝑄1 to 𝐺2 is given by the diagram

𝐼 ′ 𝑃2

𝐹1 𝐵′

𝑓𝑃◦𝑎
′
1

0
𝑓𝑃◦ 𝜄𝐸1◦

𝑝𝐸1

𝑏′1
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and the other is given by the diagram

𝐼 ′ 𝑃2

𝐹1 𝐵′

𝑎′2

0
𝜄𝐸2◦

𝑝𝐸2◦
𝑓𝐹

𝑏′2◦ 𝑓𝐹

These are easily seen to consist of the same morphisms.
This completes the proof that equations (B.3) and (B.2) commute. Of the remaining pairs, most of

the checks are trivial (in particular, the analogue of diagram (B.6) is strictly commutative). Only the
pairs (equations (B.2), (B.5)) and (equations (B.3), (B.5)) are nontrivial. For these, one uses that 𝑝−1 is
exact and hence preserves finite limits and colimits. �

B.2. Illusie’s theorem

B.2.1. Statement
In this section,𝒮 is a site with 𝐴→ 𝐵 a morphism of sheaves of rings on𝒮, and I is a sheaf of B-modules.

Theorem B.2 [Ols06, Thm A.7], [Ill71, Sec III.1.2.2]. There is a canonical isomorphism

𝛽 : Exal𝐴(𝐵, 𝐼) → Ext0/−1
𝐵 (L𝐵/𝐴, 𝐼 [1]), (B.9)

where the right-hand side was defined in equation (4.1).

Proof. Since the isomophism in [Ols06, Thm A.7] is defined on groupoid fibres, we may use the same
definition for our morphism in equation (B.9) (written out in the proof of Lemma B.5), and the argument
in [Ols06, Thm A.7] shows that it is an isomorphism. Note that when 𝒮 has a final object S, the map in
equation (B.9) is the value on S of the isomorphism in [Ols06, Thm A.7]. �

B.2.2. Functoriality
We will show that equation (B.9) is compatible with the functors defined in Section B.1.2. We will use
the following instances of Situation 2.1.

Example B.3. The following is an example of Situation 2.1. Let 𝒮 be a site and B a sheaf of rings on

𝒮. Then D(𝐵) is a closed symmetric monoidal category with product
L
⊗𝐵 and internal hom RH𝑜𝑚𝐵. If

𝐵′ → 𝐵 is a flat morphism of sheaves of rings, then extension of scalars − ⊗𝐵′ 𝐵 : 𝐵′−mod→ 𝐵−mod
is strong monoidal and exact, with an exact right adjoint (−)𝐵′ given by restriction of scalars.

Let 𝒞 = D(𝐵′), and let 𝒟 = D(𝐵). By [Stacks, Tag 0DVC], the functors −⊗𝐵′ and (−)𝐵′ extend to an
adjoint pair for D(𝐵′) and D(𝐵), and by [Stacks, Tags 07A4, 08I6], the functor−⊗𝐵′ 𝐵 : D(𝐵′) → D(𝐵)
is still strong monoidal.

In addition, it follows from [Stacks, Tags 08J9, 0A90, 0A5Y] that if 𝑀• is K-flat and 𝑁• is injective,

the counit RH𝑜𝑚𝐵′ (𝑀, 𝑁)
L
⊗𝐵′ 𝑀 → 𝑁 is given in degree n by a product over 𝑝 + 𝑞 + 𝑟 = 𝑛 of the sheaf

maps

H𝑜𝑚𝐵′ (𝑀
−𝑝 , 𝑁𝑞) ⊗𝐵′ 𝑀

𝑟 → 𝑁𝑛,

where this map is equal to the usual evaluation map if 𝑞 = 𝑛 and it is zero otherwise. We will give an
explicit description of equation (2.4) in the proof of Lemma B.6.

Example B.4. If 𝑝 : (𝒞,𝒪𝒞) → (𝒟,𝒪𝒟) is a flat morphism of ringed topoi given by an adjoint pair
(𝑝−1, 𝑝∗), then 𝑝∗ is exact and hence defines a strong monoidal functor D(𝒪𝒟) → D(𝒪𝒞) with a right
adjoint R𝑝∗. We will give an explicit description of equation (2.5) in the proof of Lemma B.7.
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Lemma B.5. The isomorphism in (B.9) is functorial as follows:

1. Let 𝐴 → 𝐵 be a map of sheaves of rings on 𝒮. If 𝐼 → 𝐽 is a morphism of B-modules, there is a
commuting diagram

Exal𝐴(𝐵, 𝐼) Ext0/−1
𝐵 (L𝐵/𝐴, 𝐼 [1])

Exal𝐴(𝐵, 𝐽) Ext0/−1
𝐵 (L𝐵/𝐴, 𝐽 [1])

𝛽

(B.2)

𝛽

2. If there is a commuting square of rings with 𝐵′ → 𝐵 flat

𝐴′ 𝐴

𝐵′ 𝐵

then the canonical map L𝐵′/𝐴′
L
⊗𝐵′ 𝐵→ L𝐵/𝐴 induces a commuting square

Exal𝐴(𝐵, 𝐼) Ext0/−1
𝐵 (L𝐵/𝐴, 𝐼 [1])

Exal𝐴′ (𝐵
′, 𝐼𝐵′ ) Ext0/−1

𝐵′ (L𝐵′/𝐴′ , 𝐼𝐵′ [1]) Ext0/−1
𝐵 (L𝐵′/𝐴′ ⊗𝐵′ 𝐵, 𝐼 [1])

(B.3)◦(B.4)

𝛽

𝛽 (2.3)

(B.10)

where equation (2.3) is defined in the context of Example B.3.
3. Let (𝒮,𝒪𝒮) → (𝒮

′,𝒪𝒮′ ) be a continuous morphism of ringed sites inducing a flat morphism of topoi
(𝑝−1, 𝑝∗). Let A and 𝐵 = 𝒪𝒮 be sheaves of rings on 𝒮. Then if I is a sheaf of B-modules, there is a
commuting diagram

Exal𝐴(𝐵, 𝐼) Ext0/−1
𝐵 (L𝐵/𝐴, 𝐼 [1])

Exal𝑝−1𝐴(𝑝
−1𝐵, 𝑝−1𝐼) Ext0/−1

𝑝−1𝐵
(𝑝−1
L𝐵/𝐴, 𝑝

−1𝐼 [1]) Ext0/−1
𝑝∗𝐵 (𝑝

∗
L𝐵/𝐴, 𝑝

∗𝐼 [1])

𝛽

(B.5) (2.5)

𝛽 (2.5)

(B.11)

where the horizontal instance of equation (2.5) is defined in the context of Example B.3 and the
vertical instance of equation (2.5) is defined in the context of Example B.4, and we have suppressed
an isomorphism induced by L𝑝−1𝐵/𝑝−1𝐴 � 𝑝−1

L𝐵/𝐴.

Proof. We summarise the definition of 𝛽; see [Ols06, Thm A.7] for more details. Let 𝑃• be the simplicial
A-algebra given by the standard free resolution of the A-algebra B [Stacks, Tag 08SR]. The morphism
𝛽 is defined to be the composition

Exal𝐴(𝐵, 𝐼)
𝛽1
−−→ Exal𝐴(𝑃•, 𝐼)

𝛽2
−−→ Ext(Ω𝑃•/𝐴, 𝐼)

𝛽3
−−→ Ext(Ω𝑃•/𝐴 ⊗ 𝐵, 𝐼)

𝛽4
−−→ Ext0/−1(L𝐵/𝐴, 𝐼 [1])

Here, Ext(Ω•, 𝐼) denotes the Picard category of simplicial 𝒪C-module extensions of Ω• by I (viewed as
a simplicial module); see [Ols06, Sec A.1]. The map 𝛽1 is given by the map in equation (B.3) applied
to the augmentation 𝑃• → 𝐵, the morphism 𝛽2 is given by taking differentials, 𝛽3 is given by tensoring
with B, and 𝛽4 is the functorial isomorphism in [Ols06, Prop A.3].
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Proof of (1). The desired functoriality follows from a commuting diagram

Exal𝐴(𝐵, 𝐼) Exal𝐴(𝑃•, 𝐼) Ext(Ω𝑃•/𝐴, 𝐼) Ext(Ω𝑃•/𝐴 ⊗ 𝐵, 𝐼) Ext0/−1(L𝐵/𝐴, 𝐼 [1])

Exal𝐴(𝐵, 𝐽) Exal𝐴(𝑃•, 𝐽) Ext(Ω𝑃•/𝐴, 𝐽) Ext(Ω𝑃•/𝐴 ⊗ 𝐵, 𝐽) Ext0/−1(L𝐵/𝐴, 𝐽 [1])

𝛽1

(B.2)

𝛽2

(B.2)

𝛽3 𝛽4

𝛽1 𝛽2 𝛽3 𝛽4

The square with 𝛽1 commutes by Lemma B.1. The square with 𝛽2 commutes because differentials
commute with colimits [Stacks, Tag 031G]. The square with 𝛽3 commutes because the tensor product
is a left adjoint and so commutes with colimits, and the square with 𝛽4 commutes by the naturality in
[Ols06, Prop A.3].

Proof of (2). The desired functoriality follows from two commuting diagrams. First we have

Exal𝐴(𝐵, 𝐼) Exal𝐴(𝑃•, 𝐼) Ext(Ω𝑃•/𝐴, 𝐼) Ext(Ω𝑃•/𝐴 ⊗ 𝐵, 𝐼)

Exal𝐴′ (𝐵
′, 𝐼𝐵′ ) Exal𝐴′ (𝑃

′
•, 𝐼𝐵′ ) Ext(Ω𝑃′•/𝐴

′ , 𝐼𝑃′• ) Ext(Ω𝑃′•/𝐴
′ ⊗ 𝐵′, 𝐼𝐵′ )

𝛽1 𝛽2 𝛽3

𝛽1 𝛽2 𝛽3

(B.12)

which we claim commutes. Here 𝑃′• is the simplicial 𝐴′-algebra that is the standard resolution of 𝐵′. The
two left vertical arrows are given by equations (B.4) and (B.3); the next two vertical arrows are given by
the analogue of equation (B.3) for the Ext categories. The first square commutes by Lemma B.1. The
commutativity of the squares with 𝛽2 and 𝛽3 may be checked with the same type of computation used
in Lemma B.1, and we will be brief here.

For the square with 𝛽2, if 0 → 𝐼 → 𝐸• → 𝑃• → 0 is an object of Exal𝐴(𝑃•, 𝐼), then the natural
transformation is given on this object by the (iso)morphism

Ω𝐸•×𝑃•𝑃
′
•/𝐴

′ → Ω𝐸•/𝐴 ×Ω𝑃•/𝐴
Ω𝑃′•/𝐴

′

induced by the commuting cube

𝐸• 𝑃•

𝐸• ×𝑃• 𝑃
′
• 𝑃′•

𝐴 𝐴

𝐴′ 𝐴′

For the square with 𝛽3, if 0 → 𝐼 → 𝐸• → Ω𝑃•/𝐴 → 0 is an object of Ext𝑃• (Ω𝑃•/𝐴, 𝐼), then the
natural transformation is given on this object by the (iso)morphism of 𝐵′-modules

(𝐸• ×Ω𝑃•/𝐴
Ω𝑃′•/𝐴

′ ) ⊗𝑃′• 𝐵
′ → (𝑋 ⊗𝑃 𝐵) ×Ω𝑃•/𝐴⊗𝑃•𝐵 (Ω𝑃′•/𝐴

′ ⊗𝑃′• 𝐵
′)

induced by the natural map of 𝑃′•-modules

𝐸• ×Ω𝑃•/𝐴
Ω𝑃′•/𝐴

′ → (𝐸• ⊗𝑃• 𝐵) ×Ω𝑃•/𝐴⊗𝑃•𝐵 (Ω𝑃′•/𝐴
′ ⊗𝑃′• 𝐵

′).
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The second diagram comprising diagram (B.10) is as follows:

Ext𝐵 (Ω𝑃•/𝐴 ⊗ 𝐵, 𝐼) Ext0/−1
𝐵 (L𝐵/𝐴, 𝐼 [1])

Ext𝐵′ ( (Ω𝑃•/𝐴 ⊗ 𝐵)𝐵′ , 𝐼𝐵′ ) Ext0/−1
𝐵′ ( (L𝐵/𝐴)𝐵′ , 𝐼𝐵′ [1]) Ext0/−1

𝐵 ((L𝐵/𝐴)𝐵′ ⊗𝐵′ 𝐵, 𝐼 [1])

Ext𝐵′ (Ω(𝑃•)′/𝐴′ ⊗ 𝐵′, 𝐼𝐵′ ) Ext0/−1
𝐵′ (L𝐵′/𝐴′ , 𝐼𝐵′ [1]) Ext0/−1

𝐵 (L𝐵′/𝐴′ ⊗𝐵′ 𝐵, 𝐼 [1])

𝛽4

𝜌 (2.4)
𝜖L𝐵/𝐴

𝛽4

(B.3)

(2.3)

𝛽4 (2.3)

The arrow labelled 𝜌 sends an extension of B-modules to the extension of 𝐵′-modules obtained by
restriction of scalars (an exact functor). One may check directly that the composition of the left vertical
arrows is equal to the right vertical arrow in diagram (B.12). The map labelled equation (2.4) is in the
context of Example B.3, and the triangle commutes by definition, while the top-left square commutes by
Lemma B.6 below. The unlabelled vertical maps are induced by the canonical map (L𝐵/𝐴)𝐵′ → L𝐵′/𝐴′ ,
so the bottom squares commute by functoriality of 𝛽4 and equation (2.3).

Proof of (3). Let 𝐴′ = 𝑝−1𝐴, let 𝐵′ = 𝑝−1𝐵, and let 𝑃′• denote the standard resolution of 𝐵′ as an
𝐴′-algebra. The desired commuting square comes from two commuting diagrams. First, we have

Exal𝐴(𝐵, 𝐼) Exal𝐴(𝑃•, 𝐼) Ext(Ω𝑃•/𝐴, 𝐼) Ext(Ω𝑃•/𝐴 ⊗ 𝐵, 𝐼)

Exal𝐴′ (𝐵
′, 𝑎−1𝐼) Exal𝐴′ (𝑃

′
•, 𝑝
−1𝐼) Ext(Ω𝑃′•/𝐴

′ , 𝑝−1𝐼) Ext(Ω𝑃′•/𝐴
′ ⊗ 𝐵′, 𝑝−1𝐼)

𝛽1

𝑝−1

𝛽2

𝑝−1

𝛽3

𝛽1 𝛽2 𝛽3

(B.13)

The first square commutes by Lemma B.1. The third vertical map is induced by 𝑝−1 and the isomorphism
𝑝−1Ω𝑃•/𝐴 � Ω𝑝−1𝑃•/𝑝−1𝐴 ([Stacks, Tag 08TQ]), the fourth is induced by 𝑝−1 and the isomorphism
𝑝−1 (Ω𝑃•/𝐴⊗ 𝐵) � Ω𝑝−1𝑃•/𝑝−1𝐴⊗ 𝑝

−1𝐵 ([Stacks, Tag 03EL]), and the squares commute by functoriality
of the same isomorphisms. Second, we have

Ext(Ω𝑃•/𝐴 ⊗ 𝐵, 𝐼) Ext0/−1
𝐵 (L𝐵/𝐴, 𝐼 [1])

Ext(𝑝−1 (Ω𝑃•/𝐴 ⊗ 𝐵), 𝑝−1𝐼) Ext0/−1
𝑝−1𝐵
(𝑝−1
L𝐵/𝐴, 𝑝

−1𝐼 [1]) Ext0/−1
𝑝∗𝐵 (𝑝

∗
L𝐵/𝐴, 𝑝

∗𝐼 [1])

Ext(Ω𝑃′•/𝐴
′ ⊗ 𝐵′, 𝑝−1𝐼) 𝑝∗Ext0/−1

𝑝−1𝐵
(L𝐵′/𝐴′ , 𝑝

−1𝐼 [1])

𝛽4

𝑝−1 (2.5)
(2.5)

(2.5)

𝛽4

The composition of the left vertical arrows is equal to the right vertical arrow in diagram (B.13).
The middle horizontal arrow comprises 𝛽4 and an isomorphism (see Lemma B.7), and the top-left
square commutes by Lemma B.7. The bottom square commutes by functoriality of 𝛽4, and the triangle
commutes by functoriality of equation (2.5) in the functors. �

Lemma B.6. Let (𝒮,𝒪𝒮) be a ringed site, let Ω• be a simplicial Ω𝒮-module, and let I be an Ω𝒮-module.
Let 𝒪′

𝒮
→ 𝒪𝒮 be a flat morphism of rings. There is a commuting diagram
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Ext𝒪𝒮
(Ω•, 𝐼) Ext0/−1

𝒪𝒮
(𝑁 (Ω•), 𝐼 [1])

Ext𝒪′
𝒮
((Ω•)𝒪′

𝒮
, 𝐼𝒪′

𝒮
) Ext0/−1

𝒪′
𝒮

(𝑁 ((Ω•)𝒪′
𝒮
), (𝐼)𝒪′

𝒮
[1]) Ext0/−1

𝒪′
𝒮

((𝑁 (Ω•))𝒪′
𝒮
, (𝐼)𝒪′

𝒮
[1])

𝜌

𝛽4

(2.4)

𝛽4

(B.14)

where 𝑁 (Ω•) is the normalisation of the Moore complex associated to Ω• (see [Stacks, Tag 0194]),
𝛽4 is the isomorphism of [Ols07, Prop A.3], 𝜌 applies restriction of scalars to an exact sequence, and
equation (2.4) is in the context of Example B.3.

Proof. By [Stacks, Tag 05NI, 05T7], there is a quasi-isomorphism 𝑁 → 𝑁 (Ω•) from a complex
𝑁 ∈ 𝐷 [−∞,0] (𝒪𝒮) of flat 𝒪𝒮-modules. We enlarge diagram (B.14) on its right side by composing with
the square induced by 𝑁 → 𝑁 (Ω•) and show that the perimeter of the new diagram commutes. From
the definition of 𝛽4, we may assume I is injective. To simplify notation, let 𝐵 = 𝒪𝒮 and 𝐵′ = 𝒪′

𝒮
.

Most of the work is to describe equation (2.4) explicitly. To this end, we first recall the definition of
equation (2.3): in the notation of Section 2.1, it is the image of the composition

𝑓 ∗Hom(𝑋, 𝑓∗𝑌 ) ⊗ 𝑓 ∗𝑋
(2.1)
−−−→
∼

𝑓 ∗(Hom(𝑋, 𝑓∗𝑌 ) ⊗ 𝑋)
𝑓 ∗ (𝜖 ⊗

𝑓∗𝑌
)

−−−−−−−→ 𝑓 ∗ 𝑓∗𝑌
𝜖
𝑓 ∗

𝑌
−−−→ 𝑌 (B.15)

under the (⊗,Hom) adjunction and then the ( 𝑓 ∗, 𝑓∗) adjunction. One sees using the description of 𝜖 ⊗
in Example B.3 that with 𝑀 ∈ D[−∞,0] (𝐵′) a complex of flat 𝐵′-modules and I as in the previous

paragraph, the morphism (RH𝑜𝑚𝐵′ (𝑀, (𝐼)𝐵′ [1]) ⊗𝐵′ 𝐵)
L
⊗𝐵 (𝑀 ⊗𝐵′ 𝐵) → 𝐼 [1] of equation (B.15) is

given by a product over 𝑝 + 𝑟 = 0 of the canonical sheaf maps

(H𝑜𝑚𝐵′ (𝑀
−𝑝 , (𝐼)𝐵′ ) ⊗𝐵′ 𝐵) ⊗𝐵 (𝑀

𝑟 ⊗𝐵′ 𝐵) → 𝐼 .

We are using the fact that (−)𝐵′ preserves injectives (since it has an exact left adjoint) and hence (𝐼)𝐵′
is injective. We see that morphism (2.3), a morphism RH𝑜𝑚𝐵′ (𝑀, (𝐼)𝐵′ [1]) → (RH𝑜𝑚𝐵 (𝑀 ⊗𝐵′

𝐵, 𝐼 [1]))𝐵′ is given in degree n by the canonical sheaf map

H𝑜𝑚𝐵′ (𝑀
−𝑛−1, (𝐼)𝐵′ ) → (H𝑜𝑚𝐵 (𝑀

−𝑛−1 ⊗𝐵′ 𝐵, 𝐼))𝐵′ ,

To compute equation (2.4), given N as at the beginning of this proof, we note that (𝑁)𝐵′ ∈ D[−∞,0]
is a complex of flat 𝐵′-modules by [Stacks, Tag 00HC], so our previous description of equation (2.3)
applies with 𝑀 = (𝑁)𝐵′ . From the definition of

(2.4) : (RH𝑜𝑚𝐵 (𝑁, 𝐼 [1]))𝐵′ → RH𝑜𝑚𝐵′ ( (𝑁)𝐵′ , (𝐼)𝐵′ [1]), (B.16)

we see that it is given in degree n by the usual sheaf map

H𝑜𝑚𝐵 (𝑁
−𝑛−1, 𝐼) → H𝑜𝑚𝐵′ ( (𝑁

𝑛−1)𝐵′ , (𝐼)𝐵′ ).

We are interested in the cases 𝑛 = 0 and 𝑛 = −1. Given 𝑈 ∈ 𝒮 and a section 𝑓 : 𝑁𝑛−1 |𝑈 → 𝐼 |𝑈 of the
left-hand side—that is, a morphism of B-modules—this map sends f to the corresponding morphism
of 𝐵′-modules. (One may verify this claim by unwinding the definitions and ultimately appealing
to Example 2.2.) Now applying RΓ to equation (B.16) is straightforward since both complexes are
complexes of injectives by [Stacks, Tag 0A96].

This gives a completely explicit description of the morphism labelled (2.4) in diagram (B.14). With
this in hand, it is easy to check that diagram (B.14) commutes. �
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Lemma B.7. Let (𝒮,𝒪𝒮) be a ringed site, let Ω• be a simplicial Ω𝒮-module, and let I be an Ω𝒮-module.
Let (𝒮,𝒪𝒮) → (𝒮

′,𝒪𝒮′ ) be a continuous morphism of ringed sites inducing a flat morphism of topoi
(𝑝−1, 𝑝∗) such that 𝑝−1𝒪𝒮 = 𝒪𝒮′ . Then there is a commuting diagram

Ext𝒪𝒮
(Ω•, 𝐼) Ext0/−1

𝒪𝒮
(𝑁 (Ω•), 𝐼 [1])

Ext𝒪𝒮′
(𝑝−1 (Ω•), 𝑝−1 (𝐼)) Ext0/−1

𝒪𝒮′
(𝑁 (𝑝−1Ω•), 𝑝−1𝐼 [1]) Ext0/−1

𝒪𝒮′
(𝑝−1𝑁 (Ω•), 𝑝−1𝐼 [1])

𝛽4

(2.5)

𝛽4

(B.17)

where 𝑁 (Ω•) is the normalisation of the simplical module, 𝛽4 is the isomorphism of [Ols07, Prop A.3],
equation (2.5) is in the context of Example B.4, and the left vertical arrow applies 𝑝−1 to an exact
sequence.

Proof. By [Stacks, Tag 05NI, 05T7], there is a quasi-isomorphism 𝑁 → 𝑁 (Ω•) from a complex
𝑁 ∈ 𝐷 [−∞,0] (𝒪𝒮) of flat 𝒪𝒮-modules. We enlarge diagram (B.17) on its right side by composing with
the square induced by 𝑁 → 𝑁 (Ω•) and show that the perimeter of the new diagram commutes. From
the definition of 𝛽4, we may assume I is injective. To simplify notation, let 𝐵 = 𝒪𝒮 and 𝐵′ = 𝒪′

𝒮
.

Most of the work is to describe equation (2.5) explicitly. To this end, we first note that (in the notation
of Section 2.1) equation (2.5) is equal to the image of the composition

𝑓 ∗Hom(𝑋,𝑌 ) ⊗ 𝑓 ∗𝑋
(2.1)
−−−→
∼

𝑓 ∗(Hom(𝑋,𝑌 ) ⊗ 𝑋)
𝑓 ∗ (𝜖 ⊗𝑌 )
−−−−−−→ 𝑓 ∗𝑌 (B.18)

under the (⊗,Hom) adjunction and the ( 𝑓 ∗, 𝑓∗) adjunction. (To see this, use equation (B.15) and the
triangle identity 𝜖

𝑓 ∗

𝑓 ∗𝑌 ◦ 𝑓
∗𝜂

𝑓 ∗

𝑌 = 1 𝑓 ∗𝑌 .) One sees using the description of 𝜖 ⊗ in Example B.3 that with N

and I as in the previous paragraph, the morphism in equation (B.18), 𝑝−1RH𝑜𝑚𝐵 (𝑁, 𝐼 [1])
L
⊗𝐵′ 𝑝

−1𝑁 →
𝑝−1𝐼 [1], is given by the product over 𝑟 ∈ Z of the usual sheaf maps

𝑝−1H𝑜𝑚𝐵 (𝑁
𝑟 , 𝐼) ⊗𝐵′ 𝑝

−1𝑁𝑟 → 𝑝−1𝐼 .

To compute the (⊗,Hom) adjunction, we must take an injective resolution 𝑝−1𝐼 [1] → 𝐽 of 𝑝−1𝐼 [1].
Given this, one checks that

(2.5) : RH𝑜𝑚𝐵 (𝑁, 𝐼 [1]) → R𝑝∗RH𝑜𝑚𝐵′ (𝑝
−1𝑁, 𝐽) (B.19)

is given in degree n by the composition of the usual sheaf maps

H𝑜𝑚𝐵 (𝑁
−𝑛−1, 𝐼) → 𝑝∗H𝑜𝑚′𝐵 (𝑝

−1𝑁−𝑛−1, 𝑝−1𝐼) → 𝑝∗H𝑜𝑚𝐵′ (𝑝
−1𝑁−𝑛−1, 𝐽−1).

We have used [Stacks, Tag 0A96] to conclude that RH𝑜𝑚𝐵′ (𝑝
−1𝑁, 𝐽) is a complex of injectives so its

pushforward can be computed termwise. We are interested in the cases 𝑛 = 0,−1. Given 𝑈 ∈ 𝒮 and a
section 𝑓 : 𝑁−𝑛−1 |𝑈 → 𝐼 |𝑈 of the left-hand side, this map sends f to 𝑝−1 𝑓 : 𝑝−1𝑁−𝑛−1 |𝑈 → 𝑝−1𝐼 |𝑈 →
𝐽−1 |𝑈 (it is an exercise to check that the ‘usual sheaf map’ does this). Now applying RΓ to equation
(B.19) is straightforward since both complexes are complexes of injectives by [Stacks, Tag 0730, 0A96].

This gives a completely explicit description of equation (2.5) in diagram (B.17). With this in hand,
one may check directly that diagram (B.17) commutes. �

B.3. Description of equation (4.4)

To define equation (4.4), we use another example of Situation 2.1.
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Example B.8. LetX be an algebraic stack, and let 𝑋 → X be a smooth cover by an algebraic space X. By
Proposition A.4, the morphism 𝜛∗ : Dqc (Xlis-et) → Dqc(𝑈

+
•,et) is an equivalence of categories. In fact,

it follows from the construction of 𝜛∗ that it is a strong monoidal equivalence of symmetric monoidal
categories. A standard argument shows that the inverse equivalence R𝜛∗ is also strong monoidal.

Let 𝑓 : X → Y be a representable morphism of algebraic stacks. Let 𝑌 → Y be a smooth cover by
a scheme with 𝑌+• → Y the associated strictly simplicial algebraic space and 𝜛 : 𝑋+• → X its pullback
to X . We will use 𝜛∗ and R𝜛∗ to denote the functors in Example B.8. We recall that the cotangent
complex LX /Y is defined to be the object in Dqc (Xlis-et) corresponding, under the equivalence R𝜛∗ of
Example B.8, to the cotangent complex of the morphism of topoi 𝑋+•,et → 𝑌+•,et.

Definition B.9 [Ols06]. Let 𝐼 ∈ QCoh(Xlis-et). The isomorphism in equation (4.4) is defined to be the
following composition of morphisms of Picard categories on Xlis-et:

ExalY (X , 𝐼)
𝛼
−→ Exal 𝑓 −1𝒪𝑌+•

(𝒪𝑋+• , 𝜛
∗𝐼)

𝜛∗𝛽
−−−→ Ext0/−1(L𝑋+• /𝑌 +• , 𝜛

∗𝐼 [1])
𝛾
←− Ext0/−1(LX /Y , 𝐼 [1]).

The objects and maps in this composition are defined as follows:

◦ The Picard category Exal 𝑓 −1𝒪𝑌+•

(𝒪𝑋+• , 𝜛
∗𝐼) is defined as in Section B.2 on the site 𝑋+•,et.

◦ The map 𝛼 is the composition of [Ols06, (2.8.1), (2.20.1)]: it sends an extension X → X ′ by I to the
exact sequence of 𝑓 −1𝒪𝑌 +• -modules

0→ 𝜛∗𝐼 → 𝒪X ′+• → 𝒪X +• → 0.

It is an isomorphism by [Ols06, Prop 2.9, Lem 2.21].
◦ The map 𝛽 was defined in equation (B.9).
◦ The arrow 𝛾 is induced by applying 𝑐ℎ ◦ 𝜏≤0 ◦ RΓ to equation (2.5) in the context of Example B.8. It

is an isomorphism since 𝜛∗ is fully faithful (in fact, an equivalence of categories).

Remark B.10. The proof of Lemma 4.5 shows that equation (4.4) is independent of the choice of cover
𝑌 → Y .

B.4. Proofs of Lemmas 4.5 and 4.6

We describe an amalgamation diagram (B.20) of the three diagrams in Lemma B.5 that will be used to
prove both functoriality lemmas. Let (𝒮,𝒪𝒮) → (𝒮

′,𝒪𝒮′ ) be a continuous morphism of ringed sites
inducing a flat morphism of topoi (𝑝−1, 𝑝∗). Let A and 𝐵 := 𝒪𝒮 be sheaves of rings on 𝒮, let I be a sheaf
of B-modules, and let 𝐴′ be a sheaf of rings on 𝒮′ such that there is a commuting diagram as follows
(note that 𝑝∗𝐵 = 𝒪𝒮′):

𝑝−1𝐴 𝐴′

𝑝−1𝐵 𝑝∗𝐵
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Then we obtain the following commuting diagram:

Ext0/−1
𝐵 (L𝐵/𝐴, 𝐼 [1]) Ext0/−1

𝑝∗𝐵
(𝑝∗L𝐵/𝐴, 𝑝

∗𝐼 [1]) Ext0/−1
𝑝∗𝐵
(L𝑝∗𝐵/𝐴′ , 𝑝

∗𝐼 [1])

Ext0/−1
𝑝−1𝐵

(𝑝−1
L𝐵/𝐴, 𝑝

−1𝐼 [1]) Ext0/−1
𝑝−1𝐵

(𝑝−1
L𝐵/𝐴, (𝑝

∗𝐼 [1])𝑝−1𝐵)

Exal𝐴 (𝐵, 𝐼 ) Exal𝑝−1𝐴 (𝑝
−1𝐵, 𝑝−1𝐼 ) Exal𝑝−1𝐴 (𝑝

−1𝐵, (𝑝∗𝐼 )𝑝−1𝐵) Exal𝐴′ (𝑝
∗𝐵, 𝑝∗𝐼 )

(2.5) (2.3)
∼

𝛽

𝛽 𝛽

𝛽

(B.20)

Here, the left square is Lemma B.5 (3) and the right square is Lemma B.5 (2). The middle square is
Lemma B.5 (1), using the unit 𝑝−1𝐼 → (𝑝∗𝐼)𝑝−1𝐵 of the (⊗,Hom) adjunction. The triangle commutes
by definition of the maps involved.

Proof of Lemma 4.5. Construct a diagram

𝑈 𝑉

𝑍 W ×Y 𝑌 𝑌

Z W Y

𝜌

𝑟

𝜛

where 𝑈,𝑉, 𝑍 , and Y are algebraic spaces with 𝑌 → Y and 𝑉 → W ×Y 𝑌 smooth and surjective and
all squares are fibred. Let q denote the map 𝑍 → 𝑌 , and let 𝜛′ = 𝜛 ◦ 𝜌, and use the same letters to
denote induced morphisms of (simplicial) topoi. Then commutativity of equation (4.5) is equivalent to
commutativity of the following diagram:

Ext0/−1(LZ/W , 𝐼 [1]) Ext0/−1(LZ/Y , 𝐼 [1])

Ext0/−1(L𝑈+• /𝑉 +• , 𝜛
′∗𝐼 [1]) Ext0/−1(𝜌∗L𝑍+• /𝑌 +• , 𝜛

′∗𝐼 [1]) Ext0/−1(L𝑍+• /𝑌 +• , 𝜛
∗𝐼 [1])

Exal𝑟−1𝒪𝑉 +•

(𝒪𝑈+• , 𝜛
′∗𝐼) Exal𝜌−1𝑞−1𝒪𝑌+•

(𝜌−1𝒪𝑍+• , 𝜛
′∗𝐼) Exal𝑞−1𝒪𝑌+•

(𝒪𝑍+• , 𝜛
∗𝐼)

ExalW (Z , 𝐼) ExalY (Z , 𝐼)

𝛾∼

𝐴

𝛾∼

∼

𝛽 𝛽

𝐵

𝛼 𝛼

(B.21)

In the triangle, all of the maps are equal to equation (2.5), and the triangle commutes by the functoriality
of equation (2.5) in the adjoint pair. The arrow

Ext0/−1(𝜌∗L𝑍 •/𝑌 • , 𝜛
′∗𝐼 [1]) ← Ext0/−1(L𝑍 •/𝑌 • , 𝜛

∗𝐼 [1])

is an equivalence (as claimed in the diagram) because 𝜌∗ : Dqc (𝑍
+
•,et) → Dqc (𝑈

+
•,et) is fully faithful. The

trapezoid commutes by definition of the canonical map LZ/Y → LZ/W (one can produce an explicit
description for 𝛾 by the same argument as was used in the proof of Lemma B.7). The commutativity of
the middle square is diagram (B.20), reflected left-to-right, with 𝑝 = 𝜌, 𝐴 = 𝑞−1𝒪𝑌 +• , 𝐴′ = 𝑟−1𝒪𝑉 +• and
𝐵 = 𝒪𝑍+• .
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It remains to check that the bottom square commutes. We do this by direct computation. Let 𝑖 : Z ↩→
Z ′ be an element of ExalW (Z , 𝐼). We have the following commuting diagram, where all squares are
fibred:

𝑈 𝑈 ′ 𝑉

𝑍 𝑍 ′ W ×Y 𝑌 𝑌

Z Z ′ W Y

𝑖

𝜌 𝜌′

𝑖

𝜛

𝑖

(B.22)

The map 𝛼 sends 𝑖 : Z ↩→ Z ′ to the extension

0→ 𝜛′∗𝐼
𝑚
−→ 𝑖−1𝒪𝑈 ′+• → 𝒪𝑈+• → 0

of 𝑟−1𝒪𝑉 +• -modules, and the maps in equations (B.4) and (B.3) send this to the extension

0→ 𝜛′∗𝐼
(𝑚,0)
−−−−→ 𝑖−1𝒪𝑈 ′+• ×𝒪𝑈+•

𝜌−1𝒪𝑍+• → 𝜌−1𝒪𝑍+• → 0 (B.23)

of 𝜌−1𝑞−1𝒪𝑌 +• -modules.
On the other hand, the map B sends 𝑖 : Z ↩→ Z ′ to the same extension, now as an element of

ExalY (Z , 𝐼). The image of this under 𝜌−1 ◦ 𝛼 is

0→ 𝜌−1𝜛∗𝐼 → 𝜌−1𝑖−1𝒪𝑍 ′+•

𝑛
−→ 𝜌−1𝒪𝑍+• → 0,

an extension of 𝜌−1𝑞−1𝒪𝑌 •-modules. Here n is part of the data of the morphism of ringed topoi associated
to 𝑖 : 𝑍 → 𝑍 ′. Finally, the map in equation (B.2) sends this extension to

0→ 𝜛′∗𝐼 → 𝜛′∗𝐼 ⊕𝜌−1𝜛∗𝐼 𝜌
−1𝑖−1𝒪𝑍 ′+•

(0,𝑛)
−−−−→ 𝜌−1𝒪𝑍+• → 0, (B.24)

also an extension of 𝜌−1𝑞−1𝒪𝑌 +• -modules.
A morphism from equation (B.24) to equation (B.23) in the groupoid Exal𝜌−1𝑞−1𝒪𝑌+•

(𝜌−1𝒪𝑍+• , 𝜛
′∗𝐼)

is given by a collection of dotted arrows, making the following diagram commute:

𝜌−1𝜛∗𝐼 𝜛′∗𝐼 𝑖−1𝒪𝑈 ′+•

𝜌−1𝑖−1𝒪𝑍 ′+• 𝜌−1𝒪𝑍+• 𝒪𝑈+•

(B.25)

We choose arrows as follows (note that they are compatible with restriction)

𝑚 : 𝜛′∗𝐼 → 𝑖−1𝒪𝑈 ′+• 𝑛 : 𝜌−1𝑖−1𝒪𝑍 ′+• → 𝜌−1𝒪𝑍+•

0 : 𝜛′∗𝐼 → 𝜌−1𝒪𝑍+• 𝑘 : 𝜌−1𝑖−1𝒪𝑍 ′+• → 𝑖−1𝒪𝑈 ′+• ,

where k is equal to 𝑖−1 applied to the canonical morphism 𝜌−1𝒪𝑍 ′+• → 𝒪𝑈 ′+• . Commutativity of the
resulting diagram follows from commutativity of diagram (B.22).

We claim that this morphism is natural for arrows coming from ExalW (Z , 𝐼). If we are given
an arrow f from 𝑖1 : Z → Z1 to 𝑖2 : Z → Z2 inducing maps 𝑓𝑈 : 𝑖−1

1 𝒪𝑈+1,• → 𝑖−1
2 𝒪𝑈+2,• and

𝑓𝑍 : 𝜌−1𝑖−1
1 𝒪𝑍+1,•

→ 𝜌−1𝑖−1
1 𝒪𝑍+2,•

, then this naturality is equivalent to the fact that the maps in the
following two criss-cross diagrams coincide:
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𝜛′∗𝐼 𝑖−1
2 𝒪𝑈+2,•

𝜌−1𝑖−1
1 𝒪𝑍+1,•

𝜌−1𝒪𝑍+•

𝑚2

0

𝑘2◦ 𝑓𝑍

𝑛2◦ 𝑓𝑍

𝜛′∗𝐼 𝑖−1
2 𝒪𝑈+2,•

𝜌−1𝑖−1
1 𝒪𝑍+1,•

𝜌−1𝒪𝑍+•

𝑓𝑈◦𝑚1

0

𝑓𝑈◦𝑘1

𝑛1

�Proof of Lemma 4.6. Construct a fibre diagram

𝑍 𝑋 ×X Z 𝑋

𝑊 𝑌 ×Y W 𝑌

𝑟 𝑞

where 𝑌 → Y is a smooth cover by a scheme, 𝑋 = 𝑌 ×Y X , and 𝑊 → 𝑌 ×Y W is a smooth cover
by a scheme. Use p to denote the map 𝑍 → 𝑋 . Then commutativity of diagram (4.8) is equivalent to
commutativity of the diagram below:

Ext0/−1(LZ/W , 𝐼 [1]) Ext0/−1(𝑝∗LX /Y , 𝑝
∗𝐼 [1]) Ext0/−1(LZ/W , 𝑝∗𝐼 [1])

Ext0/−1
𝒪𝑋+•

(L𝑋+• /𝑌 +• , 𝜛
∗𝐼 [1]) Ext0/−1

𝑝∗𝒪𝑋+•

(𝑝∗L𝑋+• /𝑌 +• , 𝑝
∗𝜛∗𝐼 [1]) Ext0/−1

𝒪𝑍+•

(L𝑍+• /𝑊 +
•
, 𝜛∗𝑝∗𝐼 [1])

Exal𝑞−1𝒪𝑌+•

(𝒪𝑋+• , 𝜛
∗𝐼) Exal𝑟−1𝒪𝑊 +•

(𝒪𝑍+• , 𝜛
∗𝑝∗𝐼)

ExalY (X , 𝐼) ExalW (Z , 𝑝∗𝐼)

(2.5)
𝐶

𝛾 ∼ (2.5) ∼

∼
𝐷

𝛾 ∼

(2.5) ∼

𝛽 𝛽

𝐸

𝛼 𝛼

(B.26)

The vertical instance of equation (2.5) is an isomorphism since 𝜛∗ is fully faithful. This implies that
the unnamed arrow in the top-right square of diagram (B.26) is an isomorphism (it is already labelled
as such) since the other three maps in the square are. The commutativity of the top-left square uses
the functoriality of equation (2.5) in the adjoint functors. The top right square commutes by definition
of the canonical map of cotangent complexes. The middle rectangle is diagram (B.20) with p the map
𝑍 → 𝑋 , 𝐴 = 𝑞−1𝒪𝑌 +• , 𝐵 = 𝒪𝑋+• , and 𝐴′ = 𝑟−1𝒪𝑊 +

•
. We have suppressed various squares commuting the

maps p and 𝜛.
It remains to check that the bottom square of diagram (B.26) commutes. This we do by direct

computation, using diagram (B.20) to factor the map

Exal𝑞−1𝒪𝑌+•

(𝒪𝑋+• , 𝜛
∗𝐼) → Exal𝑟−1𝒪𝑊 +•

(𝒪𝑍+• , 𝜛
∗𝑝∗𝐼).

Let 𝑖 : X ↩→ X ′ be an element of ExalY (X , 𝐼). Then we have a commuting diagram

𝑍 𝑍 ′ 𝑊

𝑋 𝑋 ′ 𝑌 ′

Z Z ′ W

X X ′ Y
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where the front, bottom and back squares are fibred (six squares in all). The map 𝑝−1 ◦ 𝛼 sends
𝑖 : X ↩→ X ′ to the extension

0→ 𝑝−1𝜛∗𝐼 → 𝑝−1𝑖−1𝒪𝑋 ′+• → 𝑝−1𝒪𝑋+• → 0

of 𝑝−1𝑞−1𝒪𝑌 +• -algebras, and the map in equation (B.2) sends this extension to the extension

0→ 𝑝∗𝜛∗𝐼 → 𝑝∗𝜛∗𝐼 ⊕𝑧−1𝜛∗𝐼 𝑝
−1𝑖−1𝒪𝑋+• → 𝑝−1𝒪𝑋+• → 0. (B.27)

On the other hand, the map E sends 𝑖 : X ↩→ X ′ toZ ↩→ Z ′, which under𝛼 corresponds to the extension

0→ 𝜛∗𝑝∗𝐼 → 𝑖−1𝒪𝑍 ′+• → 𝒪𝑍+• → 0

of 𝑟−1𝒪𝑊 +
•

-algebras. After applying 𝜛∗𝑝∗ = 𝑝∗𝜛∗ and the morphisms in equations (B.4) and (B.3), this
becomes the extension

0→ 𝑝∗𝜛∗ → 𝑖−1𝒪𝑍 ′+• ×𝒪𝑍+•
𝑝−1𝒪𝑋+• → 𝑝−1𝒪𝑋+• → 0 (B.28)

of 𝑝−1𝑞−1𝒪𝑌 +• -algebras. As in the proof of Lemma 4.5, one can write down a functorial (necessarily
iso)morphism between equations (B.27) and (B.28) and check that it is compatible with restrictions. �
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