
THE EXPONENTS OF STRONGLY 
CONNECTED GRAPHS 

EDWARD A. BENDER AND THOMAS W. TUCKER 

1. Introduction. A directed graph G is a set of vertices V and a subset of 
V X V called the edges of G. A path in G of length k, 

K v2, . . . , vk, vk+1], 

is such that (vu i>i+i) is an edge of G for 1 ^ i S k. A directed graph G is 
strongly connected if there is a path from every vertex of G to every other vertex. 
A circuit is a path whose two end vertices are equal. An elementary circuit has no 
other equal vertices. See (1) for a fuller discussion. 

Let G be a finite, strongly connected, directed graph (fscdg). The &th power 
Gk of G is the directed graph with the same vertices as G and edges of the form 
(hj)y where G has a path of length k from i toj. It is easily shown (6) that we 
can define the period p(G) and exponent y(G) as follows: 

(i) p is the least positive integer such that for all sufficiently large t, 

(1) Gl = Gt+P, 

(ii) 7 is the least positive integer such that (1) holds whenever t ^ y. 
The exponent set T(n, p) is the set of all exponents of all ^-vertex fscdgs with 

period p. 
There is some information on T(n, p) in the literature. Heap and Lynn (4) 

have shown: 

(2) max T(n,p) ^ pl n 
LpJ -m-p, 2j + 2n-p\ n 

where [ ] denotes the greatest integer function. Wielandt (9) observed that 

(3) max T(n, 1) = in - 1 ) 0 - 2) + n. 

Dulmage and Mendelsohn (3) showed the existence of gaps in T(n, 1) for 
n ^ 4: if n is even and 

(4) n2 - 4n + 6 < x < (n - l ) 2 

or n is odd and 

(5) n2-4n + 6 < n2 - 3n + 2 or n2 - 3n + 4 < x < (n - l )2 , 

then x (£ T(n, 1). They also showed that any other integer x satisfying 
(n - 2)2 S x S (n - l ) 2 + 1 is in T(n, 1). 
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We will investigate T(n, p) in detail. A simple algorithm will be given for 
determining T(n, 1) for large enough n. I t has been used to find T(n, 1) for 
35 g n ^ 100 (in less than one minute!) on an IBM 7094. Inequality (2) will 
be replaced by a generalization of (3). Gaps will be established in T(n, p) for 
all sufficiently large n. In fact, if 

k ^ x ^ I implies x $ T 

then 

, i . 

pk ^ y ^ pi implies y Ç? T(n, p). 

2. Computing exponents. Let G be an fscdg with elementary circuit 
lengths pa, 1 ^ a ^ e. I t is known (6) that 

(6) p{G) = gcd(pa). 

If h and h are the lengths of two paths from i to j in G, we have 

h = h (mod^(G)) 

since there is a path from j to i of length /3 and 

/1 + /3 = 0 = l2 + h (mod p(G)). 

The reach from i to j , written hih is the least non-negative integer such that 
there is a path from i to j of length 

/*„ + lp for all / è 0. 

(We allow paths of length 0 from i to i.) The following theorem is found in (3) 
for p = 1 and implicitly in (4). 

THEOREM 2.1. / / G is an fscdg, then 

(7) T ( G ) = max htj - p{G) + 1, 

where V(G) is the set of vertices of G. 

Proof. Let hkï = max htj. There is no path of length hki — p(G) from k to /. 
Hence, Y(G) è max /ẑ - — p + 1. On the other hand, let there be a path of 
length / from i to j and let / ^ A^ — p + 1 satisfy / = / (mod £) . Then 
hij = I = t (mod £) . Hence, t ^ /^-. Thus, there is a path of length / from 
i to j , hence, Y(G) ^ max Â • — p + 1. 

Let f tj be the length of the shortest path from i to j which contains a point of 
a circuit of every circuit length occurring in G (ru may be 0). We say that (z; j ) 
has the unique path property (upp) if, whenever / > rtj is the length of a path 
from i to j , 

(8) / = r „ + Zkapa, ka è 0. 
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The Frobenius function F(lh h, . . . , ls) is the greatest multiple of gcd(/a) which 
is not expressible in the form 

By a lemma of Schur (2), the function is not infinite. 

For p = 1 in the following theorem, see (3). 

THEOREM 2.2. Let G be anfscdg with elementary circuit lengths pa, 1 ^ a ^ e. 
IfiJ 6 V(G), then 

(9) htJ£rtJ+F(p1,...,pe) +P(G), 

with equality if (i;j) has the upp and either no pa = p{G) or no path from i to j 
has length rtj — p(G). 

Proof. There is a path of length I from i to j for any / of the form (8). The 
inequality follows from (6) and the definition of F. Let (i;j) have the upp. If 
some pa = p, then rtj + F = rtj — p. If no pa = p, then F > 0 and by the 
definitions of F and rij} there is no path of length rtj + F from i to j . 

It can be shown (6) that Gv is the union of p disjoint fscdgs Gi, . . . , Gp. The 
edges of G connect elements of V(Gi) to elements of V(Gi+i), the subscript 
being understood modulo p. It follows that the elementary circuits of Gt have 
lengths palp, 1 ^ a ^ c. By (6) we have p(Gt) = 1. The relationship 
between y(G) and y(Gi) is more complicated. 

THEOREM 2.3. Let G be anfscdg with p — p(G) > 1 and let S be a non-empty 
subset of {1, 2, . . . , p). Then 

(10) £max7(G<) -p + l£ y(G) ^pmsixy(Gs) +p- \S\, 

where \S\ is the cardinality of S and Gp is the union of the disjoint fscdgs 
Gi, . . . , Gv. 

Proof. We establish the left-hand inequality first. Let y(Gk) = max y{Gt). 
By applying (7) to Gk, it follows that there are i,j Ç V(Gk) with htj = y(Gk), 
where the reach is in Gk. The corresponding reach in G is py(Gk). Applying (7) 
to G proves the left-hand side of (10). Now let i,j 6 V(G). I t suffices to show 
that 

htJ S pmzxy(Gs) + 2p - \S\ - 1 
s£S 

and then apply (7). Starting at i on any path we reach some k G V(GS) for 
some 5 G 5, and this path has length at most p — \S\. Working backwards 
from j , we see that there is a path of length at most p — 1 from some / € V(GS) 
to j . For every t ^ y(Gs) there is a path from k to / of length / in Gs since 
P(GS) = 1. Combining these three paths (taking the one from k to / in G gives 
it length pi) yields the desired result. 
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COROLLARY 2.4. maxig^, Y(G*) — m i n ^ ^ , y(Gt) ^ 1. 

Proof. Let 5* = {s}, where y(Gs) = min y(Gt). 

The following theorem is proved in (3) for p = 1. 

THEOREM 2.5. If G is an fscdg with p = p(G) and with s equal to the length 
of the shortest circuit of G, then 

(11) 7(G) 

VII n + s( 
-p- - ) • 

Proof. We assume the case p = 1 ; see (3, Theorem 1). Let 

5 " = | * : | 7 (G«) | < 
n 

-P- }. # - | « w i - | . 
If S~" 9e 0, let S = S~ in (10). By applying the case p = 1 to Gu where i G S, 
we have: 

T<M[;]- I+K[M+»- | 5- | <"+*(H-2)-
US- = 0;then 

151B, _ („ _ ,[ï]) 
Apply (10) with S = 5°. 

In the next section it will be shown that the bound in (11) is sharp whenever 
[n/p] and s/p are relatively prime. 

3. Some elements of r (« , p). The following observation is quite useful. 

THEOREM 3.1. r (n , p) c r ( n + 1, £) . 

Preo/. Let G be a given rc-vertex fscdg. We shall construct an (n + 1)-vertex 
fscdg G' with p(Gf) = p{G) and y(G') = y(G). Let V(G) = {1, 2, . . . , » } and 
V(G') = {1, 2, . . . , n + 1}. Let (i, j ) be an edge of G' if and only if after 
replacing any (n + l ) ' s by ra's we obtain an edge of G; see Figure I. I t is 
easily seen that p (Gf) = p (G) and that the reach from i toj in Gf is the same as 
the corresponding reach in G ((w + l) ' s replaced by n's). By (7) we have 
7 (GO = 7(G). 

LEMMA 3.2. Let m > s > 0 arcd let I satisfy s — m ^ l ^ s — 1. Define 
p = gcd(ra, 5) a»d n = max(w, m + I). Then 

(12) (w/£ - l)s + (m - 5) + I 6 r ( » , £) . 

Proof. We explicitly construct a graph G(m, s, I). Let V(G) = {1, 2, . . . , « } ; 
see Figure II . 
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no loop at n 

G(7, 4, - 2 ) G(5, 4, 2) 

FIGURE II. G(m, s, I) 

Case I.. / ^ 0. Then n = m. Let the edges of G(w, 5, Z) be 

(*,* + 1), 1 ^ * ^ w, 
(s + k- l,k), 1 g H 1 - /, 

where we agree to identify 1 and n + 1. 
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Case II . / > 0. Let the edges of G(tn, sy I) be 

(i, i + 1), l S i < m, 

(w, 1), 
(s — /, m + 1), 

(m + k, m + k + 1) 1 g k g /. 

I t is easily seen that (s — I + 1; m) has the upp and rtj ^ rs_j+ifWÎ for all 
vertices i , j . By Theorems 2.1 and 2.2 and the well-known (2) formula 
F(m, s) = ms/p — m — s, we have: 

y(G(m, s J)) = rs-l+hm + F(m, s) + 1 

= 2m - (5 - / + 1) + ~ - m - 5 + 1 
P 

( ! - ' ) 5 + (w — s) + I. 

By taking m = £[«/£] and I = n — m in (12), we see that (11) is sharp 
when [n/p] and s/p are relatively prime. In particular, (2) may be replaced by 
the following generalization of (3). 

THEOREM 3.3. If n ^ 2p, then 

(13) max r (» , p) = * ( [ j ] - l ) ( | j ] - 2) + n. 

Proof. Since w ^ 2p, we have 5 ^ p([n/p] — 1) in (11). 

Let gin, p) be the least positive integer not in T(n, p); that is, the start of 
the first gap. Results like the following have been obtained by Dulmage, 
Mendelsohn, and Norman (5). 

THEOREM 3.4. g(n, p) ^ p[(n + 2p + l)/2p]2 - 2p. 

Proof. By Theorem 3.1 and (12) with m = p(k - 1) and s = p(k - 2) 
and -p ^ / g p(k - 3) - 1 we have for k ^ 3: 

(i)x e T(p(2k - 4 ) - l,p) lorp(k- 2)2 £x ^p(k2 -Sk + 2) - 1. 

If * > 3 is even, let m = p(k + 1), 5 = p{k - 3). By Theorem 3.1 and (12), 

(ii) x 6 T(£(2fc - 2) - 1,£) for£(&2 - 3*) ^ x ^ />(* - l ) 2 - 1, 

(ii') x e T(p(2k - 4) - l,p) îorp(k* - Sk) ^ x ^ p(k2 - 2k - 1) - 1. 

If k ^ 3 is odd, we take m = pk and 5 = pik — 2) to obtain 

(iii) x 6 r(£(2£ - 3) - 1,£) for£(&2 - 3k + 2) ^ x ^ p(k - l ) 2 - 1, 

(iii') x e T(p(2k - 4) - 1,£) iorp(k2 - 3k + 2) ^ x S p(k2 - 2k) - 1. 

Apply Theorem 3.1 using (i)-(iii') as follows: 
(i): 3 ^ k ^ 1+ 1, 
(ii), (iii): 3 ^ k ^ /, depending on the parity of &, 
(ii'), (iii'): k = / + 1, depending on the parity of k. 
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This yields: 

(iv) x € T(p(2l - 2) - l9p) iorpSx^ p(l2 - 2). 

With m = s = p in Case II of the proof of Lemma 3.2 and (s — I + l;m) 
replaced by (m + l;m), the range of x in (iv) can be extended down to 1. 
We have: 

g(p(2l-2) -l,p) ^p(P-2). 
Let 

' - [a±t±1] 2p 

and use the fact that g is monotonie. 

Theorem 3.4 and (13) show that g (w, p) > max T(n, p)/4: for n è 3£. When 
w is large, much more is true. 

THEOREM 3.5. For fixed p, 
2 

71 
(14) g(n, p) ^ - ^ m a x T(n,p). 

P 
Proof. By Theorems 3.1, 3.3, and 3.4, it suffices to show that for every e > 0 

and sufficiently large ft: 
iip(k - 2)2 S x ^p(k - l ) 2 , thenx 6 T(p(k - 1)(1 + e),p). 

Assume that 0 < ô < 1, we shall choose it later. Let ft be so large that there 
are at least two primes between 2^ + 1 and 2(1 + ô)y + 1 whenever 
y ^ (2ft — 1)1/2 (this is possible by the prime number theorem). For x as 
above, let y — (ft2 — x/p)112. One of the two guaranteed primes is prime to 
2ft + 1 since (2y + l ) 2 > 2ft + 1. Call it 2/ + 1. Let 

Then 
m = p(k+j+ 1), s = p(k -j). 

g c d ( | , | ) = gcd(ft+j + l , f t - j ) 

= gcd(ft +j + 1 + ft - j , ft + j + 1 - (ft - j)) 

= gcd(2ft + l , 2 j + l ) 

= 1, 

<p 

p{k>-f)^pk>-pa + sy(k*-j) 

>x- upyk2 - *j 

^ x - 125^>(jfe - 1 ) . 
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Hence, we may choose 0 gj I < 128p(k — 1) in (12) so that we have 
x e T(n,p). Now 

n — m + I 

<P(k+j+ 1) + mp(k - 1) 

< p(k + 1 + 8(* - 1)1/2 + I28(k - 1)). 

Choose k so large and 8 so small that 

and 
pik-j) ^ mp(k- l ) . 

4. The gaps of T(n, p). The gaps in Tin, 1) above in — 2)2 were already 
mentioned in (4) and (5). When n ^ 8, this result is a special case of the 
following theorem. 

THEOREM 4.1. If x > \n{n + 1), then x 6 T(n, 1) if and only if 

x = (m — l)s + m — s + / 

/or some integers m, s, I such that 

gcd(m, s) = 1, n ^ m > s > 0, 
s— l ^ l ^ s — m, n ^ m + /. 

Proof. The sufficiency follows from Theorem 3.1 and (12). We shall prove 
the necessity in this section. 

Combining this result with (14), we see that a relatively easy method exists 
for determining T(n, 1) for sufficiently large n. The values of gin, 1) given in 
Table I indicate that n ^ 35 may be "sufficiently large". 

TABLE I 

Values of giny 1) 

o 1 2 3 4 5 6 7 8 9 

20 231 232 233? 284 285? 349 350? 453 454 472 
30 473 474? 585 586 587? 686 687 774 914 915 
40 916 917 1099 1175 1235 1317 1359 1424 1425 1535 
50 1691 1692 1718 1867 1947 1994 1995 1996 2131 2316 
60 2317 2318 2319 2665 2697 2933 2934 2935 2936 3262 
70 3321 3322 3323 3625 3626 3802 3803 4011 4055 4269 
80 4656 4779 4803 4804 4805 4817 4818 5058 5059 5060 
90 5061 5062 5793 5794 5795 6202 6594 6595 6596 6599 
100 7073 

At present, no comparable result is known for T(n, p) with p > 1. However, 
the existence of numerous gaps in T(n, p) can be established. 
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THEOREM 4.2. If x & T([n/p], 1) for k g x ^ /, 

(15) y £ T(n,p) for pk ^y ^ pi; 

if in addition k — 1 (? T([n/p] — 1, 1), then 

(16) y £ T(n, p) for p(k - 1) + w + 1 ^ y ^ £/, 

w/ze?-£ w = n — p[n/p]. 

Proof. Let 7(G) = y G r(w, £) and y S pi. By (10) we have 

y(Gt) Sl+ (P- \)IP 

for all i. Since y(Gi) is an integer, 7(GO g /. We now use the given gap data. 
Let 

S- = {i--W(G{)\<[l\}, ?-{i:\V(f;t)\ -[*]}. 

If 5 - ^ 0, let 5 = 5 - in (10). Then 

7(G) £pk' + p - \S~\ ^ p(k' + 1) - 1, 

where V < k in (15) and V < k - 1 in (16). If S~ = 0, let S = 5°. We have: 

7(G) ^pk' + p - \S°\ 

£ p(k - 1) + p - (p - n + p\*j) 

^ £(& - 1) + w. 

Study of some special cases has shown that y ^ pi in (15) is not best possible 
(hence, a similar conclusion holds for the left half of (10)). It is not known what 
is best possible, however y ^ pi + p — 1 seems likely when (4) and (5) are 
used for T([n/p], 1). 

We devote the remainder of this paper to developing the machinery needed 
for proving Theorem 4.1. 

THEOREM 4.3. Let 0 < px < . . . < pe be given with e ^ 3. Then 

Proof. If gcd(£„) = d, we have 

F(pi, ...,pt)= dF(p1/d pjd). 

I t suffices to consider d = 1. If pe ^ 2pi, then (2) 

F(pi, . . . , p t ) û PlPe - P l - p e - â iPeiPe ~ 3 ) . 
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Suppose that there exists a, possibly reordered, subsequence of pa, say 
2/s> 1 ^ |3 ^ k, such that 

* ^ 3, 

dp > dff+i, where d$ = gcd (d^i, q$) and d\ = 2i> 

rf*= 1. 
Then (2) 

F(Pi Pe)û F(qu ...,qk) 
k-1 7 

/3=1 00+1 0=1 

The maximum occurs when all dp/dp+i are minimal except one. Let 

Q = max q$ (JH =̂  1). 

Since dp+i is a proper divisor of dp, 

U...,Pe)^Qkf ( ^ - - l ) - q i 
0=1 VZ/3+1 / 

^ e((*> - 3) + 2 ^ ) - gi 

^ Q f - 2i since k à 3 and 21 à 2 s - 2 

£ i ( £ . - l ) ( £ . - 2 ) since Q ^ 2i-

Suppose that three £a 's, say a, a — d, a — 2d, are relatively prime and form an 
arithmetic progression. Then (7) 

F(pi p.) g F(a, a-d,a-2d) 
= (J (a - 2d - 2) + 1) (a - 2d) + (d - 1) (a - 2d - 1) - 1 
g | ( o - 2d)(a - 2) - d 

S *(a - 2)2 - 1 

< i ( £ . - 2)2. 

In the above situation we have shown that 

F<hPe(Pe~2). 

This will be called Case I in the proof of the corollary. Case II is the situation in 
which c > b > a are three pa's which are pairwise prime, not in an arithmetic 
progression, and satisfy 2a > c. Define c* by 

c*c = a (mod 5), |c*| < \b 
(possible since b > 2 and c* is prime to b). 

Assume that 

M à a[- j£iJ + c(|c*| - 1) = Mo. 

https://doi.org/10.4153/CJM-1969-088-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-088-3


STRONGLY CONNECTED GRAPHS 779 

We will show that M is a non-negative linear combination of a, b, and c so that 
F (a, b, c) < M0. Let X and /x be integers with \a + yfo = M. I t suffices to 
construct integers x, y, and w with 

(*) ya — wb ^ 0, x6 — yc ^ — X, wc — xa ^ —/x, 

since ikf = (#6 — yc + \)a + (wc — xa + /x)6 + (ya — wb)c. Let e and 77 be 
defined by 

c t] = e (mod b)f 0 ^ € ^ |c*| - 1, X - I - p r J g 77 ^ X. 

Let x, y, and z£> satisfy 

èx - - , (mod c), y . [ * * ± X ] fc * * ± J l , w = [ f ] . 

Clearly, the first two inequalities in (*) hold. We have: 

0 ( * * ± j ) . . C C * ( ^ ) (mod 6) - c*, - , 

Hence 
. a(^~ (&# + rj)) — e abx + an — ce 

W = b = be • 
Thus, 

. abx + an — ce — abx 
wc — xa è ; 

- Kax • a[v\\ - ^^ ~ i } ) 
^ I (aX - ikf) = -1*. 

WTe now bound ikf<j. The case |c*| = 1 yields a = zkc (mod 6), which, together 
with 2a > c > b > a, shows that a, b, and c form an arithmetic progression. This 
is in Case I. The case |c*| = %(c — 2) yields b = c — 1 and a = ± 1 (mod 5). 
This cannot occur. Hence, we have: 

F£ — + c(x-l)-l with 2 S x S W - 3). 

This yields 

F ^ max U06 + c - 1, ~ ^ + Jc(c — 5) — l ) 

< i ^ ( ? é - i ) . 

COROLLARY 4.4. / / G is an n-vertex fscdg with n ^ 7 awrf £(G) = 1 awd a£ 
Zeas/ three distinct elementary circuit lengths, then 

(17) 7(G) g J»(» + 1). 
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Proof. If the shortest circuit has length at most \n, the result follows from 
(11). Let I > \n be the length of the shortest circuit. Let d be the length of the 
shortest path from i to j . If d ^ n — I, then ri3 = d.lid < n — Z, we may add 
an elementary circuit to the path giving rij^d + n<2n — I. By (9) and (7), 

7(G) Û2n-l+F(pl9...,p$), 

where pa (1 ^ a è e) are the lengths of the elementary circuits of G. In Case I 
of the proof of the theorem, 

7(G) < 2n - \n + \n{n - 2) g \n(n + 1). 

In Case II of the proof of the theorem, we may take a = I to obtain: 

7(G) S 2n + max (— + c(x - 1) - a - 1 
\x 

where 

2 g x S \{c - 3), a < b < c S n, a + c ^ 26. 

This yields (17). 

THEOREM 4.5. Let G be an n-vertex fscdg with exactly two distinct elementary 
circuit lengths m and s. Assume that m > s and that gcd(m, s) = 1 and 
n < m{s — 1). Let an elementary m-circuit be 

[Xoj X\y . . . , Xm XQ\. 

For some 1 ^ i ^ m, there is no s-circuit containing (xt-i, xt). 

Proof. Assume the converse, that for every 1 ^ i ^ m we have: 

[Xi-i, xt = yu, . . . , ysi = Xi-.i\. 

Not all the y3i (1 < j ^ 5 and 1 ^ i ^ m) are distinct since n < m (s — 1). 
There are two cases both of which lead to contradictions. We begin by 
establishing: 

(**) if xu ?± xvi xc_i, then there is no circuit of the form 

[xv, . . . , (?), . . . , xu, xu+i, . . . , (x), . . . , xv] of length s. 

To prove this by contradiction we consider 

[xVJ . . . , x u = yut, . . . , y su = xu—i = 3̂ i,w—1> • • • > ^s tH- i = «̂J» 

where the first ellipsis corresponds to the first in (**) and the others stand for 
the obvious y's. Assuming u < v, this circuit has length 

5 — (v — u) + (s — 1) (m + u — v) = (s — l)m — (v — u — l)s 

which is impossible since v > u + 1 and gcd(w, s) = 1. We now consider the 
cases mentioned earlier. 

• 
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Case I : For some i,j, I we have %i = yH and 1 < j < s. Consider the two 
circuits 

[xi = yu, . . . , y a = xh . . . , Xt], [xi = yJif . . . , ysi = xt-h . . . , xt]. 

Their lengths add to m + s. Hence, one has length s and we may apply (**) 
to it. 

Case I I : Case I does not hold. 

W e have y a = yki with j , k > 1 and i j£ I. By symmetry , i = I — 1 may be 
excluded. Let yai = yai be the first of y2i . . . ,ysi which equals some ykh k > 1. 
Let yzi = y$i be the last. We have a ^ z. If a ^ J, then J — a = s — a since no 
circuits through Xior Xi can be shorter than s. li a > £, the circuit 

bat,. > - ,yzt = yu, • • • y yai = yai\ 

has length (z — a) — ft — a). In any case, (z — a) — ft — a) is a non-
negative linear combination of m and s. By (**), the elementary circuit 

[xt = y u , . . . , yai = yah • . . ,ysi = * i - i , . . . , xt] 

has length m. If / ^ i — 1, the same reasoning applies to 

(***) [Xl = ylh . . . , yu = yzij . . . , ysi = xz_i, . . . , xt]. 

Combining we obtain: 

m + m = (a + s — a) + (J + 5 — z) + m. 
Thus , 

(2 — a) — (J — a) = 2s — m, 

which is not a non-negative combination of 5 and m. Hence, I = i — 1. Bu t 
then, replacing (***) by the elementary circuit 

[xi = yiu . . . ,yu = yzi, . . . , y8i = x{[ 

yields 

m + ys = (a + (s - a) + 1) + ft + (s - z) - 1). 

Then 

0 - a) - ft - a ) = 25 - m - Ys < 0, 

a contradiction. 

W e now prove Theorem 4.1 . When n ^ 8 we may use (4) and (5). Let G be a 
graph which gives x 6 T(n, 1) in the s ta tement of the theorem. By (17), G has 
two distinct elementary circuit lengths, say m > s. By (11) we have 2s ^ n. 
Hence, s + m > n. Le t x t_i and x< be the vertices mentioned in Theorem 4.5. 
Then (#*; #*_i) has the upp. By (7) and Theorem 2.2, 

T ( G ) ^ (m — 1) + (ms — m — s) + 1 = (m — l)s. 
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Let u and v be any vertices. We will show that 

ruv Û n — s — 1 + m. 
Then by (9) and (7) 

y{G) S in — s — 1 + m) + (ms — m — s) + 1 

= (m — l)s + (m — s) + l, 

where n — m + / and 0 ^ l = n — m < s\ completing the proof. Let d be the 
distance from u to v. If d ^ n — s, then the corresponding path intersects every 
circuit and we have 

ruv = d S n S n — s — 1 + m. 

If d < n — s, we may add an elementary circuit to the path to obtain a path 
with at least s ^ n — s distinct vertices. Hence, it intersects every circuit. 
Thus, 

ruv S (n — s — 1) + m. 
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