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ESTIMATION AND INFERENCE WITH
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New methods are developed for identifying, estimating, and performing infer-
ence with nonstationary time series that have autoregressive roots near unity. The
approach subsumes unit-root (UR), local unit-root (LUR), mildly integrated (MI),
and mildly explosive (ME) specifications in the new model formulation. It is shown
how a new parameterization involving a localizing rate sequence that characterizes
departures from unity can be consistently estimated in all cases. Simple pivotal limit
distributions that enable valid inference about the form and degree of nonstationarity
apply for MI and ME specifications and new limit theory holds in UR and LUR
cases. Normalizing and variance stabilizing properties of the new parameterization
are explored. Simulations are reported that reveal some of the advantages of this
alternative formulation of nonstationary time series. A housing market application
of the methods is conducted that distinguishes the differing forms of house price
behavior in Australian state capital cities over the past decade.

1. INTRODUCTION

While empirical research makes heavy use of persistent time-series asymptotics for
modeling nonstationary data, it is usually recognized that it is often too restrictive,
although certainly convenient, to insist that autoregressive roots be precisely unity.
In consequence, much research has been done on time series with local to unit
roots (LURs) or near-integrated processes following early work in the 1980s on
the development of LUR asymptotics (Chan and Wei, 1987; Phillips, 1987b, 1988)
for models with long-run autoregressive coefficients of the form θn = 1+ c

n , where
c is an unknown localizing coefficient and n is the sample size. In the LUR
model, the parameter c is identified but is not consistently estimable. Methods
of inference concerning c have been suggested (Stock, 1991; Hansen, 1999)
and used in applications1 but have known limitations (Mikusheva, 2007, 2012;
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Phillips, 2014) and face challenges in extension to practical model settings and
multivariate models.

More recent attention has focused on mildly integrated (MI) and mildly explo-
sive (ME) time series for which the long-run autoregressive coefficient has the
form θn = 1 + c

nα , where α ∈ (0,1) is an unknown localizing rate and c is an
unknown constant scale coefficient. Models with this formulation of θn offer
alternatives closer to the stationary and explosive regions and have opened up new
robust estimation possibilities and new options for inference. Such models deliver
nonstationary alternatives to the random wandering behavior associated with LUR
processes and help to deliver connectivity between stationary and nonstationary
asymptotics (Phillips and Magdalinos, 2007a, 2007b; hereafter PM) and (Giraitis
and Phillips, 2006; Phillips, Magdalinos, and Giraitis, 2010), in addition to long
memory processes with the (nonstationary) fractional parameter d = 1

2 (Duffy and
Kasparis, 2021). A particular advantage of MI time series is the simple mechanism
they provide for constructing endogeneously generated instruments (known as
IVX) that validate standard methods of inference in cointegrating and predic-
tive regressions (Phillips and Magdalinos, 2009; Kostakis et al., 2015), thereby
overcoming ubiquitous problems of size distortion and non-pivotal inference that
are induced by the presence of LUR regressors (Elliott, 1998; Phillips, 2015).
In addition, ME time series have opened up new opportunities for estimation
and inference concerning explosive phenomena and exuberance in financial and
real estate markets, providing methods of real-time detection of bubble behavior
that have proved useful in practical work on the diagnosis of prevailing market
conditions by market participants, banks, and regulators (Phillips, Wu, and Yu,
2011; Phillips et al., 2015a, 2015b).

The present paper contributes to this literature in several ways. First, issues of
identification and consistent estimation of the localizing coefficients {α,c} in MI
and ME models are explored. Contrary to popular thinking, it is shown that it is
possible to consistently estimate the rate parameter α that controls (in conjunction
with the scale parameter) the widths of the MI and ME regions as the sample size
n → ∞. Consistent estimation of the rate parameter also applies in the LUR case
where α = 1, although the limit distribution is different. In addition, whereas the
localizing parameters {α,c} are not separately identified in finite samples, pseudo-
identification does hold asymptotically. In particular, unlike LUR models where
consistent estimation of the localizing coefficient c is not possible, consistent
estimation of pseudo-true values of c, notably c∗ ∓ 1, is attainable in MI and ME
systems.2

entirely different approach the empirical application given in Section 5 of the present paper; (ii) predictive regressions
in finance (see Phillips (2015) for an overview and the references therein); (iii) use of MI instruments (IVX methods
following Phillips and Magdalinos (2009)) for robust pivotal limit theory with nonstationary data particularly in
finance (Kostakis, Magdalinos, and Stamatogiannis, 2015); and (iv) tests for financial and real estate bubbles in
Phillips and Yu (2011) and Phillips, Shi, and Yu (2015a, 2015b) and much subsequent empirical research on bubbles.
2Recent work by Lin and Tu (2020) correctly pointed to the difficulties in the estimation of c but did not observe that
pseudo-true values c∗ of c are consistently estimable.
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The primary contribution of the paper is to propose an equivalent model
formulation in terms of a single localizing rate sequence which is identifiable,
consistently estimable, and has pivotal limit theory that enables inference in these
models. Some particular advantages of this new formulation stand out. It delivers
a simple uniparameter measure that quantifies departures from UR and LUR
specifications. This parameter sequence can be estimated at a regularly varying
power rate for MI time series and an exponential rate for ME series. LUR as well as
UR specifications occur at natural boundary values of the new parameter sequence,
and the limit theory for the proposed nonlinear rate estimator belongs to a stable
normal class in contrast to the nonstandard limit theory for the autoregressive
coefficient estimator. Finally, simulations show good finite-sample performance
in estimation and inference for this alternative formulation, although performance
deteriorates due to a slower logarithmic convergence rate when the localizing rate
coefficient approaches unity. Consistency still holds in this case, in contrast to the
well-known asymptotic theory for the LUR case in which the localizing coefficient
c, as distinct from α, is not consistently estimable.

The paper is organized as follows. Section 2 studies issues of identification,
estimation, and inference concerning MI autoregressions, introduces the equiva-
lent uniparameter sequence representation of these processes, and provides limit
theory for estimation of the localizing coefficients. ME processes are considered
in Section 3. Simulations are reported in Section 4, and an empirical illustration
of the methods to housing markets is given in Section 5. Concluding remarks and
further discussion are given in Section 6. Proofs are in the Appendix.

2. MILDLY INTEGRATED AUTOREGRESSION

2.1. Model and Properties

For simplicity of exposition, we consider the prototypical MI autoregression

Xt = θnXt−1 +ut, t = 1, . . . ,n, (2.1)

θn = 1+ c

nα
, c < 0, α ∈ (0,1), (2.2)

with initialization X0 = op (nα) and innovations satisfying ut ∼iid (0,σ 2). With
some minor modification, the methodology given here accommodates systems like
(2.1) with weakly dependent errors ut such as those considered in PM (2007b).
That extension in the case c < 0 is discussed in Section 2.4 and used later in the
empirical application. Some results in the present section also include the LUR
case where α = 1 and c ∈ (−∞,∞). In the ME case where c > 0, the limit theory
given in Section 3 holds without any modification for weak dependence in the
innovations.

Partial sums St := ∑t
i=1 ui of ut satisfy the functional law

Bnα (·) := S�nα ·	
nα/2

=
∑�nα ·	

i=1 ui

nα/2
� B(·), (2.3)
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where B(·) is Brownian motion with variance σ 2. Least-squares estimation of
θn gives θ̂n = ∑n

t=1 XtXt−1/
∑n

t=1 X2
t−1, which carries information about both

localizing parameters (α,c) in (2.2). The estimate θ̂n is known to be consistent
for θn with the following limit theory.

LEMMA 2.1. PM (2007a, Thm. 3.2) For model (2.1) with θn = 1+c/nα , c < 0,
and α ∈ (0,1), we have: (i)

n
1+α

2

(
θ̂n − θn

)
�N (0, −2c) =: ξc, (2.4)

(ii) 1
n1+α

∑n
t=1 X2

t−1 →p
σ 2

−2c, and (iii) 1
n(1+α)/2

∑n
t=1 xt−1ut � N

(
0, σ 4

−2c

)
, as

n → ∞.

Result (i) shows that, as c → 0, the asymptotic variance tends to zero, matching
the fact that the convergence rate rises to n in the UR case as θn → 1. Similarly,
(ii) and (iii) show that the regressor signal

∑n
t=1 X2

t−1 diverges at a faster rate than
n1+α as c → 0. Thus, the value of c and its proximity to zero influence asymptotic
behavior in a material way that relates to the localizing rate coefficient α. More
directly in terms of the localizing rate parameter α itself, the convergence rate

n
1+α

2 → n as α → 1. It is therefore evident that the two localizing coefficients
(c,α) play joint and related roles in determining both the finite-sample and limit
behavior of θ̂n. This interactive role of the unknown parameters (c,α) affects the
capacity to identify these parameters.

2.2. Local Parameter Identification Failure

The functional dependence of the autoregressive coefficient θn = 1 + c
nα =:

θn(c,α) on the two localizing parameters (c,α) reveals a fundamental identification
uncertainty in the specification. Whereas θn is itself identified in finite samples,
these two parameters are not separately identified in finite samples even under
additional conditions such as the sign of c. This is explained by the fact that
the generating mechanism (2.1) implies the moving average representation Xt =∑t−1

j=0 θ
j
nut−j + θ t

nX0 so that the joint distribution of {Xj}n
j=1 for any given sample

size n depends on the pair (c,α) only through θn and, hence, only through the ratio
c

nα . Given n, the (stationary) LUR condition 0 < θn < 1 requires −nα < c < 0 or
0 < |c| < nα , so that −∞ < log |c| < α logn. It follows that the likelihood of {Xj}n

j=1
is equivalently defined by the following simpler uniparameter autoregressive
parameter specification:

θn = θn(γn) := 1− 1

nγn
, (2.5)

with

γn = γn(c,α) := α − log |c|
logn

∈ (0,1), (2.6)
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because −1/nγn = −n
log |c|
logn /nα = −|c|/nα = c/nα for −nα < c < − 1

n1−α . The
upper and lower limits of c used in the definition of γn ensure that γn ∈ (0,1).
In particular, γn → 1 as c tends to the upper limit − 1

n1−α , and γn → 0 as c tends

to its lower limit −nα . For values of c ≥ − 1
n1−α , we have 1/nγn = |c|/nα ≤ 1/n.

Thus, for c ≥ − 1
n1−α and as c → 0 from below, the rate parameter γn ≥ 1 and the

autoregressive coefficient θn is local to unity when c = −1/n1−α or closer to unity
when −1/n1−α < c ≤ 0. As will be explained in what follows, the limit theory
developed here for the estimation of γn accommodates this possibility.

The upshot is that the model given by equations (2.1) and (2.2) may equivalently
be defined by (2.1) in conjunction with the specification θn = 1− 1

nγn , where γn =
γn(c,α) ∈ (0,1) is given in (2.6). This new formulation of θn is a single-parameter
specification θn = θn(γn) that involves the rate-parameter sequence γn. Importantly,
given n, the value of γn(c,α) is determined by the pair (c,α) and we have the
following correspondences at the limits of the domain of definition of (c,α) and
the key point c = −1 in (2.6) where γn = α:

lim
c→−n−(1−α)

(γn,θn) → (1,1− 1

n
), lim

c→−1
(γn,θn) → (α,1− 1

nα
), lim

c→−nα
(γn,θn) → (0,0),

lim
(c,α)→(−1,1)

(γn,θn) → (1,1− 1

n
), lim

α→1
(γn,θn) → (1− log |c|

logn
,1− |c|

n
),

lim
α→0

(γn,θn) →
(

− log |c|
logn

,1−|c|
)

. (2.7)

These relations show that stationary, MI, and LUR models are all captured in the
single parameter specification. However, the correspondence is evidently not 1 : 1.
For example, γn(− 1

n1−α ,α) = γn(−1,1) = 1 both yield the same autoregressive

coefficient θn = 1− 1
n . More generally, we have equivalence whenever c1

nα1 = c2
nα2 ,

or c1 = c2nα1−α2 . So if α1 = α2 +b, then c1 = c2nb will ensure that θn = 1+ c1
nα1 =

1 + c2nb

nα1 = 1 + c2
nα2 . Then θn = 1 − 1

nγn with γn = α1 − log |c1|
logn = α2 − log |c2|

logn so
that γn(c1,α1) = γn(c2,α2), and there is lack of identification in finite samples.
Note that, in the equivalence γn(c1,α1) = γn(c2,α2), c1 depends on n. However,
this is not an issue in finite samples where, for any given n, the allowable range
−nα1 < c1 < − 1

n1−α1
for the localizing coefficient c1 is satisfied and ensures that

γn ∈ (0,1) as required for the MI specification of the model. In contrast to this
finite-sample failure of identification of the pair (c,α), the localizing rate parameter
γn is identified, just as the autoregressive coefficient θn is itself identified.

Attempts to estimate the twin-parameter specification (c,α) reveal the presence
of the localizing coefficient uncertainty implicit in the dual parameter specification
of the MI models (2.1) and (2.2). The impact of the identification uncertainty about
(c,α) becomes apparent in the asymptotic theory because separate estimation of
the rate parameter α and the localizing coefficient c lead as n → ∞ to the pseudo-
parameters (c∗ = −1,γn) in the uniparameter specification (2.6). Thus, the point
of equivalence γn = α that arises when c takes on the value −1 in (2.6) turns out
to be an important pseudo-true limit value for the localizing rate coefficient γn

in the limit theory. As we proceed to show, it turns out that there are asymptotic
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identification and consistent estimation of both the pseudo-true value c∗ = −1 and
the specific rate sequence γn when n → ∞. Thus, the essential element in the MI
model is the implied localizing rate parameter γn in the specification θn = 1− 1

nγn .
Boundary values for the parameter sequence γn are also relevant because when
γn = 1− log |c|

logn the model merges with the LUR class where θn = 1− |c|
n = 1+ c

n with

c < 0. In particular: when γn = 1 (i.e., c = −1 in γn = 1− log |c|
logn ), we have the LUR

special case θn = 1− 1
n ; when γn > 1, we have the LUR coefficient θn = 1+ c

n with
−1 < c < 0; and γn < 1 captures LUR models with c < −1. Furthermore, when
γn → ∞, θn → 1, delivering the UR model. Similar correspondences apply on the
right side of the UR model with θn = 1+ 1

nγn > 1 and γn = 1− log |c|
logn , as discussed

in Section 3. These representations become important in interpreting the results of
applied research, as shown later in the empirical illustration.

Limit theory for the autoregressive coefficient estimate θ̂n is given in (2.4). On
a suitably expanded probability space by virtue of the Skorohod representation
theorem,3 the convergence (2.4) holds in probability and, in this expanded space,
we can write

θ̂n = θn + ξc

n
1+α

2

{
1+op (1)

}
. (2.8)

It is convenient to work within this expanded space, and we often do so sub-

sequently without specific mention. The random component n− 1+α
2 ξc in (2.8)

depends on both parameters (c,α). However, in view of the equivalent representa-
tion (2.6), we may write

ξc

n
1+α

2

=d N
(

0,
−2c

n1+α

)
= N

(
0,

2

n1+γn

)
, (2.9)

because 1/nγn = −c/nα and n
1+α

2 |c|−1/2 = n
1+γn

2 as shown in (A-1) in the
Appendix. The limit theory of Lemma 2.1 may therefore be rewritten in the follow-
ing simpler form that does not explicitly depend on c although the uniparameter
γn implicitly carries the effects of the value of c and its asymptotic behavior when
c itself depends on n.

LEMMA 2.2. Under the conditions of Lemma 2.1 and defining the rate-
parameter sequence γn = γn(c,α) = α − log |c|

logn ∈ (0,1) as in (3.11), we have: (i)

n
1+γn

2

(
θ̂n − θn

)
�N (0,2) =: ξ, (2.10)

(ii) 1
n1+γn

∑n
t=1 X2

t−1 →p
σ 2

2 , and (iii) 1
n(1+γn)/2

∑n
t=1 xt−1ut �N

(
0, σ 4

2

)
, as n → ∞.

3See, for example, Shorack and Wellner (2009, Theorem 4, p. 47) or Billingsley (2008, Theorem 25.6, p. 287).
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2.3. Parameter Estimation

We now consider methods of estimating the localizing parameters (c,α) and
associated uniparameter sequence γn under various conditions concerning the true
value of autoregressive parameter sequence θn and its proximity to unity.

2.3.1. Estimation of the Rate Coefficient α. In view of the representation (2.5),

define Ân = θ̂n − 1 and construct the nonlinear rate estimator α̂ = − log
∣∣∣Ân

∣∣∣
logn , for

which the following limit theory holds.

THEOREM 2.1. (i) For models (2.1) and (2.2) with fixed c < 0 and fixed α ∈
(0,1) as n → ∞, we have α̂ →p α and

n
1−α

2 logn

{
α̂ −α + log |c|

logn

}
� ξc

−c
=d N

(
0,

2

|c|
)

, (2.11)

where ξc is given in (2.4).
(ii) For model (2.1) with fixed α ∈ (0,1), θn = 1 + cn

nα and cn = − 1
n1−α−δ , and 0 <

δ ≤ 1−α as n → ∞, we have α̂ →p 1− δ and

nδ/2 logn
{
α̂ − (1− δ)

}
� ξ =d N (0,2) . (2.12)

(iii) For model (2.1) with α = 1, θn = 1 + c
n , and fixed c ∈ (−∞,∞) as n → ∞,

we have α̂ →p 1 and

(logn)
{
α̂ −1

}
� − log |c+ ξJc |, (2.13)

where ξJc = ∫ 1
0 JcdW/

∫ 1
0 J2

c , Jc(r) = ∫ 1
0 ec(r−s)dW(s) is a standard linear diffusion,

and W is standard Brownian motion.

Result (2.11) shows that the estimator α̂ is consistent with convergence rate

O(n
1−α

2 logn) but with a first-order asymptotic bias − log |c|
logn and, upon centering

and scaling, α̂ has the limiting normal distribution N
(

0, 2
|c|

)
. When c = −1,

the asymptotic bias term disappears and the limit distribution is simply N (0,2).
In general, the asymptotic variance depends on the localizing coefficient c and
diverges as 2

|c| → ∞ when c → 0, indicative that the convergence rate changes
when c is dependent on the sample size n. In particular, in case (ii), where cn =
− 1

n1−α−δ → 0 or even closer to zero4 as n → ∞, the convergence rate drops to
nδ/2 logn and further approaches logn when δ → 0. The asymptotics in (i) and
(ii) hold when α ∈ (0,1) and c < 0 but fail in the UR case where c = 0 and
θn = 1 or where c = cn → 0 as fast or faster than as cn = − 1

n1−α . In that case, the

autoregressive coefficient is either θn = 1− 1
n or closer to unity with θn = 1+o( 1

n ).

4For instance, if cn = − Ln
n1−α for some slowly varying (SV) function for which Ln → ∞ as n → ∞, then a version

of (ii) continues to hold but with convergence rate L1/2
n logn. See Remark 2.1.
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In such near-integrated or closer-to-UR cases, (2.8) fails. Result (2.13) in (iii) then
shows that the estimator α̂ is consistent for the unit exponent with convergence
rate O(logn), as anticipated from (2.11) when α → 1, but with a limit distribution
determined by the quantity log |c + ξJc | which involves bias and dependence on
the nonstandard LUR limit distribution ξJc = ∫ 1

0 JcdW/
∫ 1

0 J2
c . The finite-sample

behavior of the estimator α̂ in these various cases is explored in relation to these
asymptotics later in the paper.

As evident from (2.11), the convergence rate of α̂ differs from that of θ̂n

by a rate reduction factor of nα/ logn. The rate reduction arises because of the
sample size dependence of the function α̂ = α̂n(θ̂n) = − log |Ân|/ logn that links
the two estimators. Importantly, this dependence on n means that the usual delta
method asymptotics do not hold because there is a sequence of functions relating
the estimators rather than a single fixed function. The failure of the usual delta
argument in such circumstances is an instance of a more general problem that
was studied in Phillips (2012) where an extended delta theorem for sequences of
functions was established to deal with situations of this type. In the present case,
the problem can be analyzed directly because the transformation that defines α̂ is
explicitly provided by the formula α̂ = − log |Ân|/ logn linking the estimators. It
is the dependence of the sequence of functions on the sample size n that leads to
the noted reduction in the convergence rate.

From Lemma 2.1, we have 1
n1+α

∑n
t=1 X2

t−1 →p
σ 2

−2c, so that log
(

1
n

∑n
t=1 X2

t−1

)−
α logn →p log

(
σ 2

−c

)
. Simple transformation then leads to another consistent

estimator of α, viz.,

α̃ = log
(

1
n

∑n
t=1 X2

t−1

)
logn

→p α,

for which (logn)(α̃ −α) →p log
(

σ 2

−c

)
. So α̃ has a logarithmic convergence rate

when α ∈ (0,1) in contrast to the regularly varying rate of α̂. When α = 1,
1

n2

∑n
t=1 X2

t−1 �
∫ 1

0 J2
c and then

α̃ = log
(

1
n

∑n
t=1 X2

t−1

)
logn

→p 1,

so that α̃ is again consistent with a logarithmic convergence rate in the LUR case

but with limit theory (logn) (α̃ −1) � log
(∫ 1

0 J2
c

)
, indicative of a random first-

order bias effect. In cases (i) and (ii) of Theorem 2.1, both estimators α̂ and α̃ have
limit theory that depends on the unknown localizing coefficient c and both suffer
first-order asymptotic bias effects. Inference about the rate parameter α using these
results for either α̂ or α̃ therefore depends on estimation or knowledge of c. As
discussed below, this problem is averted by exploiting the pseudo-true value c∗ =
−1 of c in the MI case and using a uniparameter representation of θn.
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Remark 2.1. If the specification cn = g
n1−α−δ , with additional localizing constant

coefficient g < 0, is used in Theorem 2.1(ii), we again have α̂ →p 1−δ, but in place
of (2.12), we have the limit theory

nδ/2 logn

{
α̂ − (1− δ)+ log |g|

logn

}
� ξg

−g
=d N

(
0,

2

|g|
)

, (2.14)

analogous to (2.11). Furthermore, if cn = − Ln
n1−α for some SV function Ln at

infinity, then α̂ →p 1 and

L1/2
n logn

{
α̂ −1+ logLn

logn

}
� ξ =d N (0,2), (2.15)

which is shown in (A-10) in the proof of Theorem 2.1(ii)—SV Extension, which
is given in the Appendix. The Gaussian limit theory is then maintained up to and
including a scale SV factor Ln → ∞ times the logn rate. So this rate is faster
than the logarithmic rate logn that applies in Theorem 2.1(iii) when α = 1 and
θn = 1+ c

n is local to unity. Result (2.15) provides a localizing rate estimator limit
theory for the MI case with autoregressive coefficient θn = 1+ c

kn
considered in PM

(2007a) where in the present case kn = −c n
Ln

= o(n) so that θn = 1− Ln
n . Observe

that even though the bias term − logLn
logn → 0 as n → ∞ in this near UR case, the bias

is nonnegligible asymptotically in the limit distribution given the convergence rate
L1/2

n logn in (2.15).

2.3.2. Estimation of the Localizing Coefficient c. The asymptotic behavior of
the regression signal

∑n
t=1 X2

t−1 ∼a
σ 2n1+α

−2c suggests the following estimator of the
localizing coefficient c:

ĉ = − n1+α̂ σ̂ 2

2
∑n

t=1 X2
t−1

= − nα̂−ασ̂ 2

2
n1+α

∑n
t=1 X2

t−1

, (2.16)

where σ̂ 2 = 1
n

∑n
t=1 û2

t →p σ 2 with ût = Xt − θ̂nXt−1 and α̂ = − log
∣∣∣Ân

∣∣∣
logn is as before.

The estimator ĉ is consistent for the pseudo-true localizing coefficient c∗ = −1 in
the MI case.

THEOREM 2.2. Under the conditions of Theorem 2.1 and as n → ∞ ĉ →p −1.

Theorems 2.1 and 2.2 show that, whereas the twin localizing parameters (c,α) in
an MI system are not themselves identified in finite samples, consistent estimation
is possible for the rate parameter α̂ and the pseudo-true value c∗ = −1. However,
there is nonnegligible bias in the limit distribution of the rate estimator α and c
itself is not consistently estimable. Instead, the pseudo-true value c∗ = −1 is the
limiting value of ĉ and leads directly to the uniparameter sequence γn for which
the identified representation of the MI autoregressive sequence θn = 1− 1

nγn holds.
These asymptotic findings reveal that attempts to estimate consistently the twin
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localizing parameters (c,α) in an MI system lead, in effect, to consistent estimation
of the uniparameter sequence γn in the identified representation θn = 1 − 1

nγn ,
pointing to the advantage of using this representation of mild integration in an
autoregression.

2.3.3. Uniparameter Estimation. An alternative approach to rate estimation
is to take advantage of the uniparameter representation of the MI model based on
the rate-parameter sequence γn in (2.6). With this reformulation of the model, we
can define the rate estimator

γ̂n = −
log

∣∣∣Ân

∣∣∣
logn

= − log |θ̂n −1|
logn

, (2.17)

which has precisely the same form as the estimator α̂. However, by virtue of the
definition of the sequence γn in (2.6),γ̂n takes advantage of the presence of the
first-order asymptotic bias log |c|

logn in the estimator α̂. In doing so, γ̂n is a natural
estimator for the localizing rate sequence γn because the uniparameter formulation
of the autoregressive coefficient θn = 1 − 1

nγn gives An = θn − 1 = − 1
nγn and so

log |An|
logn = −γn, which leads to the estimator γ̂n in (2.17). The limit theory for γ̂n

follows directly from Theorem 2.1 and is formalized in the following result.

COROLLARY 2.1. Under the conditions of Theorem 2.1(i) with c < 0, α ∈
(0,1), and γn = α − log |c|

logn , or Theorem 2.1(ii) with θn = 1 + cn
nα = 1 − 1

nγn , cn =
− 1

n1−α−δ , γn = 1− δ, and 0 < δ ≤ 1−α as n → ∞, we have

n
1−γn

2 logn
(
γ̂n −γn

)
� ξ =d N (0,2) . (2.18)

In the SV case discussed in Remark 2.1 where θn = 1+ cn
nα = 1− Ln

n with cn = − Ln
n1−α

and Ln → ∞ is SV at infinity, we have, as n → ∞,

L1/2
n logn

(
γ̂n −γn

)
� ξ, (2.19)

where γn = 1− logLn
logn . Finally, when θn = 1+ c

n , we have, as n → ∞,

(logn)
{
γ̂n −1

}
� − log |c+ ξJc |. (2.20)

In (2.18), the Gaussian limit theory of γ̂n has no first-order asymptotic bias and

has the regularly varying convergence rate n
1−γn

2 logn. The asymptotic variance
in (2.18) is constant and independent on the sequence γn. So γ̂n is a variance
stabilizing transformation of θ̂n, at least up to the rate of convergence.

In (2.19), the limit theory of γ̂n also has no first-order bias, is again Gaussian,
and involves the convergence rate L1/2

n logn. Observe that, when γn = 1− logLn
logn , it

follows that n(1−γn)/2 = n
1
2

logLn
logn = L1/2

n , corresponding to the additional SV factor
beyond the logn rate in (2.19). This linkage means that (2.19) is subsumed within
(2.18), which assists inference as explained below. Importantly, result (2.19) also
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continues to hold for SV functions Ln, such as Ln = logn, for which logLn
logn → 0 and

γn = 1 − logLn
logn → 1 as n → ∞, thereby reaching the lower boundary of the LUR

case. In such cases, (2.19) implies the Gaussian asymptotic approximation

γ̂n ∼a N
(

1− logLn

logn
,

2

Ln log2 n

)
∼a N

(
1,

2

Ln log2 n

)
. (2.21)

The last member of (2.21) is a (crude) asymptotic approximation that ignores
the relative magnitude of the mean component logLn

logn in relation to the asymptotic

standard deviation
√

(2)

L1/2
n logn

. The comparative merits of the crude Gaussian approx-

imation (2.21) and the LUR approximation (2.20) in the case γn = 1 are explored
later in simulations.

Transformations of the usual stationary autoregression limit theory with fixed
θ < 1 provide simple heuristics for the limit theory given in (2.18). In particular,
using the representation θn = 1 − 1

nγn and applying standard fixed θ asymptotics
suggests

√
n
(
θ̂n − θn

)
⇒ N

(
0,1− θ2

n

) = N
(

0,
2

nγn
− 1

n2γn

)
.

Rescaling gives the asymptotic approximation n(1+γn)/2
(
θ̂n − θn

)
∼a N (0,2),

for θn = 1 − 1
nγn , in the neighborhood of unity. Transforming θn �−→ γn =

− log(1−θn)

logn and using the delta method with derivative dθn
dγn

= logn
nγn then delivers

n(1−γn)/2 logn
(
γ̂n −γn

) ∼a N (0,2), matching (2.18). This argument becomes
rigorous in Corollary 2.1 because the MI limit theory in Lemma 2.2 validates the
asymptotic theory (2.10) for θn = 1− 1

nγn , which leads in turn to (2.18).
In the LUR case where θn = 1 + c

n , based on the assumption that γn = 1, the
nonlinear rate estimator γ̂n →p 1 and is consistent for the true value γn = 1,
unlike the usual estimator of c in the LUR case, viz., n(θ̂n − 1). In this LUR
case, the convergence rate of γ̂n is logarithmic and the limit distribution is
nonstandard, although as shown in the simulations in Figure 5(b), the distribution
of the nonlinear functional (2.20) is much closer in general appearance to a
Gaussian distribution than the usual UR and LUR limit distributions. This feature
is explained by the form of the limit distribution (2.20). In particular, using the
linear diffusion equation dJc = cJcdr + dW, we have the integral representation∫ 1

0 JcdJc = c
∫ 1

0 J2
c dr + ∫ 1

0 JcdW, from which it is easy to see that (2.20) can be
written in the alternate form

(logn)
{
γ̂n −1

}
� − log

∣∣∣∣
∫ 1

0 JcdJc∫ 1
0 J2

c

∣∣∣∣ = − log |ηJc |, (2.22)

where ηJc = ∫ 1
0 JcdJc/

∫ 1
0 J2

c is the continuous record estimator of the parameter
c in the linear diffusion defining Jc (see Phillips, 1987a, eqn. (32)). The limiting
representation (2.22) may be interpreted as a transform of a continuous-time serial
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correlation coefficient, having the form of a logarithmic “variance stabilizing”
transform.

In the UR case with c = 0 and θn = 1 in (2.20), the limit theory of γ̂n is pivotal
and given by (logn)

{
γ̂n −1

}
� − log |ηW |, with ηW = ∫ 1

0 WdW/
∫ 1

0 W2 and W
standard Brownian motion. This distribution can be used for testing under the null
of a unit autoregressive root, with local power function determined by (2.22) with
c �= 0. However, this approach is equivalent to standard UR testing because there
is a one-to-one relationship between the estimates θ̂n and γ̂n and their asymptotic
distributions under the null and the alternative. So, even though the respective
asymptotics have different convergence rates and the limit distributions have very
different forms, with that of γ̂n being much more bell-shaped than the usual UR
distribution, they lead to precisely the same inferences. The approach that follows
augments this existing testing regime in the pure UR case by using the limit theory
for γ̂n in MI and ME cases to construct CIs for γn < 1 that allow for near URs on
both the left and right sides of unity that approach the LUR boundary, as discussed
above.

The limit distributions (2.18) and (2.19) are both N (0,2) and do not depend
on the localizing coefficient c. However, in fact, ξ = ξ−1, corresponding to the
pseudo-true value c∗ = −1 of c and matching the specification of the localizing
scale coefficient −1 in θn = 1 − 1

nγn . The limit distribution N (0,2) is conducive
to inference. In particular, CI construction for γn follows directly by use of the
consistent estimate γ̂n for calculation of the asymptotic standard error. Thus, when
θ̂n < 1, an asymptotic 100(1−λ)% CI for γn can be constructed as

γ̂n ± cvλ ×
√

2

n
1−γ̂n

2 logn
, (2.23)

where cvλ = 
−1(1−λ/2), using the standard normal cdf 
. This CI remains valid
even when γn = 1− logLn

logn → 1, as n → ∞, because Ln → ∞ and so

n
1−γ̂n

2 logn = n
1−γn

2 logn×Op

(
n

− 1

2L
1/2
n logn

)
(2.24)

= n
1−γn

2 logn

{
1+Op

(
1

L1/2
n

)}
∼a n

1−γn
2 logn. (2.25)

The coverage probability and length of the interval (2.23) are explored later in the
simulations. When γn is close to unity, the intervals can be wide, as is to be expected
from the convergence rate of γ̂n and the fact that the asymptotic standard error√

2/(n
1−γn

2 logn) tends to zero at a near logarithmic rate in such cases. Nonetheless,
useful inferences about γn are possible in practice with sample sizes around n =
100 when θ̂n < 1 and considerably smaller sample sizes when θ̂n > 1, as will be
evident in the empirical illustration in Section 5.
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2.3.4. Variance Stabilizing and Normalizing Properties of γ̂n. The rate esti-

mator γ̂n = − log
(

1−θ̂n

)
logn bears an interesting relationship to the well-known Fisher

z transformation of the sample product-moment correlation coefficient r. Fisher
(1921) discovered that, unlike r, the transformation z(r) = 1

2 log
(

1+r
1−r

) = tanh−1 (r)
of r is approximately normal with variance that is stable over different values of
the population correlation ρ.5 The following result shows that the rate estimator γ̂n

has asymptotically the same form as Fisher’s z transformation, expressed in terms
of the serial correlation coefficient θ̂n rather than the product-moment correlation.

COROLLARY 2.2. Under the conditions of Corollary 2.1, as n → ∞, we have

n
1−γn

2 logn
(
γ̂n −γn

) = n
1−γn

2

{
log

1+ θ̂n

1− θ̂n

− log
1+ θn

1− θn

}
+O

(
1

nγn

)
� N (0,2).

(2.26)

Note that the scale factor 1
2 in the usual Fisher formula 1

2 log 1+θ̂n
1−θ̂n

does not appear
here in the serial correlation case (2.26) because the asymptotic variance is 2 not 1.
Moreover, the action of variance stabilization is more subtle in the present case. In
particular, in the case of fixed θ ∈ (0,1), if we consider the transformation h(θ̂) =
log 1+θ̂

1−θ̂
, then h′(θ) = 2

1−θ2 and

√
n(h(θ̂)−h(θ)) ∼a h′(θ)

√
n(θ̂ − θ) �N

(
0,h′(θ)2(1− θ2)

) = N
(

0,
4

1− θ2

)
,

which is clearly not variance stabilizing. However, in the neighborhood of unity
with θn = 1− 1

nγn , we have h′(θn) = 2
1−θ2

n
= nγn

(
1+O

(
1

nγn

))
. Then

√
n(h(θ̂n)−h(θn)) ∼a h′(θn)

√
n(θ̂n − θn) ∼a N

(
0,

4

1− θ2
n

)
∼a N (0,2nγn),

and, upon rescaling by the factor n−γn/2, we obtain

n
1−γn

2 (h(θ̂n)−h(θn)) ∼a n
1−γn

2 logn
(
γ̂n −γn

)
�N (0,2). (2.27)

So the Fisher transformation of the serial correlation coefficient θ̂n is variance
stabilizing in the near UR case, at least up to the convergence rate, as is the rate
estimator γ̂n from (2.18).

5If r is the sample product-moment correlation of data (Xi,Yi)
n
i=1 drawn independently from the same bivariate normal

distribution with correlation ρ, then z = 1
2 log

(
1+r
1−r

)
is approximately N

(
1
2 log

(
1+ρ
1−ρ

)
, 1

n

)
, thereby stabilizing the

variance (see Fisher, 1921; Hotelling, 1953). The normalizing properties of the transform have been demonstrated
through its skewness reduction and attenuating effects on the first-order correction term in its Edgeworth expansion
(see Winterbottom, 1979; Konishi, 1981). Thus, the Fisher transformation is normalizing and stabilizing for the
product-moment correlation. Both these properties enhance inference.
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Interestingly, for the case of fixed θ , it is known (Jenkins, 1954) that the
appropriate variance stabilizing transform of the serial correlation coefficient
θ̂ is the angular transform h(θ) = sin−1(θ) not the Fisher transform. Indeed,
with derivative h′(θ) = (1 − θ2)−1/2, direct application of the delta method
gives

√
n(sin−1(θ̂) − sin−1(θ)) � N (0,1). However, in the vicinity of unity,

the development of the limit theory changes. When θn = 1 − 1
nγn , we have by

direct expansion that sin−1(1 − 1
nγn ) = π

2 −√
2 1

nγn/2 + O( 1
n3γn/2 ) as n → ∞. Then

√
n(sin−1(θ̂n)−sin−1(θn)) ∼a −√

2n
(

1
nγ̂n/2 − 1

nγn/2

)
and further expansion reveals

that

√
n(sin−1(θ̂n)− sin−1(θn)) ∼a

n(1−γn)/2 logn√
2

(
γ̂n −γn

)
�N (0,1), (2.28)

as n → ∞, in view of the limit theory (2.18) in Corollary 2.1. It follows that the
angular transform maintains its variance stabilizing property in the MI vicinity
of unity and is asymptotically equivalent to the rate estimator γ̂n, at least up to
the respective convergence rates. Thus, in contrast to the fixed θ case, when θn =
1 − 1

nγn is near unity, both the Fisher transformation and the angular transform
coincide asymptotically and lead to variance stabilization according to (2.27) and
(2.28); and both transformations have the same asymptotic theory as that of the
rate coefficient γ̂n.

Unlike the product-moment correlation, there is very little literature dealing
with normalizing transformations for the serial correlation coefficient. In the
fixed θ ∈ (−1,1) case, Phillips (1977) gave the Edgeworth expansion for the
distribution of the serial correlation coefficient to order O(n−1) and a subsequent
working paper (Phillips, 1979) showed that the Fisher transformation removed the
O( 1√

n
) skewness term in the Edgeworth expansion of θ̂ . Taniguchi (2012) and

Marsh (2001) also considered the higher-order correction property of the Fisher
transform. Phillips et al. (2010) developed expansions in the MI and ME cases,
which smooth the transitions to the near-stationary and near-explosive models from
the LUR case. Translating their expansion (Phillips et al., 2010, Thm. 1) in the
near-stationary case to the present notation with θ = 1− 1

nγn , we have

P

(
n(1+γn)/2

√
2

(
θ̂n − θn

)
< x

)
= 
(x)+ 1√

2

1+ x2

n(1−γn)/2
ϕ (x)+O

(
1

n1−γn

)
, (2.29)

where 
(x) and ϕ (x) are the cdf and density of the standard normal distribution.
Expression (2.29) gives an asymptotic series expansion in powers of 1

n(1−γn)/2 rather

than 1√
n
. In contrast to the Edgeworth expansion for fixed θ ∈ (0,1), where the

correction term on the first-order Gaussian asymptotics diverges as θ → 1,6 the

6The Edgeworth expansion in the fixed stationary θ case to O( 1√
n
) has the form

P

⎛⎝ √
n
(
θ̂ − θ

)
√

1− θ2
< x

⎞⎠ = 
(x)+ θ√
1− θ2

1+ x2

√
n

ϕ (x)+O

(
1

n

)
,
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first-order correction in (2.29) remains finite as γn → 1, leading to a Gram–Charlier
series representation of the limit distribution in the LUR model rather than an
asymptotic series. Similar properties can be expected for the distribution of the
rate estimator γ̂n for which we have the limit theory

n(1−γn)/2

√
2

logn
(
γ̂n −γn

)
∼a

n(1+γn)/2

√
2

(
θ̂n − θn

)
,

corresponding to the fact that γ̂n →p 1 when γn = 1 and the limit distribution of
logn

(
γ̂n −1

)
is no longer Gaussian but is given in (2.20). In fact, (2.29) captures

this departure from Gaussianity in the O(1) correction term when γn → 1. A
detailed analysis of these expansions and representations is left for future work.

2.4. Weakly Dependent Errors

The above theory extends to the MI models (2.1) and (2.2) with weakly dependent
errors under the following condition.

Assumption LP. ut = C (L)εt = ∑∞
j=0 cjεt−j, where C(1) �= 0, ω2 = σ 2C(1)2,∑∞

j=1 j
∣∣cj

∣∣ < ∞, and εt ∼iid
(
0,σ 2

)
.

Specifically, we have the following extension of Corollary 2.1.

THEOREM 2.3. (i) For models (2.1) and (2.2) with fixed c < 0, fixed α ∈
(1/3,1), and ut satisfying Assumption LP, as n → ∞, we have γ̂n −γn →p 0 and

n
1−γn

2 logn

{
γ̂n −γn + logϕ

logn

}
� ξ, (2.30)

where ξ =d N (0,2) and ϕ = σ 2

ω2 .
(ii) Under these conditions, a modified version of case (ii) of Corollary 2.1 where
θn = 1 + cn

nα = 1 − 1
nγn with cn = − 1

n1−α−δ , γn = 1 − δ, and 0 < δ ≤ 1 −α holds in
which

nδ/2 logn

{
γ̂n −γn + logϕ

logn

}
� ξ . (2.31)

(iii) In the SV case where θn = 1 + cn
nα = 1 − Ln

n with cn = − Ln
n1−α and Ln → ∞ is

SV at infinity, again under the above conditions, we have, as n → ∞,

L1/2
n logn

(
γ̂n −γn + logϕ

logn

)
� ξ, (2.32)

where γn = 1− logLn
logn .

whose correction term θ√
1−θ2

1+x2√
n

ϕ (x) on the standard Gaussian cdf 
(x) diverges as θ → 1. This divergence

signals the abrupt discontinuity in the asymptotic theory between the stationary and nonstationary cases of θ . As is
evident in (2.29), the passage in the asymptotic theory via the parameter γn is far less abrupt as γn → 1.
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(iv) In the LUR case where θn = 1+ c
n ,

(logn)
{
γ̂n −1

}
� − log |c+ ξJc |. (2.33)

The effect of weak dependence in the innovations in the MI model is to induce
asymptotic bias in the estimator γ̂n. The bias logϕ

logn in (2.30)–(2.32) depends on
the extent of the deviation ϕ from unity and hence the extent of the deviation of
the long-run variance ω2 from the variance σ 2. There is no bias when the ut are
martingale differences and ω2 = σ 2, in which case logϕ = 0. The condition α ∈
(1/3,1) in Theorem 2.3 ensures that the bias in (2.30) takes the simple form shown
involving the parameter ϕ and is a consequence of PM (2007b, Thm. 4.2 and eqn.
(24)). The condition can be relaxed but has the advantage in the present context
that it leads to a simple bias correction formula.

In fact, correction for the bias in γ̂n in the presence of weak dependence can be
achieved by a simple nonparametric serial correlation adjustment, analogous to the
corrections employed in UR tests such as the {Zα,Zt} tests (Phillips, 1987a). Define
ϕ̂ = σ̂ 2

u /ω̂2 where σ̂ 2
u = 1

n

∑n
t=1 û2

t is the residual variance and ω̂2 is a consistent
heteroskedastic and autocorrelation consistent (HAC) estimator of ω2. The bias
corrected estimator is γ̃n = γ̂n + log ϕ̂

logn , so that the estimation error is γ̃n −γ = γ̂n −
γ + log ϕ̂

logn , for which we have

n
1−γn

2 logn{γ̃n −γn} � ξ =d N (0,2), (2.34)

in place of (2.30). The result holds for any consistent HAC estimator of ω2 based on
standard triangular or quadratic lag kernels, as shown in the proof of Theorem 2.3.

CIs for γn that are robust to weak dependence may be constructed using the bias
corrected estimator γ̃n in place of γ̂n in the earlier formula (2.23). In particular,
when θ̂n < 1, an asymptotic 100(1−λ)% CI for γn is

γ̃n ± cvλ ×
√

2

n
1−γ̃n

2 logn
, (2.35)

where the critical value cvλ = 
−1(1−λ/2) is determined as in (2.23).

3. MILDLY EXPLOSIVE MODEL

We use the generating mechanism (2.1) with autoregressive coefficient in the ME
region θn = 1 + c

nα , c > 0, where α ∈ (0,1). The limit theory for θ̂n was given in
PM (2007a) and shown to hold in PM (2007b) with weakly dependent equation
errors under standard linear process conditions (Phillips and Solo, 1992).

LEMMA 3.1. PM (2007a, Thm. 3.2) For model (2.1) with θn = 1+c/nα , c > 0,
α ∈ (0,1), and ut satisfying the linear process condition LP, as n → ∞, we have:
(i)
nαθn

n

2c

(
θ̂n − θn

)
� C, as n → ∞, (3.1)
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where C denotes a standard Cauchy variate; and (ii)

1

nα
Xn � X(c),

∑n
t=1 X2

t−1

θ2n
n n2α

� 1

2c
X(c)2, (3.2)

where X(c) = N
(

0, ω2

2c

)
and ω2 is the long-run variance of ut or simply the

variance when ut ∼iid (0,σ 2).

Proceeding as in the MI case on a suitably expanded probability space where
the convergence (3.1) holds in probability, we have

θ̂n = θn + 1

nα

2c

θn
n

C
{
1+op (1)

} = 1+ c

nα
+ 1

nα

2c

θn
n

C
{
1+op (1)

}
. (3.3)

As before, define Ân = θ̂n −1 and the rate estimator α̂ = − log
∣∣∣Ân

∣∣∣
logn . The limit theory

for α̂ in the ME case now follows directly from Lemma 3.1.

THEOREM 3.1. (i) For models (2.1) and (2.2) with fixed c > 0, under the
conditions of Lemma 3.1, we have α̂ →p α and(

1+ c

nα

)n
logn

{
α̂ −α + log |c|

logn

}
� ζc =d 2cC. (3.4)

(ii) For model (2.1) with fixed α ∈ (0,1), θn = 1+ cn
nα and cn = 1

n1−α−δ , and 0 < δ ≤
1−α, as n → ∞, we have α̂ →p 1− δ and(

1+ 1

n1−δ

)n

logn
{
α̂ − (1− δ)

}
� ζ =d 2C. (3.5)

Noting that
(
1+ c

nα

)n = ecn1−α (
1−O(n1−2α)

) ∼a ecn1−α
when α > 1

2 , we can
write (3.4) in this case as

ecn1−α
logn

{
α̂ −α + log |c|

logn

}
� 2cC, (3.6)

and (3.5) as

enδ
logn

{
α̂ − (1− δ)

}
� 2C, (3.7)

when δ ≤ 1−α < 1/2. Furthermore, an extension of (ii) analogous to the MI case
holds when θn = 1+ Ln

n differs from unity by an SV function at infinity Ln. In this

case, we have cn = Ln
n1−α = n

logLn
logn

n1−α so that

θn = 1+ cn

nα
= 1+ 1

n1− logLn
logn

= 1+ Ln

n
, (3.8)
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and the following limit theory holds when Ln → ∞, as n → ∞,(
1+ 1

n1− logLn
logn

)n

logn

(
α̂ −

{
1− logLn

logn

})
� 2C, (3.9)

as shown in (A-30) in the proof of the SV extension of Theorem 3.1(ii).
As in the MI case, the limit distributions (3.4) and (3.5) reveal nonnegligible bias

in the rate estimator α̂ of α when c �= 1. Moreover, the pair (c,α) is not identifiable
and the localizing scale parameter c is not consistently estimable, just as discussed
earlier in the MI case. Instead, the pseudo-true value c∗ = 1 is identifiable and
consistently estimable.

THEOREM 3.2. Under the conditions of Theorem 3.1 and as n → ∞
c̃ = 1

2

nα̂X2
n∑n

t=1 X2
t−1

→p 1. (3.10)

The pseudo-true value c∗ = 1 is the limiting value of c̃ in the ME case. As before
in the MI case, attempts to estimate consistently the twin localizing parameters
(c,α) lead, in effect, to consistent estimation of the uniparameter sequence γn =
α − logc

logn . It is therefore convenient, as before in the MI case, to reparameterize the

ME model so that the autoregressive coefficient is written as θn = 1 + 1
nγn . With

this parameterization, the likelihood of {Xt}n
t=1 relies on the identified uniparameter

sequence

θn = 1+ 1

nγn
, with γn = γn(c,α) = α − logc

logn
∈ (0,1), (3.11)

as 1/nγn = n
log |c|
logn /nα = c/nα with 1

n1−α < c < nα . The inequalities defining the
range of c used in the definition of γn ensure that γn ∈ (0,1) so that θn is an ME
coefficient. When 0 ≤ c ≤ 1

n1−α , the rate parameter γn ≥ 1, corresponding to a

local-to-unity or closer-to-unity autoregressive coefficient θn = 1 + 1
nγn ≤ 1 + 1

n .
Estimation of γn proceeds as in the MI case by employing the same form as α̂,
viz.,

γ̂n = −
log

∣∣∣Ân

∣∣∣
logn

= − log |θ̂n −1|
logn

. (3.12)

The limit theory for γ̂n follows the proof of Theorem 3.1(i) and (ii), including
the SV extension of (ii) in which γn = 1 − logLn

logn for θn = 1 + Ln
n , as given in the

following result.

COROLLARY 3.1. (i) Under the conditions of Theorem 3.1(i) with cn > 0, α ∈
(0,1), and γn = α − log |cn|

logn , we have, as n → ∞,(
1+ 1

nγn

)n

logn
(
γ̂n −γn

)
� ζ =d 2C. (3.13)

https://doi.org/10.1017/S0266466622000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000342


ESTIMATION AND INFERENCE WITH NEAR UNIT ROOTS 239

(ii) In the regularly varying case where θn = 1 + cn
nα = 1 + Ln

n with cn = Ln
n1−α and

Ln → ∞ is SV at infinity, we have γn = 1− logLn
logn and, in place of (3.13),(

1+ Ln

n

)n

logn
(
γ̂n −γn

)
� ζ =d 2C. (3.14)

Potential-accelerated convergence properties may be expected of the transfor-
mation from θ̂n to the rate estimator γ̂n in the ME case, analogous to those that
occur in the MI case on the stationary side of unity. It is known from the asymptotic
expansion in Satchell (1984) that the first-order correction term is exponentially
small of order O(1/θn) in the explosive case. So we might expect the asymptotic
approximation to be a good one and this is borne out by the simulations for the
ME case for γ̂n given in Section 4.2. More detailed analytic properties of the
transform in the explosive case are yet to be explored and will be considered in
future research.

The limit distribution 2C in (3.13) and (3.14) is conducive to inference, using the
consistent estimate γ̂n and the quantiles of the Cauchy distribution C to construct
CIs. When θ̂n > 1, an asymptotic 100(1−λ)% CI for γn in the ME case based on
(3.13) is given by

γ̂n ± cvC,λ × 2(
1+ 1

nγ̂n

)n
logn

, (3.15)

where cvC,λ = 
−1
C

(1 − λ/2) is the 1 − λ/2 percentile of the standard Cauchy
distribution with cdf 
C. The two-sided 95% critical value of 12.706 when λ =
0.025 reflects the heavy-tailed nature of the Cauchy distribution and contributes
to widening the length of the CI, especially when the rate parameter γn is close to
unity, in which case the scale factor 2(

1+ 1
nγ̂n

)n
logn

in (3.15) is close to logarithmic.

Use of the CI in this ME case is of course conditional on observing θ̂n > 1, just as
the CI in the MI case is conditional on observing θ̂n < 1.

Importantly, however, there is no upper bound on the value of γn and values of
γn = 1 indicate that cases of local to unity and cases even closer to unity (γn >

1) than O(1/n) deviations from a UR are included in the CIs. This is useful for
inference on both sides of a UR. In the empirical application considered in Section
5, some such cases do occur, with the implication that the UR option is not excluded
in these cases.

4. SIMULATIONS

This section reports numerical evidence based on 5,000 replications of the finite-
sample distributions of the localizing rate estimates {α̂,γ̂n} and the localizing
coefficient estimates {ĉ,c̃}. The simulation design employed the model given in
(2.1). The observations {Xt}n

t=1 were generated for both MI (c < 0) and ME (c > 0)
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Figure 1. Empirical densities of the estimates α̂ and ĉ for sample sizes n ∈ {50,100,250,500} with
true value α = 0.85, true c = −1, and pseudo-true value c∗ = −1. Readers are referred to the online
version for colored graphics here and in all subsequent figures.

cases using standard normally distributed equation errors ut from an initialization
X0 ∼ N (0,1). The specific experiments and simulation results for these cases are
given in the following two subsections.

4.1. Mildly Integrated Case

The experiments for Figures 1–5 used the following parameter settings:

(i) α = 0.85, c = −1, n ∈ {50,100,250,500,1500},
(ii) α ∈ {0.65,0.75,0.85,0.95}, c = −1, n = 100,

(iii) α = 0.85, c ∈ {−0.5, −1.0, −2.0, −5.0}, n = 100,

(iv) γn = α − log |c|
logn

∈ {0.50,0.70,0.85,1.0}, n = 100.

Figures 1–3 display kernel estimates of the empirical densities of the estimates
(α̂,ĉ) of the localizing coefficient pair (α,c). Figure 4 shows kernel estimates of
the empirical densities of the parameter γ̂n for sample size n = 100 and for true
values γn = α − log(|c|)

nα ∈ {0.50,0.70,0.85,1.0} corresponding to the true values
c ∈ {−5.0, − 2.0, − 1.0, − 0.5} and true value α = 0.85. For the same true value
α = 0.85 but with γn = 1, Figure 5 displays kernel estimates of the densities of
γ̂n for n ∈ {100,250,500,1500} shown against the asymptotic normal (Figure 5(a))
and asymptotic LUR (Figure 5(b)) distributions. The results are summarized as
follows.

(1) Figure 1(b) shows increasing concentration of the density of ĉ around the
pseudo-true value c∗ = −1 as n increases, consonant with the consistency ĉ →p c∗
established in Theorem 2.2. The rate of concentration in the distributions of ĉ as n
increases with α = 0.85 is noticeable but slow, indicative of the convergence rate
Op(min{n−(1−α)/2,n−α/2}) shown in (A-14) in the proof of Theorem 2.2.
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Figure 2. Empirical densities of the estimates α̂ and ĉ for sample size n = 100, for true values of
α ∈ {0.65,0.75,0.85,0.95}, true c = −1, and pseudo-true value c∗ = −1.
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Figure 3. Empirical densities of the estimates α̂ and ĉ for sample size n = 100, for true value α = 0.85,
true c ∈ {−0.5, −1.0, −2.0, −5.0}, and pseudo-true value c∗ = −1.

(2) The densities in Figure 1(a) show a similar increasing concentration in the
distribution of α̂ as n increases, in this case combined with bias reduction. Again,
this accords well with the limit theory in Theorem 2.1 where the convergence rate is
Op(n−(1−α)/2 logn) combined with first-order downward bias of − log |c|

logn . The latter
is the analog in the estimation of α of the usual downward bias in the least-squares
autoregressive coefficient estimate θ̂n.

(3) Figure 2(a) and (b) shows the effects of varying the rate coefficient α on the
distributions of α̂ and ĉ when the sample size n = 100. As expected from Theorem
2.1, the central location of the distribution of α̂ shifts to follow the value of α but
with clear indication of downward bias in each case, consonant with the known
downward bias in the autoregressive coefficient estimate θ̂ . On the other hand, the
central location of ĉ is close to the pseudo-true value c∗ = −1 for all values of α,
corroborating the asymptotic theory that ĉ →p −1. The distribution of ĉ does show
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(a) γ̂n densities for various c values
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Figure 4. Panel (a): Empirical densities of the estimates γ̂n for sample size n = 100 and for true values
γn = α − log |c|

logn ∈ {0.50,0.70,0.85,1.0} corresponding to the values c ∈ {−5.0, −2.0, −1.0, −0.5} and
fixed α = 0.85. Panel (b): Empirical densities of the estimates γ̂n for sample size n = 100 as in Panel
(a) shown against the asymptotic N

(
γn,

2
n1−γn log2 n

)
curves displayed with asterisks.
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(a) γ̂n densities for n = 100, 250, 500, 1500,
with asymptotic normal approximation
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(b) γ̂n densities for n = 100, 250, 500, 1500, with
asymptotic transformed LUR approximation

Figure 5. Empirical densities of the estimates γ̂n computed for the pairs (c,n) ∈
{(−0.501,100),(−0.436,250),(−0.393,500),(−0.333,1500)} and α = 0.85, with each pair
corresponding to the constant localizing rate coefficient γn = 1. The asymptotic normal approximations
(shown in (a)) and the asymptotic transformed LUR approximations (shown in (b)) are given by the
curves with asterisks (see the text for details).

somewhat greater skewness to the right and greater dispersion when α = 0.95, no
doubt reflecting the well-known skewness and dispersion of the estimate θ̂ in UR
and local-to-unity cases.

(4) Figure 3(a) and (b) shows the effects of the localizing coefficient value c on
the distributions of α̂ and ĉ, with fixed α = 0.85 and sample size n = 100. The
impact on the distribution of α̂, seen in Figure 3(a), is to shift the central location
in accord with the changing value of α = 1 + c

nα for c ∈ {−0.5, − 1, − 2, − 5}.
The densities show greater concentration for larger |c| and again reflect the wider
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dispersion and skewness associated with the near UR case that applies when |c| is
small. For all these values of c, the densities of ĉ displayed in Figure 3(b) show
remarkable concentration about the pseudo-true limit value c∗ = −1.

(5) Figure 4(a) shows empirical densities for n = 100 of the estimates γ̂n of
the parameter γn in the uniparameter MI specification (3.11). In contrast to the
distributions of the estimates α̂ of the rate coefficient α in the conventional MI
model formulation, the densities of γ̂n are much better centered about the true
values of γn, especially when γn takes on small values closer to γn = 0.5. This
finite-sample finding reflects the asymptotic theory in Corollary 2.1 in which the
limit distribution is shown to be Gaussian and centered about the true value of γn.

(6) Figure 4(b) shows the same empirical densities of γ̂n as in Panel (a) for n =
100 and c ∈ −0.5, −1.0, −5.0 against the asymptotic normal N

(
γn,

2
n1−γn log2 n

)
displayed with asterisks. For these values of c and n, the corresponding values
of γn are 1.0,0.70,0.50. Evidently, for γn = 0.5 and γn = 0.7, the asymptotic
distribution is adequate in terms of location but less so in the UR case γn = 1.0 with
c = −0.5. Here, the asymptotic distribution is biased upward relative to the finite-
sample distribution when n = 100, partly reflecting the slower logarithmic rate of
convergence to the limit distribution when γn = 1.0 and partly that in this case
the autoregressive coefficient θn = 1 − 1

n is in the LUR class and the distribution

N
(
γn,

2
n1−γn log2 n

)
is a crude Gaussian approximation to the LUR limit theory.

The comparison of the two approximations is explored more systematically in
Figure 5.

(7) Figure 5(a) and (b) shows the empirical densities of γ̂n against two types of
asymptotic approximation in the LUR case where the autoregressive coefficient is
θn = 1 − 1

n and γn = 1. The simulations are performed for values of n increasing
from n = 100 to n = 1,500 and for (c,α) pairs where in each case α = 0.85
and c rises toward zero according to c = −1/n1−α = −0.50 when n = 100 up to
c = −0.393 when n = 1,500. In each of these cases, the autoregressive coefficient
is θ = 1 − 1

n , and the uniparameter localizing rate coefficient γn = 1 is in the

LUR class. The asymptotic normal approximations based on N
(
γn,

2
n1−γn log2 n

)
=

N
(

1, 2
log2 n

)
when γn = 1 are displayed by the curves with asterisks in Figure 5(a).

Since γn = 1, the rate of convergence to the asymptotic normal distribution is logn
and this logarithmic rate is evident in the slow convergence of the empirical density
plots toward the asymptotic normal with slowly shrinking bias and variance,
corroborating the limit theory.7 In Figure 5(a), the asymptotic normal approxi-
mations (asterisked) show similar variation to the finite-sample distributions of γ̂n

7Theorem 2.1(i) and (ii) fails when α ∈ (0,1), but c = cn → 0 as fast as or faster than cn = − 1
n1−α . In that case, the

autoregressive coefficient is either θn = 1 − 1
n or closer to unity with θn = 1 + o( 1

n ), and Theorem 2.1(iii) applies
with logn convergence rate and limit distribution determined by the quantity log |c+ ξJc |. Nonetheless, as discussed

in the paragraph below, the asymptotic normal distribution N
(

1, 2
log2 n

)
provides an alternative approximation when

γn = 1.
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but do not capture location as well since, for all n, the asymptotic distributions
are centered on γn = 1 by construction and the finite-sample distributions are
centered below unity with the gap narrowing as n increases. In Figure 5(b),
the asymptotic transformed LUR approximations (asterisked) are obtained by
computing 1 − log

∣∣−1+ ξJ−1

∣∣/ logn based on Theorem 2.1(iii) and simulating
the distribution of ξJ−1, using a sample size of 5,000 and 25,000 replications.
Evidently, the transformed LUR approximations provide substantially improved
location estimates and match dispersion well with the finite-sample distribution.
Notably, both finite-sample and LUR approximate densities of the rate estimator
γ̂n are bell-shaped, in contrast to estimates of the autoregressive coefficient θ̂n. The
nonlinear transformation defining γ̂n = − log |θ̂n −1|/ logn plays the role of a nor-
malizing transformation, similar to Fisher’s z-transformation of the autocorrelation
coefficient, as discussed earlier.

It is worth drawing attention to the fact that the asymptotic distribution at the
LUR limit where θn = 1 + cn

nα ∼a 1 − 1
n is actually normal along the path toward

the boundary where the pair (cn,n) → (0,∞) and the autoregressive coefficient
θn ∼a 1− 1

n and uniparameter rate sequence γn → 1, while remaining within the MI
class with fixed α ∈ (0,1). The distributions of the centered and scaled estimates
of γn along this path belong to a stable normal class in which the asymptotic
approximation is Gaussian even though the autoregressive parameter is local to
unity in the limit.8 This normal class is very different from the LUR class where
θn = 1 + c

n for which the limit distributions as n → ∞ belong to a nonnormal
general UR class involving linear diffusion and Brownian motion processes (Jc,B)

which in turn converge to the standard UR distribution when c → 0, as shown
in Phillips (1987b). Similarly, the normal class with γn = 1 and with fixed rate
coefficient α ∈ (0,1), for which the pairs (cn,n) → (0,∞), differs considerably
from the LUR class with θn = 1 + c

n considered in Theorem 2.1(iii) where the
rate coefficient α = 1 is consistently estimated by α̂n within this class. However,
a common feature of this latter class and the normal class is that they share
the same logn convergence rate, reflecting the increased difficulty in estimating
the localizing rate parameter as the UR is approached. As indicated earlier, the

asymptotic density N
(
γn,

2
n1−γn log2 n

)
∼a N

(
1, 2

log2 n

)
of γn may be considered a

crude Gaussian approximation to the non-Gaussian LUR limit theory in the case
γn ∼a 1.

(8) Figure 6 shows coverage probabilities and CI lengths for inference concern-
ing γn based on the asymptotic formula (2.23). The graphics were computed using
5,000 replications with n = 100, α = 0.85, and values of c < 0 at equispaced
intervals in the interval [−10, −0.6], leading to a range of γn values in [0.35,0.96]
with γn = 0.35 when c = −10 and γn = 0.96 when c = −0.6. The results show
satisfactory coverage in the range of 90%–95% for values of c ∈ [−10, −6] with

8Another stable normal class in the UR case is the partially aggregated differences estimator (PAE) studied in Han,
Phillips, and Sul (2011). However, in that case, the PAE is an estimator of the autoregressive coefficient θn rather
than the localizing rate parameters α̂ or γ̂n.
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Figure 6. Coverage probabilities (solid blue curve, left axis), 95% CI (dotted black line), and CI
lengths (dashed sienna curve, right axis) for γn ∈ [0.35,0.96] based on (2.23), corresponding to various
values of the localizing coefficient c ∈ [−10, −0.6] with α = 0.85 and n = 100.

coverage falling to around 75% when c = −0.6. Similarly, CI lengths for γ rise
from below 0.1 when c = −10 to over 1.1 when c = −0.6 and γn = 0.96. The
lower coverage probabilities and much wider CI lengths when γn is close to unity
are to be expected, given the near logarithmic convergence rate as γn approaches
unity.9 Inference about the value of γn is clearly imprecise when the true value
is close to unity, matching the poor local power of UR tests and the difficulty of
distinguishing an LUR from a UR.

4.2. Mildly Explosive Case

These simulations used experimental designs similar to those in the MI case but
based on model (2.1) with c > 0. Figures 7 and 8 employed settings that give
results for various values of the localizing scale coefficient c and the sample size
n as follows:

(i) α = 0.85, n = 100, c ∈ {0.5,1.0,2.0,5.0},γn = α − log |c|
logn

∈ {0.50,0.70,0.85,1.0};
(ii) α = 0.85, c = 1,n ∈ {50,100,250,500}.
The results reported concentrate on (i) estimation of the uniparameter rate
sequence γn and the localizing scale coefficient c > 0; and (ii) inference
about γn.

Figure 7(a) shows that the distributions of γ̂n are generally well centered about
the true values in the ME case when n = 100. Dispersion increases as γn approaches

9When n = 100 and γn = 0.96, n(1−γn)/2 logn = 5.05, and n(1−γn)/2 logn = 20.57 when γn = 0.35.
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(a) γ̂n densities for various c values
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Figure 7. Panel (a): Empirical densities of the estimates γ̂n for sample size n = 100 and for true
values γn = α − log |c|

logn ∈ {0.50,0.70,0.85,1.0} corresponding to the true values c ∈ {5.0,2.0,1.0,0.5}
and α = 0.85. Panel (b): Empirical densities of the estimates c̃ for sample size n = 100, α = 0.85, and
c ∈ {0.5,1.0,2.0,5.0}, as in Panel (a).
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Figure 8. Panel (a): Empirical densities of γ̂n for various sample sizes n ∈ {50,100,250,500} with
true value c = 1 and γn = α = 0.85. Panel (b): Empirical densities of c̃ for the same sample sizes and
same values c = 1 and γ = α = 0.85.

unity, as expected from the rate of convergence and as occurs in the MI case (Figure
4(b)). When c = 0.5, we have γn = 0.85 − log0.5

log100 = 1.0 so that the autoregressive

coefficient is θ = 1+ 1
n and therefore immediately local to unity. In this case, the

density of γ̂n is still very close to symmetric and only slightly biased below unity,
unlike the density of the ordinary least-squares estimate of θ in the LUR case or
the ME case when c = −0.5 where the downward bias is more substantial (Figure
4(b)).

In Figure 7(b), the densities of c̃ are shown for c ∈ {0.5,1.0,2.0,5.0}, again
for n = 100. The densities differ considerably between c = 0.5 and the higher
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values of c. When c = 0.5 with n = 100, we have θ = 1+ 0.5
1000.85 = 1.01 = 1+ 1

100 ,
corresponding to the value of the uniparameter rate γn = 1. In this case, the true
value of the pair (c,α) is not identifiable and c is not consistently estimable. This
property is reflected in the nearly uniform density of c̃ observed in Figure 7(b)
when c = 0.5. On the other hand, the uniparameter γn is identifiable in this case
and the density of the consistent estimator γ̂n is centered close to unity with a
small downward bias (Figure 7(a)). For values of c > 1, the densities of c̃ are
centered close to the pseudo-true value c∗ = 1 with progressively less dispersion
as c increases, both as predicted by the limit theory.

Figure 8(a) and (b) shows the effects on the distributions of γ̂n and c̃ of raising
the sample size when true values of the parameters are c = 1 = c∗ and α = 0.85.
For these fixed parameters, the sample sizes n ∈ {50,100,250,500} lead to the same
implied uniparameter value γn = α = 0.85. Evidently, the distributions of γ̂n are
well centered about the true value and show shrinking dispersion as n increases.
The distributions of c̃ are located around a dominant primary mode close to the true
value c = 1 with concentration that increases with n. There is evidence of a small
secondary mode close to the origin, which is more evident for the smaller sample
sizes n = 50,100, and a small upward bias in the primary mode that diminishes as
n increases.

Figure 9(a) shows the distributions of γ̂n for sample sizes n ∈ {50,100,250,500}
with true values c = 2 and α = 0.85, which correspond to the implied values γn ∈
{0.67,0.70,0.72,0.74}. Evidently, the distributions of γ̂n are well centered about
the true values in the ME case for these values of n when the localizing scale
coefficient c = 2. Figure 9(b) shows the distributions of c̃ when the true value
c = 2 for the same values of n. For the smaller sample sizes n = 50,100, there is
some upward bias from the pseudo-true value c∗ = 1, but this bias disappears for
the larger sample sizes n = 250,500, corroborating the limit theory that c̃ →p 1 in
the ME case when c �= 1.

Figure 10 shows coverage probabilities and CI lengths for inference concerning
γn based on the asymptotic formula (3.15) using a nominal (two-sided) asymptotic
level of 95% with the Cauchy distribution critical value 12.706.10 The graphics
were computed using 5,000 replications with n = 100, α = 0.85, and values of
c > 0 at equispaced intervals in the interval [0.5,5.0], leading to a range of γn values
in [1.0,0.5] with γn = 1.0 when c = 0.5 and γn = 0.5 when c = 5.0 corresponding to
autoregressive coefficient values θn ∈ [1.01,1.1]. The results reveal sharp coverage
probabilities at the 95% level for values c ∈ [3,5] corresponding to θn ∈ [1.06,1.1]
with CI lengths at most 0.033 over this range.11 The sharp outcomes over this range
arise from the exponential convergence rate to the limiting Cauchy distribution. For
values of c ∈ (0.5,3), coverage probability slowly declines to around the 82% level
and the interval length increases monotonically toward unity at the point c = 0.5

10The quantile function for percentile p of the standard Cauchy distribution is tan(π(p−0.5)), which gives the critical
value 12.706 when p = 0.975.
11From (3.15), the interval length at c = 3 with n = 100 and α = 0.85 is 4×12.706

(1+ 3
1000.85 )100 log100

= 0.033.
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Figure 9. Panel (a): Empirical densities of γ̂n for various sample sizes n ∈ {50,100,250,500} with
true values c = 2, α = 0.85, and corresponding values γn ∈ {0.67,0.70,0.72,0.74}. Panel (b): Empirical
densities of c̃ for the same sample sizes and same values c = 2, α = 0.85, and γn = 0.70.
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Figure 10. Coverage probabilities (solid blue curve, left axis), 95% CI (dotted black line) and CI
lengths (dashed sienna curve, right axis) for γn ∈ [1.0,0.50] based on (3.15), corresponding to various
values of the localizing coefficient c ∈ [0.5,5.0] with α = 0.85 and n = 100.

where γn = 1, θn = 1+ 1
n = 1.01, and a logarithmic convergence rate holds in this

boundary local to unity case.

5. EMPIRICS

This section provides an empirical illustration of the paper’s methodology to
the housing market in Australia. The period since the global financial crisis has
witnessed rampant house price appreciation in many cities of the developed world.
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With the onset of the Covid-19 pandemic and the rapid expansion of credit by many
monetary authorities in response, house price inflation has accelerated, persistently
outpacing income growth and making housing affordability and consumer debt
prominent issues for policy makers in many countries. Housing market exuberance
has been especially marked in the Antipodes, with many Australian and New
Zealand cities experiencing in excess of 20% house price appreciation in a single
year from March 2020.12 The methods of this paper are used to make a quantitative
assessment of this inflation and, in particular, to provide an empirical measure of
its extent using estimates of the parametric rate of exuberance based on the ME
model studied in the paper. Those cities where speculative behavior in the housing
market is not identified are studied within the MI or local-to-unity framework.

House price exuberance can be defined as explosive or ME deviations of
house prices from underlying market fundamentals. To determine the existence
of such deviations or specific episodes of deviation, it is necessary to obtain a
measure of housing market fundamentals that can be used as a benchmark for the
computation of deviations. One method is to select specific fundamentals such
as rents or income and employ standardized quantities like price/rent (P/R) or
price/income ratios in conducting the data analysis. Another approach is to employ
a reduced form regression method that accounts for the impact of a broad set
of fundamental factors that may affect demand and supply pressures in housing
markets. This approach avoids the specificity of a single factor fundamental such
as that involved in the use of a P/R or price/income ratio. The reduced form is
fitted by IVX regression (Phillips and Magdalinos, 2009; Kostakis et al., 2015) to
accommodate endogeneity in the regressors and key variables such as the P/R ratio
are decomposed into fundamental and nonfundamental (NF) components. The NF
components are the residuals in this regression and are therefore anticipated to
have weak dependence or stationary characteristics if there are no other systematic
forces at work driving house prices. These residuals may then be used to assess
evidence for the presence of explosive or ME behavior in prices. This is the
approach developed in Shi and Phillips (2021) and is employed in the construction
of the NF component of the P/R ratio data used here.13

Figure 11 provides plots of monthly observations of the NF P/R data for the
eight state capital cities of Australia over the period from July 31, 2012 to June
30, 2021. The plots for Sydney, Melbourne, Brisbane, Adelaide, Darwin, and
Canberra have a hockey stick graph form, each showing evidence of elevating NF
P/R ratios toward the end of the sample period from 2020. The earlier observations

12In Australia, house price appreciation was 16.4% over the 12-month period to June 2021,
placing Australia the seventh highest among 55 countries according to global house price indexes
https://content.knightfrank.com/research/84/documents/en/global-house-price-index-q2-2021-8422.pdf; the
corresponding figure for New Zealand was 25.9% placing New Zealand the second highest among the same
group of countries.
13The data employed here are downloadable from the website https://www.housing-fever.com/. The fundamental
factors considered include real mortgage interest rates (nominal mortgage rates less inflation expectations), real rents,
and real disposal income (proxied by State final demand) for the Australian cities. See Shi and Phillips (2021) and
the website https://www.housing-fever.com/ for further details.
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Figure 11. Monthly Australian metropolitan city house P/R ratios (controlled by IVX regression
estimation to remove the effects of economic fundamentals, including real disposable income and real
mortgage interest rates) over the period of 2013–2021. Data source: https://www.housing-fever.com/ .

before 2020 show no noticeable systematic movements but are clearly highly
autoregressive.

The methods of the paper were applied as follows. Empirical regressions with
each NF house P/R series were run giving linear least-squares estimates θ̂n of θn

and nonlinear estimates γ̂n of γn according to (2.17) and (3.12). ME and MI series
were identified according to whether θ̂n ≷ 1, the rate parameter γn was estimated,
and CIs were constructed for γn based on (3.15) in the ME case and (2.35) in the
MI case, where possible weak dependence in the residuals is accounted for using
the modified rate estimate γ̃n, as discussed in Section 2.4.

The results are reported in Table 1 and detail both the full period of 2012–
2021 and the later period of 2018–2021. The main findings are summarized as
follows.
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Table 1. Autoregressive coefficient estimates θ̂n, localizing rate estimates
{γ̂n,γ̃n} and nominal 95% CIs of γn for the NF components of house P/R ratios in
Australian state capitals

Capital city Years θ̂n γ̂n CIγ̂ γ̃n CIγ̃

Sydney 2012–2021 1.101 0.4897 (0.4896,0.4899)

2018–2021 1.134 0.5564 (0.4895,0.6233)

Melbourne 2012–2021 1.021 0.8258 (0.2457,1.4061)

2018–2021 1.112 0.6070 (0.4671,0.7468)

Brisbane 2012–2021 1.107 0.4768 (0.4767,0.4769)

2018–2021 1.132 0.5587 (0.4893,0.6281)

Adelaide 2012–2021 0.974 0.7815 (0.4265,1.1365) 0.7679 (0.4240,1.1117)

2018–2021 1.107 1.1146 (0.000∗,4.7690)

Darwin 2012–2021 0.922 0.5456 (0.3413,0.7500) 0.5302 (0.3331,0.7273)

2018–2021 1.051 0.8196 (0.000∗,1.9047)

Canberra 2012–2021 1.012 0.9419 (0.000∗,2.4149)

2018–2021 1.090 0.6661 (0.3783,0.9538)

Perth 2012–2021 0.919 0.5373 (0.3369,0.7377) 0.4694 (0.2984,0.6404)

2018–2021 0.907 0.6582 (0.2440,1.0723) 0.5169 (0.1960,0.8378)

Hobart 2012–2021 0.924 0.5516 (0.3444,0.7588) 0.5645 (0.3509,0.7781)

2018–2021 0.896 0.6273 (0.2356,1.0190) 0.5997 (0.2270.0.9723)

Notes: (i) CIγ̂n and CIγ̃n indicate CIs constructed using the estimate γ̂n and the bias corrected estimate
γ̃n, respectively (see Section 2.4 for γ̃n and CIγ̃n ). Entries in the columns for γ̃n and CIγ̃n are shown

only for cases where θ̂n < 1.
(ii) 0.000∗ signifies that the lower limit of the constructed CI for γn is negative and therefore lies below
the natural zero boundary for the left limit of the rate coefficient.
(iii) CIs are constructed using (3.15) when θ̂n > 1 and (2.23) when θ̂n < 1. CIs robust to weak
dependence when θ̂n < 1 are obtained using the bias corrected estimator γ̃n < 1 as shown in (2.35).
(iv) Data: 108 monthly observations from July 31, 2012 to June 30, 2021; 36 monthly observations
from July 31, 2018 to June 30, 2021.

1. Sydney, Melbourne, Brisbane, Adelaide, Darwin, and Canberra all have autore-
gressive coefficients θ̂n > 1 over the more recent period of 2018–2021. With the
exception of Adelaide, the corresponding rate coefficient estimates γ̂n are all
less than unity, signifying ME behavior for each of these cities. Furthermore,
Sydney, Melbourne, Brisbane, and Canberra have 95% CIs for γn lying within
the (0,1) interval, confirming ME behavior in the NF house P/R ratio at this
level of significance. For Darwin, the rate estimate is γ̂n = 0.8196 and the CI is
wide (0,1.9), thereby including the explosive LUR and close-to-unity cases as
possible generating mechanisms. For Adelaide, the rate coefficient γ̂n = 1.1146
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exceeds unity, indicating an explosive close-to-unity coefficient and the CI for
γn is also wide, reflecting the slow convergence rate in the LUR case and the
short sample size of 36 observations over this recent period.

2. Over the full period of 2012–2021, Sydney, Melbourne, Brisbane, and Canberra
again have explosive autoregressive coefficients and γ̂n estimates lying in the
(0,1) interval, indicating that over this longer period the ME behavior at the
end of the period remains evident. For Sydney and Brisbane, the 95% CIs for
γn continue to fall within the (0,1) interval, so the ME behavior is sustained at
this significance level for the full period. For Melbourne and Canberra, the CIs
are wider and include both explosive LUR and close-to-unity cases.

3. Perth and Hobart have autoregressive coefficients θ̂n < 1 in both the full
period and later period. These two cities also have estimated rate coefficients
γ̂n ∈ (0,1), signifying MI behavior. The corresponding 95% CIs support this
inference, although the interval (0.235,1.019) for Hobart is wider and includes
unity, thereby allowing for the possibility of a local-to-unity coefficient. These
cities therefore show no evidence of housing market bubbles. In addition and for
the full period, Darwin has the autoregressive coefficient θ̂n = 0.922 < 1 with
CI (0.341,0.750) indicating MI behavior, so that for Darwin the exuberance
observed in the later period is not strong enough to be sustained in estimation
and inference over the full sample.

The findings reported above correspond broadly to the results of alternative
methods of assessing the presence of exuberance in these Australian city housing
markets. In particular, the recursive PSY test procedures developed in Phillips
et al. (2015a) provide supportive evidence for exuberance in the latter part of the
sample period in Sydney, Melbourne, Brisbane, Canberra, and, less so, Adelaide
and Darwin.14 The present findings complement that evidence in two ways. First,
the results distinguish the explosive alternative by measuring the departure from
the null hypothesis of no exuberance in the NF P/R ratio by means of the magnitude
(lower values signifying greater departures) of estimates of the rate coefficient
γn and its CIs. Second, the alternative hypothesis in the present work allows for
MI alternatives in addition to UR and local-to-unity alternatives (as in the PSY
test), again with quantification provided by the magnitude of the estimated rate
coefficient γ̂n when θ̂n < 1. On the other hand, the PSY procedure is designed for
real-time dating of origination and termination of bubbles as well as detection. This
is a feature for which recursive versions of the present estimation and inferential
procedures can be developed and explored in later work.

6. CONCLUDING REMARKS

Early research in the 1980s on time-series regression with URs revealed the
advantages of function space limit theory in delivering general properties for
estimation and inference in regressions that involve time-series variables with

14See https://www.housing-fever.com/.
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nonstationarities that can be captured by unit autoregressive roots or roots that
may be local to unity. The methods in that research relied on nonstandard limit
theory involving nonlinear functionals of stochastic processes such as Brownian
motions and diffusions. The present paper shows that valid inference about the
character of nonstationary time series in a wider class than the UR and LUR class
can be conducted using pivotal Gaussian and heavy-tailed Cauchy limit theory. The
methods facilitate the study of time series that may have more divergent behavior or
milder wandering behavior than random walks. These characteristics can be identi-
fied, estimated, and used for inference about the particular form of nonstationarity
in the data without conducting tests such as UR or KPSS tests (Phillips, 1987a;
Kwiatkowski, Phillips, Schmidt, and Shin, 1992). As the empirical application
to the housing market illustrates, the techniques may be particularly useful in
studying episodes of financial and asset market exuberance where it is useful to
distinguish different forms of nonstationarity. Rather than confining attention to
UR and LUR processes in designing inference, the methods focus on the implied
localizing rate parameter that measures the extent of divergence from UR behavior,
thereby adding to the econometric toolkit for detecting multiple different forms of
nonstationarity in economic data. In future work, these tools of inference with
near URs can be applied in recursive analyses and empirical dating algorithms to
characterize changes that may occur in the character of nonstationary data.

A further contribution of the paper is to identification. Two parameters are
shown to be naturally identified in data when there is a near UR: a rate parameter γn

that measures closeness to unity in the metric of powers of 1
n ; and the identification-

enforced pseudo-scale parameter c = ±1. Data that are generated in a near UR
environment cannot identify the joint parameters (c,γn) of both scale and rate.
Instead, there is a data-enforced identification of scale c = ±1 that identifies an
MI process from an ME process and the rate parameter γn that reveals the extent
of either MI or ME behavior in the data. A referee kindly provided a likelihood
analysis of this implicit uncertainty in joint estimation of (c,γn) showing how
conditional Fisher information is zero when joint likelihood estimation is pursued.
The analysis in Sections 2 and 3 and the simulation results in Section 4 show
that the data themselves are sufficiently informative to overcome the identification
failure and asymptotically enforce the values c = ±1 that identify near stationary
from near explosive alternatives.

APPENDIX

Proof of Lemma 2.2. Since the rate-parameter sequence is defined by γn = α − log |c|
logn ,

we have

n
1+γn

2 = n
1+α

2 n
− 1

2
log |c|
logn = n

1+α
2 |c|−1/2, (A-1)

because
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log

(
n

1
2

log |c|
logn

)
= 1

2

log |c|
logn

× logn = log |c|1/2,

and so n
− 1

2
log |c|
logn = |c|−1/2. The results of Lemma 2.2 follow directly by use of the

equivalence (A-1) in Lemma 2.1. �

Proof of Theorem 2.1. Part (i): Working in the expanded probability space where (2.8)
holds and using the definition Ân = θ̂n − 1 and the fact that c < 0 and α ∈ (0,1) are fixed,
we have, as n → ∞,

log
∣∣∣Ân

∣∣∣ = log

∣∣∣∣∣ c

nα
+ ξc

n
1+α

2

{
1+op (1)

}∣∣∣∣∣
= log

(
1

nα

∣∣∣∣∣c+ ξc

n
1−α

2

{
1+op (1)

}∣∣∣∣∣
)

= −α logn+ log

∣∣∣∣∣c+ ξc

n
1−α

2

{
1+op (1)

}∣∣∣∣∣
= −α logn+ log |c|+ log

∣∣∣∣∣1+ ξc

cn
1−α

2

{
1+op (1)

}∣∣∣∣∣
= −α logn+ log |c|+ ξc

cn
1−α

2

{
1+op (1)

}
. (A-2)

Then,

α̂ = −
log

∣∣∣Ân

∣∣∣
logn

= α − log |c|
logn

− ξc

cn
1−α

2 logn

{
1+op (1)

}
, (A-3)

so that α̂ →p α in both the expanded space and the original space. Moreover, in the original
space, we have the weak convergence

n
1−α

2 logn

{
α̂ −α + log |c|

logn

}
⇒ ξc

−c
=d N

(
0,

2

|c|
)

,

giving the required result (i).
Part (ii): When θn = 1 + cn

nα = − 1
n1−δ with cn = − 1

n1−α−δ with fixed δ > 0, then An =
θn −1 = − 1

n1−δ , and in view of (2.8), we have

Ân = θ̂n −1 = − 1

n1−δ
+ ξ

n1−δ/2

{
1+op (1)

}
,

with ξ =d N (0,2). In place of (A-2), we now find that

log
∣∣∣Ân

∣∣∣ = log

∣∣∣∣− 1

n1−δ
+ ξ

n1−δ/2

{
1+op (1)

}∣∣∣∣
= log

∣∣∣∣ 1

n1−δ

∣∣∣∣+ log

∣∣∣∣1− ξ

nδ/2

{
1+op (1)

}∣∣∣∣
= −(1− δ) logn− ξ

nδ/2

{
1+op (1)

}
. (A-4)
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Then,

α̂ = −
log

∣∣∣Ân

∣∣∣
logn

= 1− δ + ξ

nδ/2 logn

{
1+op (1)

}
, (A-5)

so that α̂ →p 1 − δ in both the expanded space and the original space, with the following
limit theory in the original space:

nδ/2 logn
{
α̂ − (1− δ)

}
� ξ =d N (0,2),

giving (ii). When δ = 1−α, we have n(1−α)/2 logn
{
α̂ −α

}
�N (0,2) as in (i) with |c| = 1.

Part (ii) SV Extension: In a similar manner, when cn = − Ln
n1−α with an SV function

Ln → ∞, as n → ∞, we have θn = 1 − Ln
n . In the notation of Phillips and Magdalinos

(2007a), this formulation is θn = 1 + c
kn

with kn = |c|n/Ln, or more simply kn = n/Ln =
where the SV function absorbs the constant |c|. From Phillips and Magdalinos (2007a), we
have the limit theory√

nkn(θ̂n − θn) �N (0, −2c) = ξc. (A-6)

In our present notation, n√
Ln

(θ̂n − 1 + Ln
n ) �N (0,2) = ξ, which in the expanded proba-

bility space we write as

θ̂n −1 = −Ln

n
+

√
Ln

n
ξ{1+op(1)}. (A-7)

It follows that

log
∣∣∣Ân

∣∣∣ = log |θ̂n −1| = log

∣∣∣∣−Ln

n
+

√
Ln

n
ξ
{
1+op (1)

}∣∣∣∣
= log

∣∣∣∣Ln

n

∣∣∣∣+ log

∣∣∣∣1− ξ√
Ln

{
1+op (1)

}∣∣∣∣
= − logn+ logLn − ξ√

Ln

{
1+op (1)

}
. (A-8)

Hence,

α̂ = −
log

∣∣∣Ân

∣∣∣
logn

= 1− logLn

logn
+ ξ

L1/2
n logn

{
1+op (1)

}
, (A-9)

which leads to the limit theory

L1/2
n logn

(
α̂ −

{
1− logLn

logn

})
� ξ, (A-10)

giving the required extension of (ii) stated in Remark 2.1. The downward bias term in this

near UR case is − logLn
logn , which is nonnegligible given the convergence rate Ln logn.

Part (iii): When θn = 1 + c
n for some fixed c ∈ (−∞,∞) and α = 1 in (2.1), the limit

theory for θ̂n is (see Phillips, 1987b)

n
(
θ̂n − θn

)
�

∫ 1
0 JcdW∫ 1

0 J2
c

=: ξJc, as n → ∞, (A-11)
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where Jc (r) = ∫ r
0 ec(r−s)dW (s) is a standard linear diffusion and W is standard Brownian

motion. Then, proceeding as above on a suitably expanded probability space, we have θ̂n =
θn + 1

n ξJc

{
1+op(1)

}
and Ân := θ̂n −1 = c

n + 1
n ξJc

{
1+op (1)

} = 1
n

[
c+ ξJc

{
1+op (1)

}]
,

so that

log
∣∣∣Ân

∣∣∣ = − logn+ log
∣∣c+ ξJc

{
1+op (1)

}∣∣ = − logn+ log
∣∣c+ ξJc

∣∣+op (1) .

Hence,

α̂ = −
log

∣∣∣Ân

∣∣∣
logn

= 1− log
∣∣c+ ξJc

∣∣
logn

+op

(
1

logn

)
,

and then α̂ →p 1 in both the expanded and original spaces. The convergence rate of α̂ is
logn, and in the original space, we have weak convergence and the following limit theory
for the normalized and centered estimator

(logn)
{
α̂ −1

}
� − log |c+ ξJc |,

giving the stated result (iii). �

Proof of Theorem 2.2. From Theorem 2.1, α̂ −α = − log |c|
logn {1+op(1)} and so nα̂−α =

n
log(1/|c|)

logn {1+op(1)}
from which we have

log
(

nα̂−α
)

= (α̂ −α) logn = log(1/|c|)
logn

{1+op(1)} logn = log(1/|c|) {1+op(1)}.
(A-12)

Then,

ĉ = − nα̂−ασ̂ 2

2
n1+α

∑n
t=1 X2

t−1

= −
1
|c| σ̂ 2

2
n1+α

∑n
t=1 X2

t−1

{1+op(1)} →p −
1
|c|σ 2

σ 2

−c

= −1, (A-13)

so that ĉ → c∗ = −1 as required. To find the convergence rate, note first that, by standard

calculations, σ̂ 2 = σ 2 +Op(1/
√

n). Next, lognα̂−α = (α̂−α) logn = Op

(
n
− 1

(1−α)/2

)
from

Theorem 2.1, so that nα̂−α = 1 + Op

(
n
− 1

(1−α)/2

)
. Furthermore, as in the proof of PM

(2007a, Lem. 3.1), we find that

1− θ2

n

n∑
t=1

X2
t−1 = σ 2 +Op(n−1/2)+Op

(
n−(1−α)/2

)
+Op

(
n−α/2

)
,

from which it follows that

ĉ = − nα̂−ασ̂ 2

2
n1+α

∑n
t=1 X2

t−1

= −1+Op

(
n−(1−α)/2 +n−α/2

)
= −1+Op(min{n−(1−α)/2,n−α/2}).

(A-14)

�
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Proof of Corollary 2.1. In (i), we have θ = 1 + c
nα . So, from (A-2) and using the fact

that nγn = nα/|c|, we have

log |Ân|
logn

= −α + log |c|
logn

+ ξc

cn
1−α

2 logn

{
1+op (1)

} = −γn + ξc

cn
1−α

2 logn

{
1+op (1)

}
= −γn + ξc|c| 1

2 n
γn
2

cn
1
2 logn

{
1+op (1)

} = −γn + ξ

n
1−γn

2 logn

{
1+op (1)

}
, (A-15)

where ξc = N (0, −2c) from (2.4) and ξ = N (0,2) from Lemma 2.2. Then,

γ̂n −γn = −
log

∣∣∣Ân

∣∣∣
logn

−γn = − ξ

n
1−γn

2 logn

{
1+op (1)

}
, (A-16)

from which it follows that

n
1−γn

2 logn
(
γ̂n −γn

)
� ξ =d N (0,2), (A-17)

giving the stated result. The same result holds directly in case (ii) because cn = − 1
n1−α−δ

with δ ∈ (0,1−α] and then γn = 1− δ.
In the extension of (ii) discussed in Remark 2.1 where θn = 1 − Ln

n involving the SV

function Ln, we have cn = − Ln
n1−α = − n

logLn
logn

n1−α so that

θn = 1+ cn

nα
= 1− 1

n
1− logLn

logn

= 1− 1

nγn
,

with γn = 1− logLn
logn . The following limit theory then holds when Ln → ∞, as n → ∞:

L1/2
n logn

(
γ̂n −γn

)
� ξ, (A-18)

where the centering in (A-10) is adjusted by the term − logLn
logn , which becomes absorbed

in the uniparameter γn = 1− logLn
logn . Result (A-18) continues to hold for choices of the SV

function Ln, such as Ln = logn, for which logLn
logn → 0 and γn = 1− logLn

logn → 1 as n → ∞.

Finally, in the LUR case where θn = 1+ c
n with fixed c, the result follows directly from

Theorem 2.1(iii) and the fact that γ̂n = α̂. �

Proof of Corollary 2.2. Assume that 0 < θ̂n < 1, and write

γ̂n −γn = −
log

(
1− θ̂n

)
logn

+ log(1− θn)

logn
= 1

logn

{
log

1

1− θ̂n
− log

1

1− θn

}
= 1

logn

{
log

1+ θ̂n

1− θ̂n
− log

1+ θn

1− θn

}
− 1

logn
log

1+ θ̂n

1+ θn
.
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Now, θn = 1− 1
nγn and, from Lemma 2.2, θ̂n = θn +Op

(
1

n(1+γn)/2

)
, so that

log
1+ θ̂n

1+ θn
= log

1+ θn +Op

(
1

n(1+γn)/2

)
1+ θn

= log

{
1+Op

(
1

n(1+γn)/2

)}
= Op

(
1

n(1+γn)/2

)
.

It follows that

γ̂n −γn = 1

logn

{
log

1+ θ̂n

1− θ̂n
− log

1+ θn

1− θn

}
+Op

(
1

n(1+γn)/2 logn

)

and thus

n
1−γn

2 logn
(
γ̂n −γn

) = n
1−γn

2

{
log

1+ θ̂n

1− θ̂n
− log

1+ θn

1− θn

}
+Op

(
1

nγn

)
�N (0,2),

as stated. �

Proof of Theorem 2.3. Part (i): For models (2.1) and (2.2) with fixed c < 0, fixed α ∈(
1
3,1

)
, and ut satisfying Assumption LP, as n → ∞, we have the following limit theory

for θ̂n from PM (2007b, Thm. 4.2, eqn. (24)):

n
1+α

2

(
θ̂n − θn − 1

nα

−2cλ

ω2

)
�N

(
0, −2cϕ2

)
=: ξcϕ2, as n → ∞, (A-19)

where ω2 = σ 2C(1)2 is the long-run variance of ut, λ = (ω2 − σ 2)/2 is the one-sided

long-run covariance of ut, and ϕ = σ 2

ω2 . Expanding the probability space as before, the
convergence (A-19) holds in probability and we have

θ̂n = θn + 1

nα

2cλ

ω2
+ ξcϕ2

n
1+α

2

{
1+op (1)

}
.

Setting Ân = θ̂n −1, it follows that, for c < 0,

log
∣∣∣Ân

∣∣∣ = log

∣∣∣∣∣ c

nα
− 1

nα

2cλ

ω2
+ ξcϕ2

n
1+α

2

{
1+op (1)

}∣∣∣∣∣ (A-20)

= log

{∣∣∣∣ 1

nα

∣∣∣∣
∣∣∣∣∣c− 2cλ

ω2
+ ξcϕ2

n
1−α

2

{
1+op (1)

}∣∣∣∣∣
}

= −α logn+ log

∣∣∣∣∣c− 2cλ

ω2
+ ξcϕ2

n
1−α

2

{
1+op (1)

}∣∣∣∣∣
= −α logn+ log

{
|c|

∣∣∣∣∣1− 2λ

ω2
+ ξcϕ2

cn
1−α

2

{
1+op (1)

}∣∣∣∣∣
}
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= −α logn+ log |c|+ log

∣∣∣∣∣σ 2

ω2
+ ξcϕ2

cn
1−α

2

{
1+op (1)

}∣∣∣∣∣
= −α logn+ log |c|+ logϕ + log

∣∣∣∣∣1+ ξcϕ2

cϕn
1−α

2

{
1+op (1)

}∣∣∣∣∣
= −α logn+ log |c|+ logϕ + 1

c

ξc

n
1−α

2

{
1+op (1)

}
. (A-21)

Then, using the fact that nα = |c|nγn , we have

γ̂n = −
log

∣∣∣Ân

∣∣∣
logn

= α − log |c|+ logϕ

logn
− ξc

cn
1−α

2 logn

{
1+op (1)

}
= γn − logϕ

logn
− ξc

c1/2n
1−γn

2 logn

{
1+op (1)

} = γn − logϕ

logn
− ξ

n
1−γn

2 logn

{
1+op (1)

}
,

(A-22)

where ξ =d N (0,2), from which it follows that γ̂n −γn →p 0, in both the expanded space
and the original space at a logn rate. In the original space, we have the weak convergence

n
1−γn

2 logn

{
γ̂n −γn + logϕ

logn

}
� ξ =d N (0,2), (A-23)

giving the stated result.
Parts (ii) and (iii): Here, we have θn = 1+ cn

nα = 1− 1
nγn with cn = − 1

n1−α−δ , γn = 1−δ,
and 0 < δ ≤ 1 −α. Using the same derivations as above but with these values of (cn,γn),
we obtain

nδ/2 logn

{
γ̂n −γn + logϕ

logn

}
� ξ =d N (0,2),

giving (2.31). Similarly, in the SV case (iii) where θn = 1+ cn
nα = 1− Ln

n with cn = − Ln
n1−α

and Ln → ∞ is SV at infinity, we have, as n → ∞,

L1/2
n logn

(
γ̂n −γn + logϕ

logn

)
� ξ =d N (0,2) . (A-24)

Part (iv): When θn = 1+ c
n with fixed c, we have on a suitably expanded space θ̂n = θn +

1
n ξJc

{
1+op(1)

}
so that

log
∣∣∣Ân

∣∣∣ = − logn+ log
∣∣c+ ξJc

{
1+op (1)

}∣∣ = − logn+ log
∣∣c+ ξJc

∣∣+op (1) .

Hence,

γ̂n = −
log

∣∣∣Ân

∣∣∣
logn

= 1− log
∣∣c+ ξJc

∣∣
logn

+op

(
1

logn

)
from which γ̂n →p 1 and the limit theory (logn)

{
γ̂n −1

}
� − log |c + ξJc | holds as

stated. �
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Proof of equation (2.34). In the weakly dependent error case, the bias corrected estima-

tor is γ̃n = γ̂n + log ϕ̂
logn , where ϕ̂ = σ̂ 2/ω̂2 in which σ̂ 2 = 1

n
∑n

t=1 û2
t with ût = Xt − θ̂nXt−1

and ω̂2 is a standard kernel estimator of the long-run variance, ω2, of ut. Note that σ̂ 2 −σ 2 =
Op

(
n−1/2

)
and by standard HAC estimator asymptotics we have ω̂2

tri −σ 2 = Op

(
n−1/3

)
for the triangular lag kernel estimator and ω̂2

quad −σ 2 = Op

(
n−2/5

)
for the quadratic lag

kernel estimator with optimal bandwidth choices. It follows directly that ϕ̂ −ϕ = Op(n−κ )

with κ ∈ {1/3,2/5} for these two types of kernels. We then have

n
1−γn

2 logn {γ̃n −γn} = n
1−γn

2 logn

{
γ̂n + log ϕ̂

logn
−γn

}
= n

1−γn
2 logn

{
γ̂n −γn + logϕ

logn
+Op(n−κ )

}
= n

1−γn
2 logn

{
γ̂n −γn + logϕ

logn

}
+Op

(
n

1−γn−2κ
2 logn

)
� ξ =d N (0,2) .

Since nγn = nα−log |c|/ logn = nα/|c|, we have n
1−γn−2κ

2 = n
1−α−2κ

2 |c|1/2, so that

n
1−γn−2κ

2 logn = op(1) whenever α > 1 − 2κ or α > 1
3 for κ ≥ 1/3, which includes both

triangular and quadratic lag kernel choices. It follows that the bias-corrected estimator

γ̃n = γ̂n + log ϕ̂
logn satisfies

n
1−γn

2 logn {γ̃n −γn} = n
1−γn

2 logn

{
γ̂n −γn + logϕ

logn

}
+op(1) � ξ =d N (0,2), (A-25)

for all α > 1
3, and the result holds for all standard consistent HAC estimators of ω2 under

the conditions of Theorem 2.3. �

Proof of Theorem 3.1. Part (i): Defining Ân = θ̂n − 1 as before, it follows that, for
c > 0,

Ân = c

nα
+ 1

nα

2c

θn
n
C

{
1+op (1)

} = c

nα

[
1+ 2

θn
n
C

{
1+op (1)

}]
,

so that

log
∣∣∣Ân

∣∣∣ = −α logn+ log |c|+ log

[
1+ 2

θn
n
C

{
1+op (1)

}]
= −α logn+ log |c|+ 2

θn
n
C

{
1+op (1)

}
.

Hence,

α̂ = −
log

∣∣∣Ân

∣∣∣
logn

= α − log |c|
logn

− 2

θn
n logn

C
{
1+op (1)

}
,
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and then α̂ →p α in both the expanded and original spaces. The convergence rate to α is
logn, but upon recentering and normalizing we have(

1+ c

nα

)n
logn

{
α̂ −α + log |c|

logn

}
� 2cC, (A-26)

as stated. Then, noting
(
1+ c

nα

)n = ecn1−α
(

1−O(n1−2α)
)

∼a ecn1−α
when α > 1

2 , we

have

ecn1−α
logn

{
α̂ −α + log |c|

logn

}
� 2cC, (A-27)

giving (3.6).
Part (ii): When cn = 1

n1−α−δ with 0 < δ ≤ 1 −α, we have θn = 1 + 1
nδ . It then follows

as in Part (i) that α̂ →p 1−δ, as n → ∞. Furthermore, since log |cn| = log 1
n1−α−δ = (−1+

α + δ) logn, we have α − log |cn|
logn = 1− δ and then(

1+ 1

n1−δ

)n
logn

{
α̂ − (1− δ)

}
� 2C. (A-28)

Noting that
(

1+ 1
n1−δ

)n = enδ
(

1−O( 1
n1−2δ )

)
∼a enδ

when δ < 1
2 , we have

en1−δ
logn

{
α̂ − (1− δ)

}
� 2C,

as in (3.7).
Part (ii) SV Extension: When the autoregressive coefficient θn = 1 + Ln

n differs from

unity by an SV function at infinity, Ln, we have cn = Ln
n1−α = n

logLn
logn

n1−α , so that

θn = 1+ Ln

n
= 1+ cn

nα
= 1+ 1

n
1− logLn

logn

=: 1+ 1

nγn
,

with uniparameter γn = 1− logLn
logn , as in (3.8). In the same way, as in (A-28), the following

limit theory then holds when Ln → ∞, as n → ∞:(
1+ 1

n
1− logLn

logn

)n

logn

(
α̂ −

{
1− logLn

logn

})
� 2C, (A-29)

which can be rewritten entirely in terms of the uniparameter γn as(
1+ 1

nγn

)n
logn

(
γ̂n −γn

) =
(

1+ Ln

n

)n
logn

(
γ̂n −γn

)
� 2C, (A-30)

where γ̂n = − log
∣∣∣Ân

∣∣∣
logn . In (A-30), the centering in (A-29) is absorbed in the uniparameter

γn = 1− logLn
logn because, when cn = Ln

n1−α ,

γn = α − logcn

logn
= α − logLn − (1−α) logn

logn
= 1− logLn

logn
,

and 1
nγn = Ln

n . �
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