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Bayesian Inverse Problems and Well-Posedness

In this chapter we introduce the Bayesian approach to inverse problems in which
the unknown parameter and the observed data are viewed as random variables.
In this probabilistic formulation, the solution of the inverse problem is the
posterior distribution on the parameter given the data. We will show that the
Bayesian formulation leads to a form of well-posedness: small perturbations
of the forward model or the observed data translate into small perturbations of
the posterior distribution. Well-posedness requires a notion of distance between
probability measures. We introduce the total variation and Hellinger distances,
giving characterizations of them, and bounds relating them, that will be used
throughout these notes. We prove well-posedness in the Hellinger distance.

The chapter is organized as follows. Section 1.1 introduces the formulation of
Bayesian inverse problems. In Section 1.2 we derive a formula for the posterior
pdf and explain how several estimators for the unknown parameter can be
obtained using the posterior. Section 1.3 describes the well-posedness of the
Bayesian formulation together with the necessary background on distances
between probability measures. The chapter closes with bibliographical remarks
in Section 1.4.

1.1 Formulation of Bayesian Inverse Problems

We consider the following setting. We let𝐺 : R𝑑 → R𝑘 define the forward model
and aim to recover an unknown parameter 𝑢 ∈ R𝑑 from data 𝑦 ∈ R𝑘 given by

𝑦 = 𝐺 (𝑢) + 𝜂, (1.1)

where 𝜂 ∈ R𝑘 represents observation noise. We view (𝑢, 𝑦) ∈ R𝑑 × R𝑘 as a
random variable, whose distribution is specified by means of the following
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4 Bayesian Inverse Problems and Well-Posedness

assumption on the distribution of (𝑢, 𝜂) ∈ R𝑑 ×R𝑘 and the relationship between
𝑢, 𝑦 and 𝜂 postulated in equation (1.1).

Assumption 1.1 The distribution of the random variable (𝑢, 𝜂) ∈ R𝑑 × R𝑘 is
defined by:

• 𝑢 ∼ 𝜌(𝑢), 𝑢 ∈ R𝑑 .
• 𝜂 ∼ 𝜈(𝜂), 𝜂 ∈ R𝑘 .
• 𝑢 and 𝜂 are independent, written 𝑢 ⊥ 𝜂.

Here 𝜌 and 𝜈 describe the pdfs of the random variables 𝑢 and 𝜂, respectively.
Then 𝜌(𝑢) is called the prior pdf and, for each fixed 𝑢 ∈ R𝑑 , 𝑦 | 𝑢 ∼ 𝜈

(
𝑦−𝐺 (𝑢)

)
determines the likelihood function. In this probabilistic perspective, the solution
to the inverse problem is the conditional distribution of 𝑢 given 𝑦, which is
called the posterior distribution, and will be denoted by 𝑢 | 𝑦 ∼ 𝜋𝑦 (𝑢). The
posterior pdf determines, for any candidate parameter value in R𝑑 , how probable
that parameter is, based on prior assumptions and the link between parameter
and data, all expressed probabilistically. In particular, the posterior contains
information about the level of uncertainty in the parameter recovery: for instance,
large posterior covariance typically indicates that the data contains insufficient
information to accurately recover the input parameter.

1.2 Formula for Posterior pdf: Bayes’ Theorem

Bayes’ theorem is a bridge connecting the prior, the likelihood, and the posterior.

Theorem 1.2 (Bayes’ Theorem) Let Assumption 1.1 hold, and assume that

𝑍 = 𝑍 (𝑦) B
∫
R𝑑
𝜈
(
𝑦 − 𝐺 (𝑢)

)
𝜌(𝑢)𝑑𝑢 > 0.

Then 𝑢 | 𝑦 ∼ 𝜋𝑦 (𝑢), where

𝜋𝑦 (𝑢) = 1
𝑍
𝜈
(
𝑦 − 𝐺 (𝑢)

)
𝜌(𝑢). (1.2)

Proof Denote by P(·) the pdf of a random variable and by P(· | ·) its conditional
pdf. We have

P(𝑢, 𝑦) = P(𝑢 | 𝑦) P(𝑦), if P(𝑦) > 0,
P(𝑢, 𝑦) = P(𝑦 | 𝑢) P(𝑢), if P(𝑢) > 0.
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1.2 Formula for Posterior pdf: Bayes’ Theorem 5

Note that the marginal pdf on 𝑦 is given by

P(𝑦) =
∫
R𝑑
P(𝑢, 𝑦)𝑑𝑢

=

∫
R𝑑
P(𝑦 | 𝑢) P(𝑢)𝑑𝑢 = 𝑍 > 0.

Then

P(𝑢 | 𝑦) = 1
P(𝑦) P(𝑦 | 𝑢) P(𝑢) =

1
P(𝑦) 𝜈

(
𝑦 − 𝐺 (𝑢)

)
𝜌(𝑢) (1.3)

for both P(𝑢) = 𝜌(𝑢) > 0 and P(𝑢) = 𝜌(𝑢) = 0. �

We will often denote the likelihood function by l(𝑢) B 𝜈
(
𝑦 −𝐺 (𝑢)

)
. We then

write

𝜋𝑦 (𝑢) = 1
𝑍

l(𝑢)𝜌(𝑢),

omitting the data 𝑦 in the likelihood function; when no confusion arises we will
also simply write 𝜋(𝑢) for the posterior pdf, rather than 𝜋𝑦 (𝑢).
Remark 1.3 The proof of Theorem 1.2 shows that in order to apply Bayes’
formula (1.2) one needs to guarantee that the normalizing constant P(𝑦) = 𝑍 is
positive; in other words, the marginal density of the observed data 𝑦 needs to
be positive. This is simply the natural assumption that the observed data could
indeed have been observed, given the probabilistic conditions in Assumption 1.1.
From now on it will be assumed without further notice that P(𝑦) = 𝑍 > 0. Finally,
we remark that throughout these notes we will denote normalizing constants
generically by 𝑍, and depending on the context the normalizing constant may
sometimes be interpreted as the marginal density of an underlying data set. ♦

The posterior distribution 𝜋𝑦 (𝑢) contains all the knowledge on the parameter
𝑢 available in the prior and the data. In applications it is often useful, however, to
summarize the posterior distribution through a few numerical values. Summariz-
ing the posterior is particularly important if the parameter is high-dimensional,
since then visualizing the posterior or detecting regions of high posterior proba-
bility is nontrivial. Two natural numerical summaries are the posterior mean and
the posterior mode.

Definition 1.4 The posterior mean estimator of 𝑢 given data 𝑦 is the mean of
the posterior distribution:

𝑢PM =

∫
R𝑑
𝑢𝜋𝑦 (𝑢) 𝑑𝑢.
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6 Bayesian Inverse Problems and Well-Posedness

The maximum a posteriori (MAP) estimator of 𝑢 given data 𝑦 is the mode of
the posterior distribution 𝜋𝑦 (𝑢), defined as

𝑢MAP = arg max
𝑢∈R𝑑

𝜋𝑦 (𝑢).

This maximum may not be uniquely defined, in which case we talk about a,
rather than the, MAP estimator. ♦

The importance of the MAP and the posterior mean already suggest the need
to compute maxima (for the MAP estimator) and integrals (for the posterior
mean) in order to extract actionable information from the Bayesian formulation
of inverse problems and data assimilation. For this reason, optimization (to
compute maxima) and sampling (to compute integrals) will play an important
role in these notes. In practice it is often useful to quantify the uncertainty in
the parameter reconstruction, and numerical summaries such as the posterior
mean and the MAP estimators can be complemented by credible intervals;
that is, parameter regions of prescribed posterior probability. In order to make
tractable the computation of estimators and credible intervals, the posterior can
be approximated by a simple distribution, such as a Gaussian or a Gaussian
mixture; optimization can be used to determine such approximations. In a similar
spirit, sampling may be viewed as approximating the posterior by a combination
of Dirac masses to enable computation of integrals. An optimization perspective
for inverse problems and data assimilation will be studied in Chapters 3 and
9, respectively, and Gaussian approximations will be discussed in Chapters 4
and 10, respectively; Dirac approximations constructed via sampling will be
studied in Chapters 5 and 6 (inverse problems) and in Chapters 11 and 12 (data
assimilation).

We next consider two simple examples of a direct application of Bayes’
theorem.

Example 1.5 (MAP and Posterior Mean Estimators) Let 𝑑 = 𝑘 = 1, 𝜂 ∼ 𝜈 =
N(0, 𝛾2), and let

𝜌(𝑢) =
{

1
2 , 𝑢 ∈ (−1, 1),
0, 𝑢 ∈ (−1, 1)𝑐 .

Suppose that the observation is generated by 𝑦 = 𝑢 + 𝜂. Using Bayes’ Theorem
1.2, we derive the posterior pdf

𝜋𝑦 (𝑢) =
{

1
2𝑍 exp(− 1

2𝛾2 |𝑦 − 𝑢 |2), 𝑢 ∈ (−1, 1),
0, 𝑢 ∈ (−1, 1)𝑐 ,

where 𝑍 is a normalizing constant ensuring that
∫
R
𝜋𝑦 (𝑢)𝑑𝑢 = 1. Now we find
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the MAP estimator. From the explicit formula for 𝜋𝑦 , we have

𝑢MAP = arg max
𝑢∈R

𝜋𝑦 (𝑢) =


𝑦 if 𝑦 ∈ (−1, 1),
−1 if 𝑦 ≤ −1,
1 if 𝑦 ≥ 1.

In this example, the prior on 𝑢 is supported on (−1, 1) and the posterior on 𝑢 | 𝑦
is supported on (−1, 1). If the data lies in (−1, 1) then the MAP estimator is the
data itself; otherwise it is the extremal point of the prior support which matches
the sign of the data. The posterior mean is

𝑢PM =
1

2𝑍

∫ 1

−1
𝑢 exp

(
− 1

2𝛾2 |𝑦 − 𝑢 |
2
)
𝑑𝑢,

which may be approximated using, for instance, the sampling methods described
in Chapters 5 and 6. ♦

The following example illustrates once again the application of Bayes’ theorem,
and shows that the posterior may concentrate near a low-dimensional manifold
in the input parameter space R𝑑 . In such a case it is important to understand the
geometry of the support of the posterior density, which cannot be captured by
point estimation or Gaussian approximations.

Example 1.6 (Concentration of Posterior on a Manifold) Let 𝑑 = 2, 𝑘 = 1,
𝜌 ∈ 𝐶 (R2,R), and suppose that there is 𝜌max > 0 such that, for all 𝑢 ∈ R2, we
have 0 < 𝜌(𝑢) ≤ 𝜌max < ∞. Suppose that the observation is generated by

𝑦 = 𝐺 (𝑢) + 𝜂,
𝐺 (𝑢) = 𝑢2

1 + 𝑢
2
2,

𝜂 ∼ 𝜈 = N(0, 𝛾2), 0 < 𝛾 � 1,

and assume that 𝑦 > 0. Using Bayes’ theorem we obtain the posterior pdf

𝜋𝑦 (𝑢) = 1
𝑍

exp
(
− 1

2𝛾2 |𝑢
2
1 + 𝑢

2
2 − 𝑦 |

2
)
𝜌(𝑢).

We now show that the posterior concentrates near the manifold defined by the
circumference {𝑢 ∈ R2 : 𝑢2

1 + 𝑢
2
2 = 𝑦}. Denote 𝐴± B {𝑢 ∈ R2 : |𝑢2

1 + 𝑢
2
2 − 𝑦 |

2 ≤
𝛾2±𝛿}, for some fixed 𝛿 ∈ (0, 2). The set 𝐴− is defined so that it captures most
of the posterior probability, and 𝐴+ so that it captures little of the posterior
probability. They are defined this way because the observational noise has
variance 𝛾2; considering a neighborhood of the circumference which scales as 𝛾
raised to a power slightly smaller than 2 captures most of the posterior probability;
considering a neighborhood of the circumference in which the exponent is slightly
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8 Bayesian Inverse Problems and Well-Posedness

larger than this captures little of the posterior probability. Define 𝐵 to be the
closed ball of radius 2√𝑦 centered at the origin. Let 𝑢+ ∈ 𝐴+ ⊂ 𝐵, 𝑢− ∈ (𝐴−)𝑐
and let 𝜌min = inf𝑢∈𝐵 𝜌(𝑢). Since 𝜌(𝑢) is positive and continuous and 𝐵 is
compact, 𝜌min > 0. Taking the small noise limit yields

𝜋𝑦 (𝑢+)
𝜋𝑦 (𝑢−) ≥ exp

(
−1

2
𝛾 𝛿 + 1

2
𝛾−𝛿

)
𝜌min

𝜌max
→∞, as 𝛾 → 0+.

Therefore, noting that 𝑦 > 0, the posterior 𝜋𝑦 concentrates, as 𝛾 → 0+, on the
circumference with radius √𝑦. ♦

Figure 1.1 The posterior measure concentrates on a circumference with radius √𝑦.
Here, the blue shadow area is 𝐴+ and the green shadow area is (𝐴−)𝑐 .

1.3 Well-Posedness of Bayesian Inverse Problems

In this section we show that the Bayesian formulation of inverse problems leads to
a form of well-posedness. More precisely, we study the sensitivity of the posterior
pdf to perturbations of the forward model 𝐺. In many inverse problems the ideal
forward model 𝐺 is not accessible but can be approximated by some computable
𝐺 𝛿 ; consequently 𝜋𝑦 is replaced by 𝜋𝑦

𝛿
. An example that is often found in

applications, to which the theory contained herein may be generalized, is when
𝐺 is an operator acting on an infinite-dimensional space which is approximated,
for the purposes of computation, by some finite-dimensional operator 𝐺 𝛿 . We
seek to prove that, under certain assumptions, the small difference between 𝐺
and 𝐺 𝛿 (forward error) leads to a similarly small difference between 𝜋𝑦 and 𝜋𝑦

𝛿

(inverse error):
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1.3 Well-Posedness of Bayesian Inverse Problems 9

Meta Theorem (Well-Posedness)

|𝐺 − 𝐺 𝛿 | = 𝑂 (𝛿) =⇒ 𝑑 (𝜋𝑦 , 𝜋𝑦
𝛿
) = 𝑂 (𝛿)

for small enough 𝛿 > 0 and some metric 𝑑 (·, ·) on probability densities.

This result will be formalized in Theorem 1.15 below, which shows that the
𝑂 (𝛿)-convergence of 𝜋𝑦

𝛿
with respect to some distance 𝑑 (·, ·) can be guaranteed

under certain assumptions on the likelihood. We will conclude the chapter by
showing an example where these assumptions hold true. In order to discuss these
issues we will need to introduce metrics on probability densities.

1.3.1 Metrics on Probability Densities
Here we introduce the total variation and the Hellinger distance, both of which
have been used to show well-posedness results. In this chapter we will use the
Hellinger distance to establish well-posedness of Bayesian inverse problems, and
in Chapter 7 we employ the total variation distance to establish well-posedness
of Bayesian formulations of filtering and smoothing in data assimilation.

Definition 1.7 The total variation distance between two pdfs 𝜋 and 𝜋′ is
defined by

𝑑TV (𝜋, 𝜋′) B
1
2

∫
|𝜋(𝑢) − 𝜋′(𝑢) |𝑑𝑢 =

1
2
‖𝜋 − 𝜋′‖𝐿1 .

The Hellinger distance between two pdfs 𝜋 and 𝜋′ is defined by

𝑑H (𝜋, 𝜋′) B
(1
2

∫
|
√︁
𝜋(𝑢) −

√︁
𝜋′(𝑢) |2𝑑𝑢

)1/2
=

1
√

2
‖
√
𝜋 −
√
𝜋′‖𝐿2 .

♦

In the rest of this subsection we will establish bounds between the Hellinger
and total variation distance, and show how both distances can be used to bound
the difference of expected values computed with two different densities; these
results will be used in subsequent chapters. Before doing so, the next lemma
motivates our choice of normalization constant 1/2 for total variation distance
and 1/

√
2 for Hellinger distance: they are chosen so that the maximum possible

distance between two densities is one. The proof also shows that 𝜋 and 𝜋′ have
total variation and Hellinger distance equal to one if and only if they have disjoint
supports; that is, if

∫
𝜋(𝑢)𝜋′(𝑢)𝑑𝑢 = 0.

Lemma 1.8 For any pdfs 𝜋 and 𝜋′,

0 ≤ 𝑑TV (𝜋, 𝜋′) ≤ 1, 0 ≤ 𝑑H (𝜋, 𝜋′) ≤ 1.
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10 Bayesian Inverse Problems and Well-Posedness

Proof The lower bounds follow immediately from the definitions, so we only
need to prove the upper bounds. For total variation distance,

𝑑TV (𝜋, 𝜋′) =
1
2

∫
|𝜋(𝑢) − 𝜋′(𝑢) |𝑑𝑢 ≤ 1

2

∫
𝜋(𝑢)𝑑𝑢 + 1

2

∫
𝜋′(𝑢)𝑑𝑢 = 1,

and for Hellinger distance,

𝑑H (𝜋, 𝜋′) =
(
1
2

∫ ���√︁𝜋(𝑢) − √︁
𝜋′(𝑢)

���2𝑑𝑢)1/2

=

(
1
2

∫ (
𝜋(𝑢) + 𝜋′(𝑢) − 2

√︁
𝜋(𝑢)𝜋′(𝑢)

)
𝑑𝑢

)1/2

≤
(1
2

∫ (
𝜋(𝑢) + 𝜋′(𝑢)

)
𝑑𝑢

)1/2

= 1.

�

The following result gives bounds between total variation and Hellinger
distance.

Lemma 1.9 For any pdfs 𝜋 and 𝜋′,

1
√

2
𝑑TV (𝜋, 𝜋′) ≤ 𝑑H (𝜋, 𝜋′) ≤

√︁
𝑑TV (𝜋, 𝜋′).

Proof From the Cauchy–Schwarz inequality it follows that

𝑑TV (𝜋, 𝜋′) =
1
2

∫ ���√︁𝜋(𝑢) − √︁
𝜋′(𝑢)

������√︁𝜋(𝑢) + √︁
𝜋′(𝑢)

���𝑑𝑢
≤

(
1
2

∫ ���√︁𝜋(𝑢) − √︁
𝜋′(𝑢)

���2𝑑𝑢)1/2 (1
2

∫ ���√︁𝜋(𝑢) + √︁
𝜋′(𝑢)

���2𝑑𝑢)1/2

≤ 𝑑H (𝜋, 𝜋′)
(
1
2

∫ (
2𝜋(𝑢) + 2𝜋′(𝑢)

)
𝑑𝑢

)1/2

=
√

2𝑑H (𝜋, 𝜋′).

Notice that |
√︁
𝜋(𝑢) −

√︁
𝜋′(𝑢) | ≤ |

√︁
𝜋(𝑢) +

√︁
𝜋′(𝑢) | since

√︁
𝜋(𝑢),

√︁
𝜋′(𝑢) ≥ 0.
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Thus we have

𝑑H (𝜋, 𝜋′) =
(
1
2

∫ ���√︁𝜋(𝑢) − √︁
𝜋′(𝑢)

���2𝑑𝑢)1/2

≤
(
1
2

∫ ���√︁𝜋(𝑢) − √︁
𝜋′(𝑢)

������√︁𝜋(𝑢) + √︁
𝜋′(𝑢)

���𝑑𝑢)1/2

≤
(1
2

∫ ��𝜋(𝑢) − 𝜋′(𝑢)��𝑑𝑢)1/2

=
√︁
𝑑TV (𝜋, 𝜋′).

�

The following two lemmas show that if two densities are close in total
variation or in Hellinger distance, expectations computed with respect to both
densities are also close. In addition, the following lemma also provides a useful
characterization of the total variation distance that will be used repeatedly
throughout these notes.

Lemma 1.10 Let 𝑓 be a function such that | 𝑓 |∞ B sup𝑢∈R𝑑 | 𝑓 (𝑢) | < ∞. It
holds that ��E𝜋 [ 𝑓 ] − E𝜋′ [ 𝑓 ]�� ≤ 2| 𝑓 |∞𝑑TV (𝜋, 𝜋′).

Moreover, the following variational characterization of the total variation
distance holds:

𝑑TV (𝜋, 𝜋′) =
1
2

sup
| 𝑓 |∞≤1

��E𝜋 [ 𝑓 ] − E𝜋′ [ 𝑓 ]��. (1.4)

Proof For the first part of the lemma, note that���E𝜋 [ 𝑓 ] − E𝜋′ [ 𝑓 ]��� = ��� ∫
R𝑑
𝑓 (𝑢)

(
𝜋(𝑢) − 𝜋′(𝑢)

)
𝑑𝑢

���
≤ 2| 𝑓 |∞ ·

1
2

∫
R𝑑
|𝜋(𝑢) − 𝜋′(𝑢) |𝑑𝑢

= 2| 𝑓 |∞𝑑TV (𝜋, 𝜋′).

This in particular shows that, for any 𝑓 with | 𝑓 |∞ = 1,

𝑑TV (𝜋, 𝜋′) ≥
1
2
��E𝜋 [ 𝑓 ] − E𝜋′ [ 𝑓 ]��.

Our goal now is to show a choice of 𝑓 with | 𝑓 |∞ = 1 that achieves equality. Define
𝑓 (𝑢) B sign

(
𝜋(𝑢) −𝜋′(𝑢)

)
, so that 𝑓 (𝑢)

(
𝜋(𝑢) −𝜋′(𝑢)

)
= |𝜋(𝑢) −𝜋′(𝑢) |. Then
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12 Bayesian Inverse Problems and Well-Posedness

it holds that | 𝑓 |∞ = 1, and

𝑑TV (𝜋, 𝜋′) =
1
2

∫
R𝑑
|𝜋(𝑢) − 𝜋′(𝑢) | 𝑑𝑢

=
1
2

∫
R𝑑
𝑓 (𝑢)

(
𝜋(𝑢) − 𝜋′(𝑢)

)
𝑑𝑢

=
1
2

���E𝜋 [ 𝑓 ] − E𝜋′ [ 𝑓 ]���.
This completes the proof of the variational characterization. �

Lemma 1.11 Let 𝑓 be a function such that 𝑓2 B
(
E𝜋 [| 𝑓 |2] +E𝜋′ [| 𝑓 |2]

) 1
2 < ∞.

Then ��E𝜋 [ 𝑓 ] − E𝜋′ [ 𝑓 ]�� ≤ 2 𝑓2𝑑H (𝜋, 𝜋′).

Proof Using the Cauchy–Schwarz inequality gives���E𝜋 [ 𝑓 ] − E𝜋′ [ 𝑓 ]��� = ����∫
R𝑑
𝑓 (𝑢)

(√︁
𝜋(𝑢) −

√︁
𝜋′(𝑢)

) (√︁
𝜋(𝑢) +

√︁
𝜋′(𝑢)

)
𝑑𝑢

����
≤

(
1
2

∫ ���√︁𝜋(𝑢) − √︁
𝜋′(𝑢)

���2𝑑𝑢)1/2

×
(
2
∫
| 𝑓 (𝑢) |2

���√︁𝜋(𝑢) + √︁
𝜋′(𝑢)

���2 𝑑𝑢)1/2

≤ 𝑑H (𝜋, 𝜋′)
(
4
∫
| 𝑓 (𝑢) |2

(
𝜋(𝑢) + 𝜋′(𝑢)

)
𝑑𝑢

)1/2

= 2 𝑓2 𝑑H (𝜋, 𝜋′).

�

Remark 1.12 Note that the result for Hellinger only assumes that 𝑓 is square
integrable with respect to 𝜋 and 𝜋′. In contrast, the result for total variation
distance assumes that 𝑓 is bounded, which is a stronger condition. Lemma 1.9
also demonstrates that smallness in the Hellinger metric is a more stringent
condition than smallness in total variation. Our aim in the following section is
to show well-posedness in some metric on probability densities. The preceding
observations suggest that establishing such a result in the Hellinger metric makes
a stronger statement than doing so in total variation. ♦

1.3.2 Approximation Theorem
We denote by

l(𝑢) = 𝜈
(
𝑦 − 𝐺 (𝑢)

)
and l𝛿 (𝑢) = 𝜈

(
𝑦 − 𝐺 𝛿 (𝑢)

)
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1.3 Well-Posedness of Bayesian Inverse Problems 13

the likelihoods associated with 𝐺 (𝑢) and 𝐺 𝛿 (𝑢), so that

𝜋𝑦 (𝑢) = 1
𝑍

l(𝑢)𝜌(𝑢) and 𝜋
𝑦

𝛿
(𝑢) = 1

𝑍𝛿
l𝛿 (𝑢)𝜌(𝑢),

where 𝑍, 𝑍𝛿 > 0 are the corresponding normalizing constants. Before we
proceed to our main result, we make some assumptions.

Assumption 1.13 There exist 𝛿+ > 0 and 𝐾1, 𝐾2 < ∞ such that, for all
𝛿 ∈ (0, 𝛿+),

(i) |
√︁

l(𝑢) −
√︁

l𝛿 (𝑢) | ≤ 𝜑(𝑢)𝛿 for some 𝜑(𝑢) such that E𝜌 [𝜑2 (𝑢)] ≤ 𝐾2
1 ;

(ii) sup𝑢∈R𝑑 ( |
√︁

l(𝑢) | + |
√︁

l𝛿 (𝑢) |) ≤ 𝐾2.

Remark 1.14 Assumption 1.13 only involves conditions on the likelihood l and
the approximate likelihood l𝛿 . Our presentation in this chapter emphasizes the
situation in which this approximation is necessitated in order to approximate
the forward model 𝐺. However, another important scenario which is covered by
the theory is approximation due to perturbations of the data 𝑦. As an example,
we will establish in Chapter 7 a well-posedness result that guarantees stability
of Bayesian smoothing under perturbations of the data. More generally, the
theoretical framework introduced here is very flexible, and it may be employed
to study the stability of many Bayesian formulations of inverse problems and
data assimilation under a wide range of perturbations. ♦

Now we state the main result of this section:

Theorem 1.15 (Well-Posedness of Posterior) Under Assumption 1.13 we have

𝑑H (𝜋𝑦 , 𝜋𝑦𝛿) ≤ 𝑐𝛿, 𝛿 ∈ (0,Δ),

for some Δ > 0 and some 𝑐 ∈ (0, +∞) independent of 𝛿.

Notice that this theorem, together with Lemma 1.11, guarantees that expecta-
tions computed with respect to 𝜋𝑦 and 𝜋𝑦

𝛿
are order 𝛿 apart. To prove Theorem

1.15, we first show a lemma which characterizes the normalization factor 𝑍𝛿 in
the small 𝛿 limit.

Lemma 1.16 Under Assumption 1.13 there exist Δ > 0, 𝑐1, 𝑐2 ∈ (0, +∞) such
that

|𝑍 − 𝑍𝛿 | ≤ 𝑐1𝛿 and 𝑍, 𝑍𝛿 > 𝑐2, for 𝛿 ∈ (0,Δ).
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14 Bayesian Inverse Problems and Well-Posedness

Proof Since 𝑍 =
∫

l(𝑢)𝜌(𝑢)𝑑𝑢 and 𝑍𝛿 =
∫

l𝛿 (𝑢)𝜌(𝑢)𝑑𝑢, we have

|𝑍 − 𝑍𝛿 | =
����∫ (

l(𝑢) − l𝛿 (𝑢)
)
𝜌(𝑢)𝑑𝑢

����
≤

( ∫ ���√︁l(𝑢) −
√︁

l𝛿 (𝑢)
���2𝜌(𝑢)𝑑𝑢)1/2 ( ∫ ���√︁l(𝑢) +

√︁
l𝛿 (𝑢)

���2𝜌(𝑢)𝑑𝑢)1/2

≤
( ∫

𝛿2𝜑(𝑢)2𝜌(𝑢)𝑑𝑢
)1/2 ( ∫

𝐾2
2 𝜌(𝑢)𝑑𝑢

)1/2

≤ 𝐾1𝐾2𝛿, 𝛿 ∈ (0, 𝛿+).

Therefore, for 𝛿 ≤ Δ B min{ 𝑍
2𝐾1𝐾2

, 𝛿+}, we have

𝑍𝛿 ≥ 𝑍 − |𝑍 − 𝑍𝛿 | ≥
1
2
𝑍.

The lemma follows by taking 𝑐1 = 𝐾1𝐾2 and 𝑐2 = 1
2𝑍 . �

Proof of Theorem 1.15 We break the total error into two contributions, one
reflecting the difference between 𝑍 and 𝑍𝛿 , and the other the difference between
l and l𝛿 :

𝑑H (𝜋𝑦 , 𝜋𝑦𝛿) =
1
√

2




√𝜋𝑦 −√︃
𝜋
𝑦

𝛿





𝐿2

=
1
√

2




√︂ l𝜌
𝑍
−

√︂
l𝜌
𝑍𝛿
+

√︂
l𝜌
𝑍𝛿
−

√︂
l𝛿𝜌
𝑍𝛿





𝐿2

≤ 1
√

2




√︂ l𝜌
𝑍
−

√︂
l𝜌
𝑍𝛿





𝐿2
+ 1
√

2




√︂ l𝜌
𝑍𝛿
−

√︂
l𝛿𝜌
𝑍𝛿





𝐿2
.

Using Lemma 1.16 we have, for 𝛿 ∈ (0,Δ),


√︂ l𝜌
𝑍
−

√︂
l𝜌
𝑍𝛿





𝐿2

=

��� 1
√
𝑍
− 1
√
𝑍𝛿

���( ∫ l(𝑢)𝜌(𝑢)𝑑𝑢
)1/2

=
|𝑍 − 𝑍𝛿 |

(
√
𝑍 +
√
𝑍𝛿)
√
𝑍𝛿

≤ 𝑐1

2𝑐2
𝛿,

and


√︂ l𝜌
𝑍𝛿
−

√︂
l𝛿𝜌
𝑍𝛿





𝐿2

=
1
√
𝑍𝛿

( ∫ ���√︁l(𝑢) −
√︁

l𝛿 (𝑢)
���2𝜌(𝑢)𝑑𝑢)1/2

≤

√︄
𝐾2

1
𝑐2
𝛿.

Therefore

𝑑H (𝜋𝑦 , 𝜋𝑦𝛿) ≤
1
√

2
𝑐1

2𝑐2
𝛿 + 1
√

2

√︄
𝐾2

1
𝑐2
𝛿 = 𝑐𝛿,
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1.3 Well-Posedness of Bayesian Inverse Problems 15

with 𝑐 = 1√
2
𝑐1
2𝑐2
+ 𝐾1√

2𝑐2
, which is independent of 𝛿. �

1.3.3 Example: Well-Posedness for Parameter Estimation in an ODE
Many inverse problems arise from differential equations with unknown input
parameters. Here we consider a simple but typical example where 𝐺 (𝑢) comes
from the solution of an ordinary differential equation (ODE), which needs to be
solved numerically. Let 𝑥(𝑡) be the solution to the initial value problem

𝑑𝑥

𝑑𝑡
= 𝐹 (𝑥; 𝑢), 𝑥(0) = 0, (1.5)

where 𝐹 : R𝑘 ×R𝑑 → R𝑘 is a function such that 𝐹 (𝑥; 𝑢) and the partial Jacobian
𝐷𝑥𝐹 (𝑥; 𝑢) are uniformly bounded with respect to (𝑥, 𝑢), i.e.

|𝐹 (𝑥; 𝑢) |, |𝐷𝑥𝐹 (𝑥; 𝑢) | < 𝐹max, for all (𝑥, 𝑢) ∈ R𝑘 × R𝑑 ,

for some constant 𝐹max, and thus 𝐹 (𝑥; 𝑢) is Lipschitz in 𝑥 in that, for all 𝑢 ∈ R𝑑 ,

|𝐹 (𝑥; 𝑢) − 𝐹 (𝑥 ′; 𝑢) | ≤ 𝐹max |𝑥 − 𝑥 ′ |, for all 𝑥, 𝑥 ′ ∈ R𝑘 .

Note that 𝑢 ∈ R𝑑 defines parametric dependence of the vector field defining the
differential equation.

Now consider the inverse problem setting

𝑦 = 𝐺 (𝑢) + 𝜂,

where

𝐺 (𝑢) B 𝑥(1) = 𝑥(𝑡) |𝑡=1,

and 𝜂 ∼ N(0, 𝛾2𝐼𝑘 ). We assume that the exact mapping 𝐺 (𝑢) is replaced by
some numerical approximation 𝐺 𝛿 (𝑢). In particular, 𝐺 𝛿 (𝑢) is given by using
the forward Euler method to solve the ODE (1.5). Define 𝑋0 = 0 and

𝑋ℓ+1 = 𝑋ℓ + 𝛿𝐹 (𝑋ℓ ; 𝑢), ℓ ≥ 0,

where 𝛿 = 1
𝐿

for some large integer 𝐿. Finally define 𝐺 𝛿 (𝑢) B 𝑋𝐿 .
In what follows, we will prove that 𝐺 𝛿 (𝑢) is uniformly bounded and close

to 𝐺 (𝑢) when 𝛿 is small, and that 𝐺 and 𝐺 𝛿 both satisfy the same global
bound. Then we will use these results to show that Assumption 1.13 is satisfied.
Therefore, we can apply Theorem 1.15 to this example to establish that the
approximate posterior 𝜋𝑦

𝛿
, defined by approximate forward model 𝐺 𝛿 , is close

to the true posterior 𝜋𝑦 with exact forward model 𝐺.
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16 Bayesian Inverse Problems and Well-Posedness

In showing that Assumption 1.13 is satisfied, we use Lemmas 1.17 and 1.18
below. Recall that 𝜂 ∼ N(0, 𝛾2𝐼𝑘 ), and thus√︁

l(𝑢) =
√︃
𝜈
(
𝑦 − 𝐺 (𝑢)

)
=

1
(2𝜋)𝑘/4𝛾𝑘/2

exp
(
− 1

4𝛾2 |𝑦 − 𝐺 (𝑢) |
2
)
,

√︁
l𝛿 (𝑢) =

√︃
𝜈
(
𝑦 − 𝐺 𝛿 (𝑢)

)
=

1
(2𝜋)𝑘/4𝛾𝑘/2

exp
(
− 1

4𝛾2 |𝑦 − 𝐺 𝛿 (𝑢) |2
)
.

• For Assumption 1.13(i) notice that the function 𝑒−𝑤 is Lipschitz for 𝑤 > 0,
with Lipschitz constant 1. Therefore we have���√︁l(𝑢) −

√︁
l𝛿 (𝑢)

��� ≤ 1
(2𝜋)𝑘/4𝛾𝑘/2

· 1
4𝛾2 ·

��|𝑦 − 𝐺 (𝑢) |2 − |𝑦 − 𝐺 𝛿 (𝑢) |2
��

=
1

(2𝜋)𝑘/4𝛾𝑘/2
· 1

4𝛾2 · |2𝑦 − 𝐺 (𝑢) − 𝐺 𝛿 (𝑢) | |𝐺 (𝑢) − 𝐺 𝛿 (𝑢) |

≤ 1
(2𝜋)𝑘/4𝛾𝑘/2

· 1
4𝛾2 · (2|𝑦 | + 2𝐹max)𝑐𝛿

= 𝑐𝛿.

That is, Assumption 1.13(i) is satisfied with 𝜑(𝑢) = 𝑐 and
∫
R𝑑
𝜑2 (𝑢)𝜌(𝑢)

𝑑𝑢 = 𝑐2 < ∞.
• Assumption 1.13(ii) is satisfied, since√︁

l(𝑢) = 1
(2𝜋)𝑘/4𝛾𝑘/2

exp
(
− 1

4𝛾2 |𝑦 − 𝐺 (𝑢) |
2
)
≤ 1
(2𝜋)𝑘/4𝛾𝑘/2

,

√︁
l𝛿 (𝑢) =

1
(2𝜋)𝑘/4𝛾𝑘/2

exp
(
− 1

4𝛾2 |𝑦 − 𝐺 𝛿 (𝑢) |2
)
≤ 1
(2𝜋)𝑘/4𝛾𝑘/2

.

The preceding verification of Assumption 1.13 used the following two lemmas,
and the first of these uses the Gronwall inequality which follows them. Define
𝑡ℓ = ℓ𝛿, 𝑥ℓ = 𝑥(𝑡ℓ). The following lemma gives an estimate on the error generated
from using the forward Euler method.

Lemma 1.17 Let 𝐸ℓ B 𝑥ℓ − 𝑋ℓ . Then there is 𝑐 < ∞ independent of 𝛿 such
that

|𝐸ℓ | ≤ 𝑐𝛿, 0 ≤ ℓ ≤ 𝐿.

In particular,

|𝐺 (𝑢) − 𝐺 𝛿 (𝑢) | = |𝐸𝐿 | ≤ 𝑐𝛿.

Proof For simplicity of exposition, we consider the case 𝑘 = 1; the case 𝑘 > 1
is almost identical, simply requiring the integral form for the remainder term
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1.3 Well-Posedness of Bayesian Inverse Problems 17

in the Taylor expansion. Using Taylor expansion in the case 𝑘 = 1, there is
𝜉ℓ ∈ [𝑡ℓ , 𝑡ℓ+1] such that

𝑥ℓ+1 = 𝑥ℓ + 𝛿
𝑑𝑥

𝑑𝑡
(𝑡ℓ) +

𝛿2

2
𝑑2𝑥

𝑑𝑡2
(𝜉ℓ)

= 𝑥ℓ + 𝛿𝐹 (𝑥ℓ ; 𝑢) +
𝛿2

2
𝐷𝑥𝐹

(
𝑥(𝜉ℓ); 𝑢

)
𝐹
(
𝑥(𝜉ℓ); 𝑢

)
.

Thus we have

|𝐸ℓ+1 | = |𝑥ℓ+1 − 𝑋ℓ+1 |

=

���𝑥ℓ − 𝑋ℓ + 𝛿 (𝐹 (𝑥ℓ ; 𝑢) − 𝐹 (𝑋ℓ ; 𝑢)) + 𝛿2

2
𝐷𝑥𝐹

(
𝑥(𝜉ℓ); 𝑢

)
𝐹
(
𝑥(𝜉ℓ); 𝑢

) ���
≤ |𝑥ℓ − 𝑋ℓ | + 𝛿

��𝐹 (𝑥ℓ ; 𝑢) − 𝐹 (𝑋ℓ ; 𝑢)�� + 𝛿2

2
��𝐷𝑥𝐹 (

𝑥(𝜉ℓ); 𝑢
) ����𝐹 (

𝑥(𝜉ℓ); 𝑢
) ��

≤ |𝐸ℓ | + 𝛿𝐹max |𝐸ℓ | +
𝛿2

2
𝐹2

max.

Noticing that |𝐸0 | = 0, the discrete Gronwall inequality (Theorem 1.19) gives

|𝐸ℓ | ≤ (1 + 𝛿𝐹max)ℓ |𝐸0 | +
(1 + 𝛿𝐹max)ℓ − 1

𝛿𝐹max
· 𝛿

2

2
𝐹2

max

≤
((

1 + 𝐹max

𝐿

)𝐿
− 1

)
· 𝐹max𝛿

2

≤ (𝑒
𝐹max − 1)𝐹max

2
𝛿.

The lemma follows by taking 𝑐 = (𝑒
𝐹max−1)𝐹max

2 . �

Lemma 1.18 For any 𝑢 ∈ R𝑑 ,

|𝐺 (𝑢) |, |𝐺 𝛿 (𝑢) | ≤ 𝐹max.

Proof For 𝐺 (𝑢) we use that 𝐹 (𝑥; 𝑢) is uniformly bounded, so that

|𝐺 (𝑢) | = |𝑥(1) | =
��� ∫ 1

0
𝐹 (𝑥(𝑡); 𝑢)𝑑𝑡

��� ≤ ∫ 1

0

��𝐹 (𝑥(𝑡); 𝑢)��𝑑𝑡 ≤ 𝐹max.

As for 𝐺 𝛿 (𝑢), we first notice that

|𝑋ℓ+1 | = |𝑋ℓ + 𝛿𝐹 (𝑋ℓ ; 𝑢) | ≤ |𝑋ℓ | + 𝛿 |𝐹 (𝑋ℓ ; 𝑢) | ≤ |𝑋ℓ | + 𝛿𝐹max,

and by induction
|𝑋ℓ | ≤ |𝑋0 | + ℓ𝛿𝐹max = ℓ𝛿𝐹max.

In particular,
|𝐺 𝛿 (𝑢) | = |𝑋𝐿 | ≤ 𝐿𝛿𝐹max = 𝐹max.
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18 Bayesian Inverse Problems and Well-Posedness

�

The following discrete Gronwall inequality is used several times in these notes,
and is stated and proved here for completeness.

Theorem 1.19 (Discrete Gronwall Inequality) Let a positive sequence {𝑍ℓ }𝐿ℓ=0
satisfy

𝑍ℓ+1 ≤ 𝐶𝑍ℓ + 𝐷, for all ℓ = 0, . . . , 𝐿 − 1

for some constants 𝐶, 𝐷 with 𝐶 > 0. Then

𝑍ℓ ≤
𝐷

1 − 𝐶 (1 − 𝐶
ℓ) + 𝑍0𝐶

ℓ for all ℓ = 0, . . . , 𝐿, 𝐶 ≠ 1

and

𝑍ℓ ≤ ℓ𝐷 + 𝑍0 for all ℓ = 0, . . . , 𝐿, 𝐶 = 1.

Proof The proof is by induction. We start with the case 𝐶 ≠ 1. The result holds
for ℓ = 0. Assume it is true for ℓ < 𝐿. Then, using the defining inequality,

𝑍ℓ+1 ≤
𝐶𝐷

1 − 𝐶 (1 − 𝐶
ℓ) + 𝑍0𝐶

ℓ+1 + 𝐷.

Rearranging yields

𝑍ℓ+1 ≤
𝐷

1 − 𝐶 (1 − 𝐶
ℓ+1) + 𝑍0𝐶

ℓ+1

and the result follows by induction.
When 𝐶 = 0 we again note that the result holds for ℓ = 0. Assume it is true

for ℓ < 𝐿. Then, using the defining inequality with 𝐶 = 1,

𝑍ℓ+1 ≤ ℓ𝐷 + 𝑍0 + 𝐷 = (ℓ + 1)𝐷 + 𝑍0

and the result follows by induction. �

1.4 Discussion and Bibliography

Kaipio and Somersalo (2006) provides an introduction to the Bayesian approach
to inverse problems, especially in the context of differential equations, and Calvetti
and Somersalo (2007) gives an introduction to Bayesian scientific computing. An
overview of the subject of Bayesian inverse problems in differential equations,
with a perspective informed by the geophysical sciences, is given in Tarantola
(2015a) (see, especially, Chapter 5). For non-statistical approaches to inverse
problems, we refer to the books Tikhonov and Arsenin (1977), Engl et al.
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(1996), Vogel (2002), and the lecture notes Bal (2012) and Miller and Karl
(2003).

The subject of Bayesian inverse problems may be developed beyond the
specific setting of equation (1.1) to study problems of the form

𝑦 = 𝐺 (𝑢, 𝜂).

Our emphasis on additive noise 𝜂, often assumed to be Gaussian, simplifies
some algorithms and enables us to be explicit about some formulae, but is not
fundamental in any way. We refer to Dunlop (2019) for well-posedness theory
and a study of MAP estimation with multiplicative noise. In addition, the setting
of equation (1.1) presupposes that the forward model 𝐺 is given to us, but in
some cases the forward model itself may need to be learned from data.

In Stuart (2010) the Bayesian approach to regularization is reviewed, devel-
oping a function space viewpoint on the subject; a similar development of this
approach is described in Lasanen (2012a,b). A well-posedness theory and some
algorithmic approaches which are used when adopting the Bayesian approach to
inverse problems are introduced. The function space viewpoint on the subject is
developed in more detail in the lecture notes of Dashti and Stuart (2017). An
early application of this function space methodology to a large-scale applied
inverse problem, taken from the geophysical sciences, may be found in Martin
et al. (2012). Lieberman et al. (2010) demonstrates the potential for the use of
dimension reduction techniques from control theory within statistical inverse
problems.

We refer to Gibbs and Su (2002) for further study on the subject of metrics,
and other distance-like functions, on probability measures. The first published
paper to discuss stability and well-posedness of the Bayesian inverse problem
was Marzouk and Xiu (2009), in which the Kullback–Leibler divergence (see
Chapter 4) is employed. Related results on stability and well-posedness, but
using other distances and divergences, may be found in Latz (2020). The
articles Stuart (2010) and Dashti and Stuart (2017) study well-posedness of
Bayesian inverse problems in the Hellinger metric, with respect to perturbations
in the data; Cotter et al. (2010) and Harlim et al. (2020) consider stability of
the posterior distribution with respect to numerical approximation of partial
differential equations appearing in the forward model. Hosseini and Nigam
(2017); Hosseini (2017) discuss generalizations of the well-posedness theory
to various classes of specific non-Gaussian priors. On the other hand, Iglesias
et al. (2014b) contains an interesting set of examples where the Meta Theorem
stated in this chapter fails in the sense that, whilst well-posedness holds, the
posterior is Hölder with exponent less than 1, rather than Lipschitz, with respect
to perturbations.
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20 Bayesian Inverse Problems and Well-Posedness

The Bayesian approach to inverse problems builds on, and benefits from,
the vast literature on Bayesian statistics. Fienberg (2006) provides a historical
overview of the development and popularization of Bayesian statistics, starting
with the introduction of Bayes’ formula (Bayes, 1763) and emphasizing the
leading role of Savage (1972) in axiomatizing and popularizing the subjective
view of probability pioneered by De Finetti (2017). We refer to Gelman et al.
(2013) for a recent and comprehensive textbook on Bayesian methodology. See
Nickl (2022) for an overview of Bayesian inversion and, in particular, statistical
consistency results in this context.

A topic of debate in Bayesian statistics, and specifically in the Bayesian
approach to inverse problems, is how to construct prior probability measures
from available prior information, which is typically not described probabilistically.
Owhadi et al. (2015a,b) demonstrate that this is an important question: different
priors, both consistent with available prior information, can lead to wildly
different Bayesian inference when computing posterior expectations: what
the authors term Bayesian brittleness. Arguably, this issue may be dealt with
through application of the scientific method: a given prior and likelihood are
postulated, and posterior predictions are made; data acquired after making
posterior predictions may then be used to evaluate the Bayesian probabilistic
model employed, and in particular the prior and likelihood and, if necessary,
modify it.

The body of work on Bayesian brittleness builds on related analysis in the
context of forward uncertainty quantification (Owhadi et al., 2013), a topic
concerned with propagating uncertainty on parameters through a model into
predictions. The subject of uncertainty quantification, both the forward and
inverse varieties, is overviewed in Sullivan (2015) and Smith (2013).
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