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Abstract. A Lefschetz class on a smooth projective variety is an element af-tilgebra generated

by divisor classes. We show that it is possible to defirnear Tannakian categories of abelian
motives using the Lefschetz classes as correspondences, and we compute the fundamental groups of
the categories. As an application, we prove that the Hodge conjecture for complex Abelian varieties
of CM-type implies the Tate conjecture for all Abelian varieties over finite fields, thereby reducing

the latter to a problem in complex analysis.
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Introduction

Grothendieck mainly envisaged constructing categories of motives by using as
correspondences all algebraic classes modulo an adequate equivalence relation.
Unfortunately, we know little about algebraic classes and, hence, even less about
these categories. In our present state of ignorance, categories of motives constructed
using other correspondences, for example, those defined by Hodge classes, have
proved to be more useful, and have played an important role, for example, in the
theory of Shimura varieties.

In this article, we construct categories of motives using the algebraic classes we
do understand, namely, those in telgebra generated by divisor classes, which
| call Lefschetz classeh is not obvious that there are sufficient of these to define
a category of motives — for example, in general the direct image of a Lefschetz
class is not Lefschetz — but this is proved in Milne 1999a for Lefschetz classes on
Abelian varieties.

In the first section of this paper, | explain how to define a catetidfgt (k)
of ‘Lefschetz motives’ over any fielé. It is generated by the motives of Abelian
varieties, and its morphisms are the correspondences defined by Lefschetz classes.
It is a Q-linear semisimple Tannakian category whose fundamental group has a
description in terms of the simple isogeny classes of Abelian classes. For Abelian
varieties of CM-type ove€ and for Abelian varieties over finite fields there are
explicit classifications of the isogeny classes, which we use to make explicit our
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description of the fundamental groups (Sections 2 and 4). We also compute the
homomaorphisms of fundamental groups corresponding to the functor taking a
Lefschetz motive of CM-type ovét to the corresponding Hodge motive (Section
3) and the functor taking a Lefschetz motive of CM-type a@&rto its reduction
over the algebraic closuiof a finite field (Section 5).

In the remaining two sections, we apply the theory to the Tate conjecture for
Abelian varieties over finite fields. For an Abelian varigtpverF, there is a cycle
class map int@tale cohomology

{algebraic cycles oA of codimension} — H?" (A, Q,)(r),

¢ # cha(F). The choice of a modely of A over a finite subfieldF, of F
determines an action of G&¥ /F,) on H?" (A, Q,(r)). The Tate conjecture (Tate,
1965, Conjectures (pand 1) predicts that, for af,

(0.1) the kernel of the cycle class map is the group of cycles numerically equivalent
to zero, and its image spans t@g-space

77(A) S U H (A, Qur) %),
Ao/Fq

Statement (0.1) fod implies the similar statements for any modgJ of A over
a finite field — specifically, it implies the statements dendigdy) and7'(Ap) in
Tate 1994 and, hence, also the injectivity statendédp) and the equality of the
order of the pole of the zeta functidf( Ao, t) of Ag att = ¢~ " with the rank of the
group numerical equivalence classes of algebraic cycles of codimengibial.
Theorem 2.9).

Tate proved the conjecture fer = 1, and various authors have shown that,
in some cases;(A) =4t " 7,” (A) consists of Lefschetz classes. However, Wei
(1993) showed that, for a general simple isogeny class Bveome power of an
Abelian variety in the class supports an ‘exotic’ Tate class not inQthalgebra
generated by divisor classes. Therefore, to prove Tate’s conjecture, we need a new
source of algebraic cycles. Up to isogeny, every Abelian variety BVits to an
Abelian variety of CM-type in characteristic zero, and one possibility is to use
the algebraic classes obtained by reduction from such a lifting, but without the
Hodge conjecture, we know of very few algebraic classes on an Abelian variety of
CM-type that are not already Lefschetz. We prove (Theorem 7.1):

The Hodge conjecture for Abelian varieties of CM-type cémplies the Tate
conjecture (0.1) for Abelian varieties ovier

The proof makes use of Jannsen’s theorem that the category of motives for
numerical equivalence is semisimple (Jannsen, 1992).

Remark(a) The proof of Theorem 7.1 doest show that every Tate class on
an Abelian variety oveF lifts to a Hodge class on an Abelian variety of CM-type,
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even up to isogeny. In fact, as Oort has pointed out, this is false. For a simple
Abelian varietyA over a field of characteristic zero,

ECEnd4)®Q, FEafield [E:Q] =2dimA = E'is a CM-field

whereas this is not true for Abelian varieties over fields of nonzero characteristic.
Let E C End A) ® Q be a counterexample ovEr and leto: generatel overQ.
Then the graph ot does not lift to any lifting ofA to characteristic zero.

Rather, the proof uses the Tannakian formalism to show that there are sufficiently
many algebraic classes conjecturally coming from Abelian varieties of CM-type
and divisors to force the Tate conjecture to be true.

(b) For Abelian varieties of CM-type, the Hodge conjecture is known to be
equivalent to the Tate conjecture (Pohlmann, 1968). Therefore Theorem 7.1 can
be restated as follows: the Tate conjecture for Abelian varieties of CM-type over
number fields implies the Tate conjecture for Abelian varieties over finite fields.

(c) To prove the Hodge conjecture for an Abelian varidtgpverC, it suffices
to construct enough vector bundles drso that their Chern classes generate the
Q-algebra of Hodge classes. Becauses projective, it even suffices to construct
the vector bundles analytically. Therefore, Theorem 7.1 reduces the proof of the
Tate conjecture for Abelian varieties over finite fields to a problem in complex
analysis.

Apart from the theory of Lefschetz motives developed in the first five sections,
the proof of Theorem 7.1 uses one further crucial result (Theorem 6.1) concerning
the relationship of the fundamental groups of various categories of motives.

In a later article (Milne, 1999b), | shall use Theorem 7.1 to construct a canonical
category of ‘motives’ oveF that

— has the ‘correct’ fundamental group, and equals the true category of motives
if the Tate conjecture holds for Abelian varieties o¥er

— canonically contains the category of Abelian varieties up to isogeny as a
polarizedsubcategory,

thereby resolving a problem that goes back to Grothendieck. The category of
motives plays the same role in describing the points on Shimura varieties with
coordinates in finite fields as Deligne’s category of Hodge motives does for their
points with coordinates in fields of characteristic zero (Milne, 1995, 1999b).

Notations and conventiongor a fieldk, k' denotes an algebraic closure /af
Except in Section 6 = Gal(Q¥/Q).

Complex conjugation o is denoted by. A CM-fieldis a field E algebraic
over@Q admitting a nontrivial involution g such thatpo g = ¢ o p for all homo-
morphismsp: E — C. The fixed field of.g is called thereal subfieldof £. The
composite of all CM-subfields a§? is again a CM-field, which we deno@™.

An algebraic variety over a field is a geometrically reduced (not necessarily
connected) scheme of finite type over
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In general, groups act on the left. The actionvoE I' on a mapf: X — Y
from oneI'-set to a second (possibly with trivial action on one set), is defined by
the rule:

(cf)(x) =o(f(clz), zeX,ie,of =cofoc L

For a set (topological spacg), Z* denotes the set of (locally constant) functions
f: X — Z. WhenX is finite, we sometimes denote&’ by Z[X] and an element
of ZX by asum>, . v f(z)z.

‘Vector space’ and ‘representation’ mean ‘finite-dimensional vector space’ and
finite-dimensional representation’. For a vector spéceverk, GL(V') denotes
either the algebraic group or iksrational points.

‘Algebraic group’ means ‘affine algebraic group’. For such a gréup:(K) is
the set of points ol with coordinates i<, andG i or G iS G' X speat; SPECK .

An algebraic group is afultiplicative typef it is commutative and its identity
component is a torus, and an affine group scheme over a fieldnsbiplicat-
ive typeif all of its algebraic quotients are. For such a grdlipver a fieldk,
X*(T) =4t Hom(T a1, G, /) denotes the group of charactersofand X..(T)
the group of cocharacters. We often identy(7") with the dual Hom( X™*(T), Z)
of X*(T).

For an algebraic grou over a field/K (or product of fields) of finite degree
over a fieldk, (G) ki, =t Res/x(G) is the algebraic group ovér obtained by
restriction of scalars. For example, whéifk is separable(G,,) g/, is the torus

with character grougHoms: (k%)

Let (G;,t;):cr be a family of pairs consisting of an algebraic grasipand a
homomorphisnt;: G; — G,,. We define the produgdf,; (G, t;) of the family to
be the paifG, t) consisting of the largest subgroup[dfG; on which the characters
(9i)ier — ti,(gi,) agree and of the common restriction of these characte¥s b
is universal with respect to the ma@s, t) — (G, t;).

For Abelian varietiesA and B, HonP(A, B) = Hom(A, B) ® Q.

In general, our conventions concerning tensor categories are those of Deligne
and Milne 1982. For a field, ak -linear tensor categoris an additive categor§
together with

(a) a bi-additive functo: C x C — C and associativity and commutativity
constraints satisfying the usual axioms (ibid., p. 104);
(b) an identity objectl = (U, u) and an isomorphisth — EndU).

A Tannakian subcategopof ak-linear Tannakian category isdinear subcategory
that is closed under the formation of sums, tensor products, subobjects, quotient
objects, and duals. It is again a Tannakian category.

To signify that objectsX andY are isomorphic, we writeX ~ Y; when a
particular isomorphism is given (or there is a canonical or preferred isomorphism),
we write X = Y. Also, X =Y means thafX is defined to b&”, or thatX =Y
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by definition. Whenz is an element of a seX on which there is an equivalence
relation, we sometimes uge] to denote the equivalence class containing

1. The Category of Lefschetz Motives

In this section we define the category of Lefschetz motives.

PRELIMINARIES

Let~ be an adequate equivalence relation on algebraic cycles, for example, rational
equivalence (rat), homological equivalence with respect to some Weil cohomology
theory (hom), or numerical equivalence (num). For a smooth projective variety
X over a fieldk, Z"(X) will denote theQ-vector space with basis the irre-
ducible subvarieties oX of codimensionr, andC.(X) = Z"(X)/~. Then
C(X) =4t ®r CL(X) becomes a grade@-algebra under intersection product. A
regular mapp: X — Y defines a homomorphisti:C..(Y) — C.(X) of graded
Q-algebras and a homomorphigi C..(X) — C.(Y) of Q-vector spaces (which

is homogeneous of degree dim-dim X if X andY are equidimensional), related

by the projection formula:

Gu(2) -y = du(x - ¢%y), 2z €C(X), yel(Y).

We defineD.(X) to be theQ-subalgebra of . (X) generated bg? (X), i.e.,
by the divisor classes. The elementduf(X) are called the.efschetz classem
X for the relation~. We list some properties of Lefschetz classes.

1.1. For any regular map: X — Y, ¢* maps Lefschetz classes¥Brio Lefschetz
classes onX (for any adequate equivalence relation).
Because)* is a homomorphism of gradegtalgebras.

1.2. For anyn and any adequate equivalence relatidn, (P") = Q[t]/(t"*1),
wheret denotes the class of any hyperplané@ih and for anyX,

Do(X x P") 2 D (X) @ D (P).

This follows from the similar statement with replaced by.

Now let V(k) be the class of algebraic varieties okewhose connected com-
ponents are products of projective spaces and varieties admitting the structure of
an Abelian variety.

1.3. For any varietyX in V(k), the diagonalAx C X x X is a Lefschetz class
(for any adequate equivalence relation).

It suffices to prove this for the finest adequate equivalence relation, namely, rational
equivalence. For an Abelian variety, there is an explicit expressiah pfas a
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Lefschetz class in Scholl (1994), 5.9 (see also Milne (1999a), 5.10). To extend the
statement to a product Abelian varieties and projective spaces, use 1.2.

Note that (1.1) and (1.3) imply that the graph of any regular map: X — Y’
of varieties inV(k) is Lefschetz, becaude, = (¢ x idy )*(Ay).

1.4. For any regular mapp: X — Y of varieties inV(k), ¢. mapSDpym(X) into
Dnum(Y'). See Milne (1999a), 5.5.

Let X andY be varieties in/(k), and letX = [] X; be the decomposition of
X into its equidimensional components. Then

D(X xXY)=@&D(X; xY),
and we set

LCor™(X,Y) = @;DdmXi+m(x. » Y).

num

The map

o, B+ fBoa=uwpxz«(Pxya - pyzB)
is a pairing
LCor™(X,Y) x LCorr™(Y, Z) — LCor™*™(X, Z).

Define LCVO(k) to be the category whose objects are symhdis one for each
X € V(k), and whose morphisms are Hold, hY') = LCor®(X,Y"). The trans-
pose of the graph of a regular mapX — Y defines an elemerip =4['T's] €
LCor®(Y, X), andh is a contravariant functar (k) — LCVO(k).

1.5. For an Abelian varietyA of dimensiory, there are unique elements €
LCorr®(A, A) such that

(@) [Aa] =po+---+py

(b) pi op; = 0if i # j, andp; o p; = p;;

(c) for any integem, h(na) o p; = n'[A 4] o p;, wheren 4 is the endomorphism
of A ‘multiplication byn’.

This is proved in Scholl (1994), 5.2.

Now let X — H*(X) be a Weil cohomology theory (cf. the Appendix to Milne,
1999a), and writd7%*(X)(x) = ©"H? (X)(r). By assumption, there is given a
homomorphism of graded-algebras clCra(X) — ©H?* (X) ().

1.6. For a Lefschetz class on a varietyX € V(k), the following are equivalent:

(@) cl(z) - y = Ofor all cohomology classeg
(b) = - y = Ofor all algebraic classegy;
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(c) -y = Ofor all Lefschetz classas

Clearly (a)= (b) = (c), but (c)=- (a) is proved in Milne (1999a), 5.2.

In particular,Dpom is independent of the cohomology theory and eq@i|gn.
From now on, | drop the subscript. ThU3(X )’ means Dnym(X)’, and ‘Lefschetz
class onX’ means ‘element oD(X)’.

THE CATEGORY OF LEFSCHETZ MOTIVES

The categoryLMot (k) of Lefschetz motives is defined as follows. An object
is a symbolh(X,e,m) where X is a variety inV(k), e is an idempotent in
LCor®(X, X), andm € Z. If h(X, e, m) andh(Y, f,n) are two motives, then

Hom(h(X,e,m),h(Y, f,n)) = {f oaoela € LCor™ ™(X,Y)}.

The composite of two morphisms of motives is their composite as correspondences.
Exactly as in the usual case (Scholl (1994), Section 1), one shows\wat( k)
is aQ-linear pseudo-Abelian rigid tensor category, with

h(X,e,m) & h(Y, f,m) =h(X]]Y,e® f,m),
h(X,e,m) @ h(Y, f,n) = M(X X Y,e® f,m+n);
h(X,e,m)" = h(X,",d —m)if X has pure dimensiah

Moreover,h(P",id,0) = 1® L @ --- & L whereL = (Speck, id, —1). The
proofs of these facts use 1.1-1.5.

Note thathX « h(X,id,0) identifies LCVO(k) with a full subcategory of
LMot (k). Moreover, every motive is a direct sum of motives of the far, e, m)
with A an Abelian variety.

From 1.5, we find thdtMot (k) has a canonic&-grading for whichi(A, p;, m)
has weighti — 2m. This can be used to modify the commutativity constraint
(Saavedra (1972), p. 365) to obtain the ‘true’ category of Lefschetz motives. The
method of Jannsen (1992) shows that (1.6) impliesltMdt (k) is a semisimple
Abelian category. Finally, Deligne (1990), 7.1, implies thistot (k) is Tannakian.

In summary:

THEOREM 1.7. The categoryLMot (k) is a semisimpleQ-linear Tannakian
category endowed with a canonicalgradingw and a canonical (Tate) object
T = (Sped,id, 1).

THE FUNDAMENTAL GROUP OFLMot (k)

We now assumeé: to be algebraically closed, and we fix a Weil cohomology

theory X — H*(X) with coefficient field@. There is a unique fibre functor

wp: LMot (k) — Vecy such thatvy (h(A)) = H*(A) for all Abelian varietiesA.
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Let H1(A) be the linear dual ofi(A), and letC(A) be the centralizer of
EncP(A)in End(Hy(A)). Apolarization\: A — AV of A determines an involution

a— alf df Hl()\)_l o Hl(av) o Hi(A)

of End(H1(A)) whose restriction t@’(A) is independent of the choice af The
Lefschetz groud.(A) of A is the algebraic subgroup of GlH1(A)) x Gy, such
that

L(A)(R) = {(7,¢) € (C(A) @ R)* x R*|y'y = c}

for all Q-algebrask (Milne (1999a), 4.3, 4.4). It is reductive (not necessarily
connected), andvy,c) — c¢ is @ homomorphisni(A4): L(A) — G, rational
overQ.

Let hi(A) = h1(A)Y, and let{A)® be the Tannakian subcategoryld¥lot (k)
generated by (A) andT. Becausei(A™) =2 A h*(A") andhy(A7) = hy(A) @
- @ h1(A), (A)® containsh(A") for all r. Letw(A) be the fundamental group
of the Tannakian categoryd)® (in the sense of Deligne (1990), 8.13).

PROPOSITION 1.8For every Abelian variety, there is a canonical isomorphism
wr(mw(A)) = L(A).

Proof. We know (ibid. 8.13.1) thav gy (m(A)) = Aut®(wgy|(A)®). Therefore,
the action ofm(A) on h1(A) andT identifieswy (mw(A)) with the subgroup of
GL(H1(A)) x Gy, fixing wg (o) for all morphismsyp of objects in(A4)®. On the
other hand/L(A) is the largest subgroup GH1(A)) x G,, fixing all Lefschetz
classes o” for all » (Milne, 1999a, 4.3). These two groups are equal. O

Let (L,l) = [15(L(B),l(B)), whereB runs over a set of representatives for the
simple isogeny classes of Abelian varieties dver

COROLLARY 1.9. Letw be the fundamental group &Mot (k). Thenwg (7) is
canonically isomorphic td..

Proof. For any Abelian varietyd, (L(A),l(A)) = [[z(L(B),l(B)) whereB
runs over a set of representatives for the simple isogeny factargMiine, 1999a,
4.7). Therefore the corollary follows from the proposition by passing to the limit
overA. O

RemarKL.10. LetA be an Abelian variety ovér. For each Weil cohomology the-
ory H we have a Lefschetz grou A) ;7, which is an algebraic group over the field
of coefficients ofH. Proposition 1.8 shows eadi{ A) is a realization ofr(A),
which should therefore be considered as the archetype for all the Lefschetz groups
of A. Unfortunately,7(A) is only an algebraic group in a Tannakian category
and, hence, is a somewhat mysterious object. There are two situations in which
m(A) can be identified with an algebraic group o@ein the usual sense. The first
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is whenk = C. Here there is a canonical Weil cohomology theory with coefficients
in Q, namely, the Betti cohomology, and so we can identifyd) with the Betti
Lefschetz group ofA. The second is wheHd has ‘many endomorphisms’, which
we now explain.

For anyk-linear Tannakian categofly, the categoryec; of finite-dimensional
vector spaces ovét can be identified with the full subcategory ©fof objects
on which#(T) acts trivially. If w(T) = Sp(R) is commutative, then the action
of =(T) on R is trivial, and sor(T) is an affine group scheme in the Tannakian
categorWec, C T, i.e., it is an affine group scheme ovein the usual sense (cf.
Milne, 1994, 2.37, p. 428).

A semisimple algebr of finite degree ove® is a product of simple algebras,
say,R = Ry x --- X Ry, and the centrd(; of eachR; is a field. The reduced
degred R: Qlreq Of R overQ is Y°[R;: K;]%/? - [K;: Q]. For an Abelian variety,
[End®(A): Q)req < 2 dim A, and when equality holds we say thathasmany
endomorphisms

Let A be a simple Abelian variety with many endomorphisms, and’{gtA)
be the centre of ERdA). A Rosati involution on En{ A) defines an involution on
Co(A), which is independent of the choice of the Rosati involution. For any Weil
cohomology theoryd with coefficient field@, the canonical map

Co(A) ®o Q — C(4)

is an isomorphism — this follows easily from the definition 4% having many
endomorphisms and the fact thHt(A) is a freeCo(A) ®g @-module (Milne,
1999a, 2.1). Thereford,(A) = Lo(A) o WhereLo(A) is the algebraic group over
Q such that

Lo(A)(R) = {(7,¢) € Co(A)* x R*|y'y = ¢}

for all Q-algebrask. This shows that (A) is commutative (because its realizations
are) and, hence, can be regarded as an algebraic group in the usual sense; moreover,
the action ofLo(A) onhi(A) identifiesLo(A) with 7w(A).

In Sections 2 and 4, we consider two categories of Lefschetz motives generated
by Abelian varieties with many endomorphisms. The remark shows that their
fundamental groups are affine group schemes of multiplicative type in the usual
sense. In each case, there is a classification of the isogeny classes and a description
of the endomorphism algebra of each isogeny class, which allow us to compute the
fundamental groups explicitly.

2. Lefschetz Motives of CM-Type

The theory of Abelian varieties of CM-type provides a classification of the simple

isogeny classes of such varieties, which allows us to compute the fundamental group

of the category of Lefschetz motives generated by Abelian varieties of CM-type.
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Throughout this section' is an algebraically closed field of characteristic
zero and is an involution ofC' restricting to complex conjugation on every CM-
subfield, and)? is the algebraic closure @f in C. Recall thatp°™ ¢ @ and that

I' = Gal(Q¥/Q).

ABELIAN VARIETIES OF CM-TYPE

Let E be a CM-field. ACM-typeon E is a locally constant map: Hom (E, Q¥) —

Z such thatp(7) > 0 andy(7) + ¢(c o 7) = 1 for all 7. A CM-type onE is said
to be primitive if it is not the extension — ¢o(7|Ep) of a CM-typeyp on a
proper subfieldzy. Every CM-typey on F is the extension of a unique primitive
CM-type.

A simple Abelian variety4 over C is said to be ofCM-typeif End°(A) is a
field (necessarily CM) of degree 2 dishoverQ, and an arbitrary Abelian variety
over(C' is said to be oCM-typeif all its simple isogeny factors are of CM-type.

Let A be a simple Abelian variety over of CM-type, and letf = End’(A).
Let i be the inclusio@? — C. Forr € Hom(E,Q?), definep(r) to be 1 or 0
according aso 7 does, or does not, occur in the representatiof oh the tangent
space ta4 at 0.

PROPOSITION 2.1With the above notationg,is a primitive CM-type o, and
the mapA — (E, ) defines a bijection from the set of isogeny classes of simple
Abelian varieties ovet” of CM-type to the set of isomorphism classes of pairs
(E, ¢) consisting of a CM-field of finite degree ovgand a primitive CM-type on
the field.

Proof. Suppose first thaf’ = C. Let ¢ be a CM-type on a CM-fieldZ, and
let ¥ = {r|¢(r) = 1}. Define A, to be the Abelian variety ovet such that
A,(C) = C¥/2(0Of) whereC* = Hom(, C) andOg, the ring of integers irk,
is embedded ilt* by a — (ca)sex. Then(E,¢) — A, provides an inverse to
the mapA — (E, ¢).

To extend the result to fields other th@nuse the following observation: let
C — ('’ be an inclusion of algebraically closed fields of characteristic zero, and
let (A, ) be an Abelian variety of CM-typ€F, ) overC’; then any specialization
of (4,1) to C'is again of CM-type E, ¢), and hence becomes isogenougA4oi)
over('. O

Let » be a CM-type on a CM-fieldE. For eachr: E — Q2 ando € T, define
Y, (0) = p(c~to ). Themy, depends only on the restriction @fo Q°™, ands)..,
when regarded as a map Hqi®", Q) — 7, is a CM-type onQ®™. Moreover,
foranyp € T, ¥por(0) = - (p~t o o) = (pb-)(c), and so, as runs over the
embedding® — Q?, ¢, runs over d-orbit of CM-types orQc™,
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PROPOSITION 2.2.The map(E, ¢) — {1} defines a bijection from the set of
isomorphism classes of paif#, ¢) consisting of a CM-field of finite degree over
Q and a primitive CM-type on the field to the seflBbrbits of CM-types o@°™.
Proof. We construct an inverse. For a CM-typeon Q°", definel';, to be the
stabilizer ofy in I" and £, to be the fixed field of"y,. Let 7o: By — Q¥ be the
given embedding. Then any embedding®,, — Q% can be writtenr = o o 79
with o € T, and we define, (1) = ¥ (o~1). Theny, is a CM-type onEy, and
the mapy — (Ey, ¢,) gives the required inverse. O

Thereflex fieldK of (E, ¢) is defined to be the fixed field of the stabilizerofn
I'. Thuso € T fixes K if and only if o(c=% o 7) = ¢(7) for all : E — Q. For
anyt: E — C, 1, is the extension t@°™ of a primitive CM-type onk.

Thereflex fieldof a simple Abelian variety ovet' of CM-type is defined to be
the reflex field of its associated CM-type.

PROPOSITION 2.3.Let K be a CM-subfield of’. There is a natural one-to-
one correspondence between the set of isogeny classes of simple Abelian varieties
overC of CM-type whose reflex field is containedhinand the set of -orbits of
CM-types onk.

Proof. WhenK = Q°™, this is an immediate consequence of the preceding two
propositions. The remark following the definition of the reflex field of a CM-type
allows one to extend it to an arbitrary CM-subfield(of O

Remark2.4. LetE be a CM-subfield oH?, and lety be a CM-type orE. Let
K be the reflex field of £, ¢), and lety) = v,, wherery is the given inclusion of
E into Q¥. Theny(o|K) = p(c~|E) for anyo € T, and(K, 1) is the reflex of
(E, ¢) in the classical sense (Shimura, 1971, p. 126).

THE FUNDAMENTAL GROUP OF THE CATEGORY OF LEFSCHETZ MOTIVES OF
CM-TYPE

Fix a CM-field K ¢ Q2 and defind.CM % (C') to be the Tannakian subcategory of
LMot (C) generated by the motives of simple Abelian varieties avef CM-type
with reflex field contained . WhenK = Q°™, we omit the superscript. We fix
a Weil cohomology theorX — H*(X) with coefficient fieldQ, and writew; for
the corresponding fibre functor Mot (C') or its Tannakian subcategories.

For aI'-orbit ¥ of CM-types onQ°™, defineTV to be the torus ove@ with
character group

s A {f\P_)Z}

The element) + w1y of X*(T"V) is independent of the choice ¢f € ¥ and is
fixed byT. It therefore defines a homomorphisth 7% — G,, rational overQ.
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Let AY be a simple Abelian variety corresponding (as in Proposition 2.3) to the
orbit ¥. Although AY is defined only up to isogeny, its Lefschetz gralipA?)
with respect taX — H*(X) is well-defined up to a unique isomorphism.

PROPOSITION 2.5For any ¥, (L(AY),1(AY)) = (TY,tY).
Proof.Choose a) € V. Let(Ey, ¢y) be as in the proof of Proposition 2.2, and
let AY be the Abelian varietyl,, defined in the proof of Proposition 2.1. Then

L(AY) is the subtorus ofG,,) , /o Such that
L(AY)(Q) = {a € E}|a -1 € Q*}

and its canonical charactéfA?) sendsa to o - wa. Therefore, X*(L(AY)) is
the quotient ofzHom(E4.2%) py the subgroup of such thatf () = f(.7) for all
T Ey — Q¥ andY” f(r) = 0, andi(AY) is represented by+ 1. By definition,
Hom (E,, Q%) = I'/T';, wherel' is the group fixingp, ando +— o is a bijection
from /T, onto . This map identifiesc* (L(AY)) with X*(T%) andl(AY) with
tY. O

An Abelian variety of CM-type has many endomorphisms in the sense of Re-
mark 1.10, and so the fundamental group.6M X (C) can be identified with an
affine group scheme ovérin the usual sense.

THEOREM 2.6. For any CM-subfields of @, the fundamental groufl, t¥)
of LCM K(C) is [T (T%,tY), where the product is over the set Bforbits of
CM-types onk.

Proof. For any Abelian varietyA over C of CM-type, the fundamental group
of (A)® is equal to the Lefschetz group df, which is[[;(L(B),1(B)) where
B runs over a set of representatives for the simple isogeny factoss @When
[K:Q] < oo, LCME(C) = (I]y AY)® where W runs through thd -orbits of
CM-types onk, and so

(T,t%) = (L(ITAY), (TTA"Y)) = [T(L(AY), [(AY)) = [I(T¥,t*).

The case whefK: Q] is infinite follows by passing to the limit over the CM-
subfields ofK finite overQ. O

3. The Functor from Lefschetz Motives of CM-Type to Hodge Motives

Certainly, a Lefschetz class on an Abelian variety avés a Hodge class, and so
there is a natural functor from the category of Lefschetz motives of CM-type to the
category of Hodge motives of CM-type. We shall describe the homomorphism of
fundamental groups defined by this functor.

In this sectionQ? is the algebraic closure @f in C.
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HODGE STRUCTURES OF CM'YPE

LetS = (Gm)c/r- A rational Hodge structurés a vector spac® overQ together
with a homomorphism: S — GL(V ® R) such that the resulting weight gradation
is defined overQ. We always assume our Hodge structures are polarizdlde.
tn: Gy — GL(V ® C), un(z) = he(z,1), be the cocharacter associated withA
Hodge structurgV, h) is said to be oCM-typeif 1, factors through’ for some
subtorusl” of GL(V'). In this case the field of definition gfj, is a finite extension
of Q contained inQ°™ called thereflex fieldof (V, h).

Let K be a CM-subfield of)?. The Hodge structures of CM-type with reflex
field contained inK form a Q-linear Tannakian categomjodX . The forgetful
functor(V, h) — V is a fibre functor foHodZX,, whose automorphism group is the
Serre groug ™. This is the (pro-)torus ovep with character groug *(S%) equal
to the set of locally constant functiofisHom( K, Q%) — Z such thatf (1) + f(¢7)
is independent of. Denote the given embeddirdg — Q2 by 79, and defing.*
to be the cocharactef — f(7): X*(S%) — z of SK. For any Hodge structure
(V, h) of CM-type with reflex field contained i, there is a unique representation
pn: SK — GL(V) such thatpc o u* = py. The functor(V, h) — (V,py) is a
tensor equivalence Hgg — Repg (S7).

The functions”: Hom(K, Q®) — Z sending each element to 1 is a character
of SX rational overQ.

Here (and elsewhere), whéti = Q°™, we drop the superscript.

EXAMPLE 3.1. LetA be a simple Abelian variety oveér of CM-type, and let
E = End’(A). The Betti homology groupl1(A) is a rational Hodge structure, and
its cocharactep 4 factors throughG,,) g/ C GL(H1(A)). ThereforeH(A) is
of CM-type. We can regarg4 as a cocharacter dfG,,)r /o and, hence, as a
homomorphismX™*((G.,) g/q) — Z, in which guise it is theZ-linear extension of
the CM-typep of A. Therefore the reflex field& of the rational Hodge structure
Hi(A) is equal to the reflex field of, and so Hon({K,Q¥) = T'/T, wherel,, is
the stabilizer ofp in T'.

The homomorphism;, factors throughG,,) /g, and we shall describgy,:
SK (Gim) /g by giving its action on characters. FerHom(E,Q?¥) — z, let
1, be the homomorphisfi — Z defined in Section 2. Then, factors through
I'/T, and lies inX*(S%). The mapX*(py) is f — Y, pe.ga f(T)1;. The
characters of ™ acting onHy(A) are they,.

CM-MOTIVES

We refer the reader to Deligne and Milne, (1982), Section 6, for the definition of

the category of Hodge motives over a field of characteristic zero. Fix a CM-subfield

K of Q¥, and letCM ¥ (C) be the Tannakian subcategory of the category of Hodge
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motives overC generated by the motives of Abelian varieties of CM-type with
reflex field contained itk .

The Betti cohomology theorX' — Hj3(X) defines a tensor functavp:
CMK((C) — Hodéfn.

THEOREM 3.2. For any CM-fieldK C C, wp defines an equivalence of tensor
categoriesCM % (C) — HodX,.

Proof. As we noted in (3.1), the reflex field of a simple Abelian varigtyf
CM-type is equal to the reflex field of the Hodge structugghi(A)) = H1(A),
and savp does mapCM X (C) into HodX,,. The functor is obviously fully faithful,
and so it remains to prove that it is essentially surjective. It suffices to do this when
K has finite degree ové}. If A is a simple Abelian variety corresponding to the
I'-orbit U of CM-types onk (as in 2.3), then the representationdf on H;(A)
is a multiple of the simple representation®f with characters the elements f
(3.1, last sentence), and the next lemma implies that the CM-typé&S generate
SK, which completes the proof. O

LEMMA 3.3 Let K be a CM-field of degre2g overQ, and letp = 71+ --- + 7
be a CM-type or<. Define CM-types

g

gpi:n+2m'j, @zZLTj.
j#i j=1

Then{¢1,...,¢,, ¢} is a basis for thez-moduleX* (S¥).

Proof. The elements ofX*(S%X) are of the form>%_ m;r; + 27 nur;
with m; + n; = ¢, wherec is independent of. But such an element equals
S mipi + (¢ — 9y m;)@. This shows thafes, . . ., o4, p} spansX*(SK),
and it is obvious that it is linearly independent. O

For any fieldk, letIsab(k) be the category of Abelian varieties up to isogeny over
k. Its objects are the Abelian varieties ovierand Mo( A, B) = Hom?(A, B).

COROLLARY 3.4. The functorA — H;(A) defines an equivalence from the
full subcategory ofsab(C) whose objects are Abelian varieties of CM-type with
reflex field contained i to the full subcategory dRep(S) whose characters are
CM-types onk.

Proof. The two subcategories correspond under the equivalence in the theorem.

THE FUNCTOR FROM LEFSCHETZ MOTIVES OF CMYPE TO HODGE MOTIVES OF
CM-TYPE

Fix a CM-field K c C. Since a Lefschetz class is a Hodge class, there is a tensor
functorLCM X (C) — CM ¥ (C) sendingu(A, e, m) to h(A, e, m) (e now regarded
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as a Hodge class). We describe the homomorptii§m— 7% of fundamental
groups that it defines.

For anyT-orbit ¥ of CM-types onkK, the mapf — > ,cq f(¥)0:ZY —
X*(SK) factors throughX *(T') and, hence, defines a homomorphigh S& —
TY. Its composite witht¥ is s, and so thet? define a homomorphism*:
(SK’SK) - H\D(T\I]’t\y)'

PROPOSITION 3.5.The homomorphisrs® | s%) — (TH tX) defined by the
tensor functolL.CM (C) — CM(C) is v%.

Proof. As we noted above, ifA is a simple Abelian variety corresponding
to the I'-orbit ¥ of CM-types onk, then the representation &f on Hj(A)
has the elements o¥ as its characters. The shows that the homomorphism
(SK,sK) — (TY,tY) defined by the tensor functdrd)® — CM¥(C) is v7.
Therefore, the two homomorphisrtSK, s%) — (TX, ) agree when composed
with the projectiong7X, %) — (T, "), which implies that they are equalc

Remark3.6. The homomorphism®: SX — TX isinjective. Indeed, its kernel
is killed by every CM-type ori, but these generaf§* (SX).

Remark3.7. The observation in the proof of Proposition 2.1 allows one to extend
the results of this section fro to any algebraically closed field of characteristic
zero.

4. Lefschetz Motives over

The theorems of Honda and Tate classify the isogeny classes of simple Abelian
varieties over the algebraic closureof a finite field, and the theorem of Tate
shows that every Abelian variety ovBhas many endomorphisms and allows us to
compute the Lefschetz group of each isogeny class. Thus, we are able to compute
the fundamental group of the category of Lefschetz motivesbver

In this sectionQ? is the algebraic closure @f in C.

WEIL NUMBERS AND ABELIAN VARIETIES

Let p be a prime number. An elementof a field algebraic ove® is said to be a
Weil p"-number of weight-m if

(a) for all embeddingp: Q[r] — C, p(7) - tp(m) = (p"™)™;
(b) for someN, p™r is an algebraic integer.

Condition (a) implies that — p™™ /7 defines an involution (possibly trivial) of

Q[r] such thatp o /" = ¢ o p for all embedding: Q[r] — C. ThereforeQ[x] is

either a CM-field or is totally real.
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Let W (p™) be the group of Weip™-numbers inQ¥. If n|n’/, thenm — 77"?,
mapsiV (p™) into W (p™ ), and we defin&V (p>°) = lim ,, W (p"). Thus an element

of W(p>) is represented by an element @f(p") for somen, and elements
™€ W(p") andn’ € W(p") represent the same elementi&f(p>°) if and only
7" and =™ differ by a root of unity. We lefr] denote the element d¥/ (p>)
represented by.

Thereis a natural action dfon W (p>°), and theNVeil-number toru$ is defined
to be the pro-torus ovep with X*(P) = W (p*>).

Let W1 4 (p") be the subset dfi’ (p™) consisting of thoser that are of weight
—1 and are algebraic integers, andlet . (p>) = lim Wy, (p").

Let A be a simple Abelian variety ovéf. Choose a modeliy of A over a
finite field F,» such that all endomorphisms df are rational ovef,., and let
m be the Frobenius endomorphism4§/F,~. According to Tate 1966, Theorem
2, Q[n] is the centreZ(A) of End’(A). For any embedding: Z(A) — Q,
p(m) € Wfﬁr(p”). The clasgp(r)] of p(w) in W, (p>) is independent of the
choice of the modelly, and a runs over the embeddings Bf A) into Q¥ [p()]
runs over a-orbit in W, (p>).

PROPOSITION 4.1. The mapA — {[p(7)]|p € Hom(Z(A),Q?)} defines a
bijection from the set of isogeny classes of simple Abelian varietiesover

\W1,4(p™).
Proof. The injectivity follows from Tate (1966), Theorem 1, and the surjectivity
from Honda (1968). O

THE FUNDAMENTAL GROUP OFLMot (F)

For al*-orbitII in I/V{ﬂr (p>), defineL™ to be the torus ovep with character group

Iy _ {fHHZ}
) = i =i and S pen Fm) = 0

The elementr 4 .7 of X*(L") is independent of the choice ofc II and is fixed
byT. It therefore defines a homomorphigh L™ — G,, rational overQ. Let A™!

be a simple Abelian variety ovét corresponding (as in Proposition 4.1) to the
orbit IT. Although A™ is defined only up to isogeny, its Lefschetz graupi™) is
well-defined up to a unique isomorphism.

LEMMA 4.2. For anyT-orbit IT of Weil numbers of weight1, (L(A™), 1(A™)) =
(L1,

Proof. The Lefschetz groufs(A™) of A' is the subtorus ofG,,,) 7(am) o Such
thatL(A™)(Q) = {a € Z(AN)|a-1a € Q*}, andi(A) sendsyto - (cf. 1.10).
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Choose a model fat!! over a finite field whose Frobenius endomorphisygener-
atesZ(A') as aQ-algebra. Then the bijectign— [p(mo)]: Hom(Z(A™), @) —
IT induces an isomorphisd * (L) — X*(L(A™)), which is independent of the
choice of the model and map$ to 7(A'1). O

Because the Lefschetz group of an Abelian variety @Gvisrcommutative, so also
is the fundamental group afMot (F), which therefore may be identified with an
affine group scheme ovérin the usual sense.

THEOREM 4.3. The fundamental group @Mot (F) is [Trerw, , (poo) (L™, I).
Proof. Combine Lemma 4.2 with Proposition 4.1 and Proposition 1.8. O

THE FUNDAMENTAL GROUP OFLMot ¥ (F)

For a Weilp"-numberr in a field K finite overQ and a primew of K lying over
p, define
ord,, ()
(W) = ———=|Ky: .
f ( ) Ordw(p”)[ Qp]

Now let K be a CM-subfield of, finite and Galois ove@. Define W (p™)
to be the set of Weib"-numbersr in K such thatf;(w) € Z for all w|p, and set
WE (p>) = lim W (p"). It is aT-submodule of¥ (p>), and we define”X to
be the corresponding quotient 6f Let Y be the set of primes ok lying over
p. The numberf, (w) depends only on the clags] of = in WX (p>), and so
[7] = fx is @ homomorphism fronil’ & (p>°) to the set of functiong: Y — Z.
This homomorphism is obviously injective, and the functions in the image have the
property thatf(w) + f(:w) is an integer independent af € Y and divisible by
[K,: Q). Later (5.1) we shall see that evefwith this property is in the image.

DefineW{, (p") andW/*, (p>) similarly. Then[x] — f. defines anisomorph-
ism

WL (0%) == {FY = Zlf(w) + f(w) = [Ku: Q) f(w) >0}

Let A be a simple Abelian variety ovef. According to Tate (1968/69),
Théorme 1, the invariant of ERdA) at a primev of its centreZ(A) is given
by

, _ordy(m) ) B
inv, (EncP(4)) = ordu(p”)[Z(A)v'@p] (= fx(v))

wherer € Z(A) is the Frobenius endomorphism of a modg)/F,~» of A with the
property that En{ 4p) = End(A). Therefore, for any embedding Z(A) — K
andw €Y,

inv,, (End(4) @74y K) = fo(m) (w).
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Consequentlyf, ) (w) is an integer for aliw|p if and only if K splits End(A).
Therefore, under the bijection in Proposition 41?1\1/1/'1{(+ (p™°) corresponds to the
set of isogeny classes dfs having the following property:

(x) forall p: Z(A) — @, p(Z(A)) C K and End(A) ® (4, K is a matrix
algebra ovelx.

For a fixed CM-fieldk” ¢ Q¥ of finite degree and Galois over, letLMot X (F)
be the full subcategory afMot (F) whose objects are direct sums of motives of the
form h(A, p, m) with A satisfying the condition). It is a Tannakian subcategory
of LMot (F), whose fundamental ngUpﬁnep\W11<+(poo)(LH, .

THE MAP gX: pX — LK

The elemenp € K is a Weil p-number of weight-2. Its clasgp] in W (p>) is
fixed under the action df, and so defines homomorphigh: PX — G,, rational
overQ.

Let IT be al-orbit in W< (p>°). The mapf - [[epy /™2 21 — WE (p)
factors throughX*(L™) and, hence, defines a homomorphigth PX — L.
This map sends” to /" and, hence, the family3™ )¢y, |, (=) defines a homo-
morphismg®: (PX, pi) — (LK, 1K), which is injective because it corresponds
to a surjective map on the character groups. On passing to the inverse limit over
all K ¢ QM finite and Galois over, we obtain an injective homomorphism
B (P,p) — (L,1).

5. The Reduction Functor on Lefschetz Motives of CM-Type

Because an Abelian variety of CM-type has potential good reduction, for each prime
wp of Q2 there is a ‘reduction’ functor from the category of Lefschetz motives of
CM-type overQ? to the category of Lefschetz motives over the algebraic closure
F of F,,. Using the theorem of Shimura and Taniyama, we shall compute the map
of the fundamental groups it defines.

Throughout this sectio@?® is the algebraic closure @ in C. We fix a prime
wo of Q¥ lying overp, and denote its residue field by

THE MAP P — S

We review the construction of the m&p— S that is conjecturally associated with
the reduction of motives of CM-type.

Fix a CM-subfieldK of Q¥ of finite degree and Galois ovér and a prime
wo of K lying over p. Recall thatX*(S¥) consists of the homomorphisms
g:Hom(K,Q¥) — Z such thatg + «g is constant, and that the weight gfis
—g — Lg.

Forg € X*(SK) anda € K, defineg(a) = [1,. x_qa(r9)?™ € Q2. Then
g(a) - tg(a) = Nmg ga="9)_If o lies in the real subfield” of K, theng(a) =

comp4192.tex; 4/05/1999; 11:40; v.7; p.18

https://doi.org/10.1023/A:1000776613765 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000776613765

LEFSCHETZ MOTIVES AND THE TATE CONJECTURE 63

NmF/Q(a)—Wt(é?). Because the group of units &f has finite index in the group of
units of K, this shows thay maps units inkK to roots of unity.

Let w generate the idealiﬁo, whereh is the order of the prime ideag,,
corresponding taug in the class group of<. According to the above remarks,
g(w) is independent of the choice af up to a root of unity, and it is a Weil

pf(%)h-number of weight wig). Moreover, for any primev of K lying overp,
ordy (g(@)) = h 32, rwe—w 9(7)- Therefore, with the notation of Section 4,

fg(w)(w) = Z g(T) € Z, (5.1)

TWo=wW

and sog(w) € WK (pf(wo/P)), The class it represents X (p>) is independent
of the choice ofw, and so we have a homomorphigm— [g(w)]: X*(S¥) —
WE (p>). We sometimes denote this map @s— w(g). It commutes with the
action ofl", and so defines a homomorphisrfi: PX — SK,

LEMMA 5.1. The maps
X (5%) L W ) ST (1Y < 2Uf +of € Ky Q)2)

are surjective.

Proof. We know (Section 4) that the second map is injective, and so it suffices
to prove that the composite map is surjective. But it sepds X*(S%) to the
map f:Y — Z such thatf(w) = 3>,,_,, 9(7). Choose a sectios to the map
T — Twp: Gal(K/Q) — Y such thats(cw) = vs(w), and defing so thatg(7) is
f(Twp) or 0 according as is in the image ok or not. Thery — f. O

Remarks.2. (a) The lemma shows that the homomorphigm PX — S is
injective. On passing to the limit over &il, we obtain an injective homomorphism
a. P — S.

(b) The lemma shows that

(7] = fr X*(PE) = {f1Y - Z|f +.f € (K QplZ}
is an isomorphism.

(c) The homomorphism/: PX — SK sendg” to s¥.

THE REDUCTION OF ABELIAN VARIETIES

Let A be an Abelian variety oved® of CM-type, and letd’ be a model of4 over
a subfieldL of Q? finite overQ. After possibly replacing. by a larger field,A’
will have good reduction atyg (Serre and Tate, 1968, Theorem 6). L& be the
reduction ofA’. ThenAo =gt A X speck(wo) F 1S independent of all choices (up to a

well-defined isomorphism) and — Ay is a functorisab®™(Q?) — Isab(F).

comp4192.tex; 4/05/1999; 11:40; v.7; p.19

https://doi.org/10.1023/A:1000776613765 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000776613765

64 J. S. MILNE

Now assumed to be simple, and leE = EnoO(A). It is a CM-field, and the
action of E on Tgp(A) defines a CM-type: Hom(E, Q¥) — Z.

The centreZ(Ap) of End’(Ap) is a subfield ofF. Letr € E be the Frobenius
endomorphism of some model df over a finite subfield, say,» ofIF Any two
suchr's represent the same clas3in(p). For anyp: E — @a{jletp wp be the
valuation onE such thatc|,-1,,, = [pc|w,. According to the Theorem of Shimura
and Taniyama (Tate, 1968/69, Lemme 5), for any prinfe of E,

df Ordy,(m)

TR

[Bw:Q)= Y. olp).

P~ two=w

Let K be a CM-subfield of)?, finite and Galois ove®, and large enough to
contain all conjugates df (and hence also the reflex field @f, ¢)). The choice
of an embeddingo: E — Q2 determines a Weil-integer p(r) of weight —1
in K and a CM-typey,, on K (see Section 2). From the inclusidn C Q¥ K
acquires a valuationy|p, and we choose & € K such that{w) = *p{;o. Then

bpo(@) LTI K ga(Tm) V(™ is a Weilp’ %"-integer of weight-1 in K.
PROPOSITION 5.3. The Weil numbergo(m) and 1,,(w) represent the same
element ofV X (p>).

Proof. Because of the injectivity of the mdp] — f-, it suffices to show that
Joo(m) = pro(w). From the Theorem of Shimura and Taniyama, we find that

ST
foo(my (W) = [Kuwi (p0E)v] fro(m) (v) = H(poE)s] > (oo po)
o~ lwe=v

wherew is the restriction ofv to pE and the sum is over the embeddinge E —
K.
On the other hand, we know (5.1) t@@jﬁo(w) = > rwo=w Yoo (T) Wherer runs

over the elements of GAK/Q). As 1,,(7) =dar(7~1 o po), the two sums are
equal. O

THE REDUCTION FUNCTOR
The functorA — Ag extends to a functor

R:LCM (Q¥) — LMot (F), h(A,e,m) — h(Ao, eo,m).
Above, we defined a surjective homomorphigm- 7(f): X*(SX) — W (p™)

which sends CM-types ok to Weil integers of weight-1. Since the map is
I'-equivariant, to each-orbit ¥ of CM-types it attaches B-orbit TI(¥) of Weil
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integers of weight-1 and a surjectiv&'-equivariant homomorphismr — II(V).
This last map induces a surjective homomorphism

S = Y f@)m(w): XH(TY) — X*(LT)

pevw eV
sendingt¥ to ['! and, hence, an injective homomorphism
O/\Ij: (I/H(\I/)7 ZH(\I/)) N (T\Il’ t\Il)

On combining these maps for &l we obtain a injective homomorphism<: (L,
1K) — (TK 5.

THEOREM 5.4. The homomorphisnaL* %) — (T ¢K) of fundamental
groups defined by the reduction functaZM % (Q¥) — LMot X (F) is o.

Proof. It suffices to check this ofA)® for A a simple Abelian variety of
CM-type, but here it follows from Proposition 5.3.

6. The Serre and Lefschetz Groups Intersect in the Weil-Number Torus

In this section? is the algebraic closure @f in C andwy is a fixed prime of?
lying overp.
Recall that we have defined affine group schemes of multiplicative type:

T: LCM(Q¥): (Abelian varieties of CM-type ovep?; Lefschetz
classep

S: CM(Q¥): (Abelian varieties of CM-type ove&}?®; Hodge classés

L: LMot (F): (Abelian varieties oveF; Lefschetz classes

P: ?Mot(F)?  (Abelian varieties over; algebraic classgs

Each ofT’, S, L has been shown to be the fundamental group of the Tannakian
category to its right, and itis conjectured that the same is triit We have defined
injective homomorphisms as in the left-hand square and have show tadly
correspond to the natural functors in the right hand square (conjecturally, the same
is true ofa andf):

T+—S5  LCM(Q") — CM(Q?)

S Ir

L p LMot (F) — ?Mot (F)?

This section is devoted to proving the following result.
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THEOREM 6.1. The diagram at left commutes, and identifiéswith L N S
(intersection inT’).

Start of the proof of Theore®i1. Fix a CM-fieldk ¢ Q@ finite and Galois
overQ.

LEMMA 6.2. The diagram

7K o Gk
a/KT QKT
LK BE pK

commutes.

Proof. We check this on the character groups. lebe al'-orbit of CM-types
on K, and letf € z¥. Thenf represents an element &f(7%), and its image in
X*(PK) =4 WX (p>) under either map in the diagram[if,cy 7(¥)7®). O

On passing to the limit over akk ¢ Q°™, we find that the diagram referred to in
Theorem 6.1 commutes. To complete the proof of Theorem 6.1 we shall show that
PE = 8K N LK (insideTX), or, equivalently, that

@K
pK (Lax) LK « gK (a5 45) TK
is exact, for all sufficiently larg&X C Q°™.

ALMOST CARTESIAN SQUARES

We say that a commutative square of Abelian groups

is almost Cartesiaiif all the maps are surjective and the malp (—”)> M' xy N
is surjective, i.e., if
N/ (’Y) M/@N (ﬂ—Oé) M

is exact.
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LEMMA 6.3. For asquare6.1) in which all the maps are surjective, the following
conditions are equivalent:

(a) the square is almost Cartesian;
(b) the mapKer~y — Ker 3 induced by’ is surjective;
(c) the mapKera/ — Kera induced byy is surjective.

Proof. Assume (a). If3(m’) = 0, then the paifm’, 0) maps to 0 inM and,
therefore, is the image of af € N, i.e.,m’ is the image of an elememnt €
Ker(~y). Hence (b) holds.

Assume (b). Supposé(m’) = «(n). Choosen’ such thaty(n’) = n. Then
o' (n') —m' € Ker(3), and so there exists an € Ker () such thate/(z) =
o/ (n') —m’. Now

o(n —z)=n/, y(n' —x) =n.
Hence (a) holds.

This proves the equivalence of (a) and (b), and the equivalence of (a) and (c) is

proved symmetrically. O

LEMMA 6.4. (a) Suppose the squaf®.1) is almost Cartesian, and leV” C
Ker(y) and M” C Ker(3) be such that/(N") c M". Then

N//N// ’V N

o’/l al
M//M// B M

is almost Cartesian.

(b) If both inner squares in the diagram

N”"LN/—’Y'N

M B’ M B ]\14
are almost Cartesian, then so also is the outer square.
Proof. (a) The composite Kef') — Ker(a') — Ker(«) is surjective, and so
therefore is Kefa') — Ker(«).
(b) Both maps Kefa”) — Ker(a') — Ker(«) are surjective, and so therefore

is their composite. O

SOME LINEAR ALGEBRA

Forn > 1 andd € Z, let A(n, d) be the 22 x 2n matrix

I, dE, — I,
dE, — I, I,
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wherel, is then x n identity matrix andt,, is then x n matrix with all entries
equalto 1.

PROPOSITION 6.5.The matrixA(n, d) is row equivalent oveZ to

2d — nd? 2d — nd? --- 2d — nd?

I, dE, -1, 0 0 e 0
,  B=
0 B . . .
0 0 . 0

Proof.After a set of row operations to reduce the block at lower-left to z&ta, d)
becomes

I, dE, -1,

0 (2d—nd)E, )’
which is obviously row-equivalent to the desired matrix. O

COROLLARY 6.6. Assumeli(2 — nd) # 0. Then the kernel of the map —
A(n,d)x: Z?" — 72" is the set of vectors of the form

(a1, ... ap,b1,...,bn), a;=bforl<i<n, Zai:O.

Proof. For an elementzy, ..., z2,) of the kernel, we may assign arbitrary
values, sayy, ..., b, t0 x,12,...,72,. Then the(n + 1)% equation becomes
Tpi1 + i ,b; = 0, and sdby is determined by the equation’_; b; = 0. Now
the firstn equations show that

2n
T, = — Z dxj+n+xz~+n:bi, 1<t <n.
j=n+1
This proves the statement. O

Completion of the proof of the Theoréni. It suffices to prove that

XHTH) — X*(s7)
. !

X (LK) —= X*(PK)

is almost Cartesian for all sufficiently large CM-fields ¢ Q? of finite degree
overQ. We shall in fact prove it under the assumption that
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— is finite and Galois oveD,
— contains a quadratic imaginary extensi@of Q in which (p) splits,
— and is not equal t@.

ThusK = @ - F with F totally real, and

df

r Gal(K/Q)

I'= Fo X <L>, { of
Iy = GalK/Q) = Gal(F/Q).

As a subfield ofQ¥, K acquires a primavg. Let D = D(wg) C T be the
decomposition group afip. Because splits inQ, D C I'.
WriteT'o= {0 =1,...,7,-1}, S0 that

D'={r0,. ., Tn—1,070, -+, LTn—1}

Let d = (D:1). We can assume that the have been numbered so that =

{7’0, c ,Td_l} and ;D = Td[i]D, i.e., oD = --- = Tg—1D, 74D = --- =

d
T2q—1D, etc.. In particular{o, 74, . . .} iS a set of representatives for the cosets of
DinT.

We shall use the map — 7wy to identify I'/ D with the set of primes of{
lying overp. We have a commutative diagram (Lemma 5.1):

X*(gK) hawral inclusion 7

/ |

X*(PKy —™=I~ _, 7/1/D].

The first vertical map isX*(af), which mapsf to 7(f), and the second is

Y f()T = X f(m)(TD).
Let
wz‘ZTi-f—ZLTZ‘, I;ZZLTZ‘.
i

Thempo, . . ., ¥, 1,7 formabasis foX *(S¥) (Lemma3.3). As;vo = i, (17i)1bo =
1p; we see that

v g {¢0) o ,¢n,1, “;Z)Oa ) Hﬁn,l}

is al-orbit in X*(S*). Letm; = w(viq) € W5, (p°). Then

df
IT= {70, ., T(n/d)—1 LT0s - - - s LT (n/d—1}

is aT-orbit in X*(PX).
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LEMMA 6.7. The diagram

x+(r¥) X0 x(5%)
X+(a)| X+ ()]
X*(B)

XH(LM) = X*(P¥)

becomes almost Cartesian when the two groups at right are replaced by the images
of the horizontal arrows.
Proof.We shall prove this by showing that the bottom map is injective. The map
T +— 71mo defines a bijectiod’/D — II, and hence an isomorphisail’/ D] —
Z[T1]. On combining this with the natural magll] — X*(L), we get the first
map in the sequence

z[r/D] — x*(L) X8 x+(pK)y — zr/D.

The map at right sendsto the mapr — f(cwp)—it is injective (Section 4). Let
o, =714D,1=0,...,(n/d) — 1, and let

w; = 0; +diog+ - +dioi_1 +
+(d — L)eo; + diojyr + -+ + dio(nq-1 € Z[I'/ D).

Then the composite of the three maps in the sequenee-isewq: Z[I'/D] —
Z[I'/D]. Since o;wwg = w;, Loy = tw;, this composite map has matrix
A(n/d, d) relative to the basigoo,... 0z _1, t00,..., toz_1} of Z[I'/D]. Now
Corollary 6.6 implies that the kernel of the composite mapd3a;(o; + vo;) |
> a; = 0}, but this is also the kernel of the maf"/ D] — X*(L™M). O

o

f

As 10 = 1 anduritp = 1), U
I = {7,.7}.

{1, 1np} is al-orbit. Let® = 1+, and let
LEMMA 6.8. The diagram

x(T%) 0 x7(s%)
X+ () X+ ()|
x (L 2L x(pK)

becomes almost Cartesian when the two groups at right are replaced by the images
of the horizontal arrows.
Proof.As in the preceding lemma, one shows thatthe bottom arrow is injective.
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LEMMA 6.9. The square
X" e x (1" — X*(S¥)
b |
XH(TM) @ XH(T™) — X*(PF)
is almost Cartesian.
Proof. Consider

XYy @ X*(T7) Z[Tbo & Z[T)p X* (%)

} J !

XH(T™N @ X*(T™) — Z[l'/D]mo & Z[T'/ D]x — X*(P¥).

The left-hand square is almost Cartesian because it is a direct sum of almost
cartesian squares, and so it remains to show that the right hand square is almost
cartesian. The image of the top-right map contaigs . ., 1’,_1, % and, hence, is

onto. Since the vertical maps are both onto, this shows that all the maps in the square
are onto. The elements, 1, ..., m,_1,© of X*(PX) are linearly independent.
Therefore, an element = 3" a;1; + ay» of X*(S%) maps to zero inX*(PX) if

and only ifa = 0 and}_ 4 ;441 @ = 0forj = 0,....(n/d) — 1. The first
condition implies that) € Z[I'|+¢, and the second condition implies that it lies in

the kernel ofZ[I'|yo — Z[I'/ D]mo. We can now apply Lemma 6.3. O

Let] = T'\{ CM-types onK } and letl’ = T\W{, (p>).
LEMMA 6.10. The square

Px(T?) — x*(s%)

del
a’’ «

@x*(1") Ls x*(PK)
IIer’

is almost Cartesian.
Proof. Since the maps are all surjective, it suffices to prove that the map Ker
(o) — Ker(a) is surjective, but this is obvious from the previous lemma. O

Consider the diagram:

Px(1?) — X*(TF) — X*(55)

del
o % «

PHx*r") — Xx*(L*) — X*(PK).
er’
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The last lemma shows that the composite of the mapsKer— Ker(a/) —
Ker(«) is surjective, which implies that Kén') — Ker(«) is surjective. Therefore

the right-hand square is almost Cartesian, which completes the proof of Theorem
6.1.

7. The Hodge Conjecture Implies the Tate Conjecture

Let X be a smooth projective variety ov€r We say that the Hodge conjecture
holds for X if, for all r, the Q-vector spacé/? (X (C),Q) N H™" is spanned by

the classes of algebraic cycles. This section will be occupied with proving the
following theorem.

THEOREM 7.1. If the Hodge conjecture holds for all Abelian varieties of CM-
type overC, then the Tate conjectu(®.1) holds for all Abelian varieties over the
algebraic closurer of a finite field.

We shall derive Theorem 7.1 from two further propositions. Before stating them,
it will be useful to review some of the theory of characteristic polynomials.
Let T be a pseudo-Abelian rigid tensor category over a fielgh particular,
this means that = End1)). Then, for anyX in T, End(X) = Hom(1, XV ® X),
and the trace Trv|X') of an endomorphisna of X is its composite with ev:
XV ® X — 1(regarded as an elementf. For any integer,

1
arg—l sgno) - o: X®" — X®r
7!

(sum over the elements of the symmetric group-datters) is an idempotent in
End (X®"), and we defing\" X to be its image. Assume thdt=4Tr(1|X) € N.
The characteristic polynomid}, (¢) of an endomorphism of X is defined to be

coteat+eat? + - Fegt?,  cami = (1) Tr(a|ATX).

When this definition is applied to an endomorphism of a vector space, it leads to the
usual characteristic polynomial. Clearly, for amjinear tensor functof: T — T’
from T to a similar categor{’, f.(t) = Tr)@)-
For afieldk and an adequate equivalence relatigitetMot . (k) be the category
of motives generated by the Abelian varieties okewith the algebraic cycles
modulo~ as the correspondences. Whelis taken to be numerical equivalence,
we obtain a semisimpl@-linear Tannakian categoMot,,m(k) (Jannsen, 1992).
Let M be the fundamental group dfot,ym(F). Since every Lefschetz class is
algebraic, there is a canonid@linear tensor functow: LMot (F) — Mot yym(F)
which is faithful (because of 1.6) and exact. The homomorphigm— w(L)
of fundamental groups defined lyis injective becausMot ,,m(F) is generated
by the image ofw. Therefore, M is commutative, and so can be regarded as an
affine group scheme ovérin the usual sense. Becaudet ,ym(F) is semisimple,
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M is an affine group scheme of multiplicative type, and the functalefines an
inclusionM < L.

It is known that the Frobenius maps on projective smooth varieties over a finite
field commute with algebraic correspondences (e.g., &8@884), Proposition
2). Therefore, anyXo in Mot,um(F,) admits a Frobenius automorphismy,.
The family {mx,} is an automorphism of the identity functéfot,ym(F,) —
Mot num(Fg). The characteristic polynomigl, of mx, has coefficients i, and

its roots inQ? are Weil g-numbers. To see the second statement, choose a fibre
w:Motpym(F,) — Vecya, and note thaﬂrx0 is also the characteristic polynomial

of w(mx,) acting onw(Xp) and thatw(Xp) occurs a factor ofv(Ap) (possibly
twisted) for some Abelian varietylo overF,. Let M*° be the fundamental group

of the Tannakian subcategofk,)® generated byXy and the Tate object. A
comparison with the Lefschetz group again shows iiat is commutative, and
therefore equals Afit(id, vy« ). Hencemrx, € Aut®(id,yqe) = M*°(Q).

Now let X be an object oMot nym(F), and letMX (quotient of M) be the
fundamental group ofX)®. Let X, be a model ofX over some finite subfield
F,» of F. As we enlargef,., M~*o may be replaced by a smaller algebraic group,
but after a certain finite extension it will become constant, and equal ta
Therefore, for som&V > 1, 7wy =g 7&0 € MX(Q). For any charactey of M*X,
x(mx) is a Weil p"™ -number (for any fibre functap: (X)® — Vecga, it occurs
as an eigenvalue afy acting onw(Y) for someY in (X)®). Hence, we can
apply Proposition 3.3 of Milne (1994) to obtain a well-defined homomorphism
P — M¥X. These homomorphisms are compatible for varyiigand so define a
homomorphisnP — M. The composite of this with the homomorphigrh— L
defined above is the homomorphighef Section 4 (apply ib. 3.3 again). It follows
thatP — M is injective, and we identify? with a subgroup scheme of.

Remark.7.2. The pro-torus’ is generated by a certain ‘germ of an element’
(ib. p. 435), which (by definition) the homomorphigi— MX ‘sends to'rx. We
can use this observation to characterize the imageinfAM/ . Letwy, be asin the
above discussion. As we observed, frsufficiently divisiblenr)]}’0 liesin M(Q).
The smallest algebraic subgroup bf* containingw%0 will be independent of
N if N is sufficiently divisible — this smallest algebraic subgroup will then be the
imageP in M. In the following, we shall always useyx to denote an element
W%o of MX(Q) with N chosen to be sufficiently divisible thaty generates the
image of P in MX.

Theorem 7.1 will follow from the next two propositions.

PROPOSITION 7.3.1f the Hodge conjecture holds for all Abelian varieties of
CM-type ovelC, thenP = M.
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PROPOSITION 7.4The Tate conjecturg.1) holds for all Abelian varieties over
Fif and only if M = P.

Proof of Propositior7.3. For an Abelian varietyl overQ?, the map from the
space of absolute Hodge classesido that ofA ¢ is bijective (Deligne, 1982, 2.9).
Since a similar statement s true for the spaces of algebraic ctasseassumption
implies that every absolute Hodge class on an Abelian variety of CM-typeVer
is algebraic. Therefore, there is a reduction funé@o€M (Q2') — Mot nym(F), and
hence a commutative diagram of Tannakian categories and @dawar tensor
functors:

LCM (Q)®) —— CM(Q®)

R R

From this diagram, we obtain a commutative diagram of fundamental groups:

o
-

N

Q
= 5

]

h

-~

Hence
McSnL, (inT).

Because® ¢ M, Theorem 6.1 force8/ = P.

Proof of Propositiori7.4. That the Tate conjecture implié$ = P is shown in
Milne 1994, Proposition 2.38.

For the converse, suppose initially that numerical equivalence edgslg
homological equivalence ai" (A) ® Q for all Abelian varietiesA overF and alll
r. ThenM acts onH?"(A,Qq(r)), and the classes it fixes are precisely those in
theQ,-subspace generated by the algebraic classes. On the other hand, the classes
fixed by P are precisely those ifi,"(A) (to be fixed byP is to be fixed by some
power of the Frobenius element). Henée= M implies that7, (A) is spanned
by algebraic classes.

It remains to prove thaP = M implies that numerical equivalence equals
¢-adic homological equivalence. The following elementary statement will be used
(Tate, 1966, p. 138).

Let f(t) € Q[t], and letf(t) = [T P(t)™ ") be the unique factorization of
P into a product of distinct irreducible polynomials over a figld Q.

* To show surjectivity, consider a specialization of an algebraic cycle Gver
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The integer-(f) = . m(P)? deg P) is independent of. If a semisimple
endomorphismy of a k-vector spac&” has characteristic polynomigl(t),
then dim, End,,, (V') = r(f).

For an adequate equivalence relatiomve defineMot . (F), to be the category
of motives (with the corrected commutativity constraint) generated by Abelian
varieties ovelr and using as correspondences the spage¢d) ®q Q;)/ ~. We
shall show that the natural functdf — X: Motnom(F); — Motum(F), is faithful
(hom = ¢-adic homological equivalence ofi(A) ®q Q). For this it suffices to
show that the natural map Efd’) — End(X) is injective for all X. Note that it
is automatically surjective.

Let X be in Motpom(F),. The fibre functorw, on Mothom(F), defined by
(-adic étale cohomology is faithful, and so digEnd X) < dimg,Endy,(r;
(we(X)). Becausef,,(xy)(t) = frx(t) and 7x acts semisimply onv,(X),
dimg, Endy, ) (we(X)) = r(fry)-

LetY be inMotnym(F),. Forany fieldk O Q, and fibre functow: Mot ,ym(F), —
Ve, EndY) ®q, k = End,(w(Y))M. If P = M, so thatM" is generated as
an algebraic group byy € MY (Q) (see 7.2), then the dimension of the second
space is(fr, ).

On takingY = X, we find that

r(fre) = dimg,End X) < dimg, End(X) < 7(fry)- (%)

Sincefry (t) = fry(t), both inequalities must be equalities, and so ENJ —
End(X) is an isomorphism.

This completes the proof that the funchot nom(F), — Mot um(F), is faithful.
Since Hom(1, k27 (A)(r)) = C~,(A), we now know (for all4 andr) that the map

Z"(A) ®g Q¢/hom— Z"(A) @g Q¢/num
is injective, i.e., thatit € Z"(A) ®q Q, has nonzero cohomology class, then there
exists a2’ € 29MA-T @, Q, such that: - 2’ # 0. By elementary linear algebra,
this implies the same statement with tli,Q,’ removed, i.e., that numerical equi-
valence coincides with-adic homological equivalence & (A). This completes
the proof of Proposition 7.4. O
Remark7.5. Without the assumptiaR = M, there seems to be no reason why

both inequalities ir{x) should not be strict. For example, we might (perhaps) have
an X in Motnom(X ), of rank 2 with Eng, 1 (we(X)) = Ma(Q),

(s ) e )
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Remark7.6. (a) Let be a CM-field as in the final part of the proof of Theorem
6.1. Then the above argument shows that if the Hodge conjecture holds for all
Abelian varieties of CM-type over with reflex field contained iti(, then the Tate
conjecture holds for all Abelian varieties ovewith endomorphism algebra split
by K.

(b) Once one knows the Tate conjecture for all Abelian varieties Bydren
one obtains it for all smooth projective varieties ofewhose motive, defined
using algebraic cycles modulo homological equivalence, lies in the Tannakian
subcategory generated by Abelian varieties, for example, for products of curves.

(c) A similar argument to the above shows that the Hodge conjecture for Abelian
varieties of CM-type ovet implies the crystalline analogue of the Tate conjecture
for Abelian varieties oveF.
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