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H-EQUIVALENCE CLASSES OF MULTIPLICATIONS ON
CERTAIN FIBER SPACES

CHAO-KUN CHENG

The enumeration of the H-equivalence classes of multiplications on a space
is a topic of current interest. In this paper we try to study the H-equivalence
classes of multiplications on a CW complex X with finitely many non-vanishing
homotopy groups, by using the Postnikov decomposition of X and multiplier
arguments [1; 4]. This paper presents a way to compute the set of H-equi-
valence classes of multiplications on X from the knowledge of certain quotient
sets of H*(B A B, Z) and some homotopy equivalences of B, where B repre-
sents the spaces in the Postnikov decomposition of X, and = denotes abelian
groups corresponding to the homotopy groups of X. The results of this paper
can be used to obtain Proposition A and B in [6], which in turn will give a
counterexample to Problem 34 in [5], c.f. [6].

In § 1 we shall state some definitions, notations and some theorems from [1],
[4] and [6]. In §2 we shall define an equivalence relation among multipliers.
We shall show in Theorem 2.4 that the H-equivalence class of multiplications
is a disjoint union of M,,(f)/R,, where R, is a relation in M, (f). In §3
we provide some more information about R, and establish the main result
Theorem 3.3. In § 4 we present a simple example to show how to use Theorem
2.4, 3.1 and 3.3 in a rather novel computation of the set of H-equivalence
classes in certain situations.

We restrict ourselves to the CW-category.

1. Preliminary.

Definition 1.1. An H-space is a triple (X, %, m) where (X, ) is a space with
base point * and m : X X X — X is a mapping which satisfies m(x, *) =
m(*, x) = «x for any x € X. Such a map is called a multiplication on X.

Let P, L and @ be the free path functor, the path functor with fixed initial
point and the loop functor respectively.

Definition 1.2. An H-map from (X, *, m) to (Y, *,n) isa map f: (X, x) —
(Y, %) such that there exists a map F: X X X — PY such that ¢ F =
no(fXf), eoF = fom and e, F(x, *x) = ¢,F(*, x) = f(x) where e, is the
evaluation at ¢. F is called a multiplier of the H-map f. If ¢,F = ¢,F for all ¢,
we call f a multiplicative map.
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Definition 1.3. Two multiplications m, and m, on X are called H-equivalent
provided there exists an H-map f: (X, m,) — (X, m.) that is a homotopy
equivalence. Let us denote this by m; ~m, (via f ). In particular, if f = id,
we denote it by m; = m,.

It is well known that both ~ and = are equivalence relations.

From now on let # be a multiplication on K(Z, ! + 1) where Z is an abelian
group. (Note that up to homotopy, K(Z, / + 1) admits only one multiplica-
tion.)

Definition 1.4. Two multipliers F;(z = 1, 2) of an H-map f: (X, m;) —
K(Z, 14 1) = K are called H-equivalent, denoted by F; ~ F,, provided:
(i) there exist homotopy equivalence H-maps g : (X, m1) — (X, m,) and
¢’ : K — K with Q and Q' as multipliers respectively,
(ii) there exists a homotopy G from g’ o ftofog
(iii) there exists a secondary homotopy D : X? — P(PK) such that it pre-
serves the boundary conditions

eeD =Qo(fXf), eaD=foQ

PeiD(x,y) = Fa(g(x), g(y)) + P.(G(x), G(y))

Pe,D(x,y) = G(mi(x,y)) + g Fi(x, y)
where ¢y and e, are the evaluation of each path at initial and terminal points
(see Diagram 1).

fem, ) g'fm, . gn(f X f)
| Gm, ) g F )
1o Q'(f X1
| Falg X g) . n(G X G) !
fma(g X g) n(f X f) (g X g n(g X g) (f X))
Diagram 1

Definition 1.5. In the above definition, if we let m; = m,, g = id, g’ = id,
Qx, »)(t) = mi(x,y), Q" (u,v)(t) = n(u,v) and G(¢, x) = f(x), then F, and
Fy are called equivalent multipliers, denoted by F; = Fs.

(Note that, equivalent multipliers were called H-homotopic multipliers in
(1]).

It is easy to verify that both ““~" and ‘&’ are equivalence relations.

From now on let / be a positive integer and B be a space such that IT, (B) = 0
if e =21 Let K = K(2,!+ 1) where Z is an abelian group. Let the fibering

QK > E5B

be induced from QK — LK — K by amap f : B — K. E can be represented by
{(, M| € B, N € LK and e;\ = f(b)}. The principal results of [4] are:
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TueoreM 1.6. If E is an H-space, then B can be made into an H-space so that
m and f are H-maps.

TuroreM 1.7. If f : (B, m) — K is an H-map, then for each multiplication s on
E that makes © an H-map, there exists a multiplier F of f such that s is equivalent
to s(F) : E X E — E defined by

S(F) ((bly )\l)v (bZ, )\2)) = (m(blr b?)v Pn()‘lr >‘2) + F(bly b2))

where '+ means the usual path joining. We will call s(F) the multiplication on E
obtained from the multiplier F.

Let H(E, m) be the family of all = equivalence classes of multiplications on
E such that = is multiplicative with respect to at least one multiplication on £
in the = equivalence class and the multiplication m on B. And let M,,(f ) be
=~ equivalence classes of multipliers of f : (B, m) — K.

Remark. Theorem 1.7 implies H(E, m) = {{s(F)}|{F} € M,(f)}.

THEOREM 1.8. If m = m' on B, then there exists a bijection ® : M,(f) —
M, (f ) such that for any {F} € M,(f), {s(F)} = {s(G)} where G € ®{F}.

THEOREM 1.9. H(E, m) = H(E, m') provided m = m'. H(E, m) N H(E, m')
=0 if m Em'.

Let H(E) be the family of all = classes on E.

TrEOREM 1.10. H(E) = Upner H(E, m) where T is an arbitrary representa-
tion of the set {o« € H(B)|f 1is an H-map with respect to a}. Moreover the union s
disjoint union.

The proofs of Theorem 1.6 and 1.7 can be found in [1; 4; 6]. The proofs of
Theorem 1.8, 1.9 and 1.10 can be found in [1].

2. ~relations.

THEOREM 2.1. If ¢ : E — E is a homotopy equivalence then there exist homo-
topy equivalences g : B — B and ¢’ : K — K such that = o g’ is homotopic to
gom and fo g is homotopic to g’ o f. Conversely if ¢g: B— B and ¢ : K— K
are homotopy equivalences such that f o g is homotopic to g’ o f, then each homotopy
equivalence g'' : E — E, such that m o g is homotopic to g o w, 1s homotopic to
one of the form

g’ (b, N\) = (g®), P&(N) + G(0))
where G : B — PK 1s a choice of the homotopy from ¢’ o fto fo g.

Proof. The proof of the first part of the theorem is contained in the material
on pp. 438-441 of [3], or Proposition 2 in [6]. The converse can be easily proved
using the exactness of — [E, QB] — [E, QK] — [E, E] — [E, B] and dimen-
sional considerations.
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Let m; and m, be two multiplications on B. Let {F\} € M, (f), {Fa} €
My, (f), s(F1) = syand s(Fy) = sa. In the following diagram

wjo g %T»»
(B, my) g (B, ms)
b , 1
K g — K
Diagram 2

g"”, g and g’ are homotopy equivalences, all squares are commutative up to
homotopy and = is multiplicative. In the light of Theorem 2.1 we assume
g, \) = (g(b), Pg(\) + G()), where G : B —» PK is a homotopy from
goftofog.

THEOREM 2.2. ¢ : (E, s1) — (E, s2) is an H-map if and only if
(1) g: (B, m1) — (B, my) and g’ are H-maps, and
(ii) there exists multipliers Q and Q' of g and g’ respectively and there exists a
secondary homotopy D : B X B — P(PK) such that the Q, Q', G, F1, Fs, D, f, g,
g, my, ms, satisfy Diagram 1. (i.e. Fy ~ F2). Moreover Q"' ((b1, A1) (b2, N2)) =
(Q(b1, b2), PQ' (A1, N2) + D (b1, bs)) is a multiplier of ¢"'.
Proof. 1t is easy to show that (i) and (ii) imply Q"' to be a multiplier of g’’.

Assume ¢’ is an H-map. Let J : E X E — PE be a multiplier of g"’. The
composite function

J Proj
E X E— PE— P(PK)

provides a map 6;: I X I X E X E— K, such that 6,|//? X E X E is the
function indicated in the following diagram (functions in the diagram are
evaluated at (b, b2) unless otherwise specified),

gfm

g/f"'ﬁ

Gm1

Fy(g X g)

Pg’Fl

Pr(G X G)

gn(f X f)

Pg'n(\1, N\2)

Pn(g’ X g') (A, M)

nd

fma(g X g)

n(f X f) (g X )

n(g" X g) (f Xf)

Diagram 3

where the top line is the second coordinate of g’ o s1(b1, N\;), (b2, N\2)) and
the bottom line is the second coordinate of sy 0 (g7 X g"") ((b1, A1), (bs, A2)).
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There exists a cross section ¢{: B'— E. Let 6, = 6,0 (id X £ X §):
I? X B' X B'— K. By using Diagram 3, we can represent 6, in Diagram 4:

gfm g'fm gn(f X f) N
Gmy Pg'Fl Pg'n()\l, A2)
A B C *
Fao(g X g) Pr(G X G) Pn(g’ X g') (\, \2)
fmag X g)  m(fX[) (gXg) n(g X g) (F X)) *
Diagram 4

where £(b;) = (b;, N\y), 1 =1, 2, and 4, B and C indicate the restriction of 6.
on appropriate parts of I2.

Because g’ is a homotopy equivalence and K is an Eilenberg-Maclane space,
¢’ is an H-map. Therefore there exists a multiplier Q' of g’. (Note that, Q' is
unique up to homotopy.) Define the map C;: I X I X B' X B'—> K as
follows:

Ci(t, s, by, ba) = Q' (M(s), Na(5)) (8).
Therefore on 12 X B! X B' the function C; is the function indicated in the
following diagram.

gn(f X f)

Pg'n(\y, Ao)

* G QUXN

Pn(g X g) (A, o)

n(g X ¢) (f Xf)

Diagram 5

If we glue C; to C from the right, the top and bottom line are the paths
—Pg'n(Ai, No) + Pg'n(hi, X2) and —Pn(g’ X g')(A\, X)) + Pu(g’ X g')
(M, A2), g’ (f X f) (b1, bs) respectively. Therefore, by the homotopy exten-
sion property, we can deform

c Cy

to a map Cy:I? X B' X B' — K such that Cy|I? X B! X B! preserves the
boundary conditions and satisfies the conditions indicated in the following
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square gn(f X f) (by, ba)

BNC C, Qf Xf

n(g X g) (g X g (b1, ba)
Diagram 6

where B M C is the restriction of C to its left vertical side. Therefore if we
glue C; to 6, from the right, we obtain a boundary condition preserving map
D,: I X IXB!'X B'— K, such that D|I? X B! X B! satisfies the proper-
ties indicated in the following diagram

fom gfm gn(f X 1)
Gm,y Pg'Fy
A’ D, Q(f X
Fy(g X g R Pr(G X G)
Jma(g X g) n(f X f) (g X g n(g X ¢g) (fXf)
Diagram 7

where A’ is the restriction of A to its left vertical side.
Using obstruction theory we can extend the composite map

IxBxB AXEXE o pwrm T p T .p

to a multiplier of g : (B, m;) — (B, m.), and let us call this multiplier Q. It is
obvious that fo Q|B' X B! = A’.

By adding boundary conditions to D;, we define a map D, roughly as
indicated in the following diagram, where the dotted lines have the direction
pointing out of the paper.

\\ IXB\/B//’
N -
N -
B X B
B x B’
{o ot o AN
I X B'X B, N
) 7/ 4 / \\
’ / N
/ / N
Diagram 8
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The precise definitionof Dy : IX I X B'X B'\UIXIX BV B\UI*X BXB
— K is as follows:

Dy(t, x, b, %) = Dy(¢, 5,5, b) = GO)(s + 2t — 1).

(Note that we use the convention that G(b)(r) = initial point if » < 0 and

G(b)(r) = terminal point if r > 1.)

Dy(t, 1, by, be) = g'Fi(by, b2) (2t — 1) ift = 1/2
Gm (by, bs) (2t) ift<1/2
n(G(by, b2)) (2t — 1) if ¢t = 1/2
Fa(g(b1), g(b2))(2t) if £ £ 1/2
Dy (0, s, by, b2) = fQ(b1, b2)(s)

Dy(1, s, by, b2) = Q' (f(by), f(b2))(s)
DolI X I X B" X Bt = D,.

il

D?(ty Oy bly b2)

Il

It is routine to verify that D, is a well defined function. By obstruction theory,
D, can be extended to a map D3: I X I X B X B— K, which will provide
us a secondary homotopy D. And Q, Q' and D which we found above will
satisfy (ii) of Theorem 2.2. Hence the theorem is proved.

We shall use Fi ~ F; (via g and ¢g’) to mean that we use g : (B, m;) —
(B, ms) and g’ : K — K as the functions in (i) of Definition 1.4.

COROLLARY. s(Fy) >~ s(F2) (via g'’) if and only if that F, ~ F, (via gand g')
where g’ ¢ and g’ are related as in Diagram 2.

Let M(E) denote the H-equivalence classes of multiplications on E. Since
every multiplication on E is ~ equivalent to some s(F) for some multiplier F,
in the light of Theorem 2.2 and the corollary, to study M(E) we need only
to study the ‘“~"" equivalence classes of multipliers.

Let s : M, (f) — H(E) be defined by s{F} = {s(F)} and let ¥ : H(E) —
M (E) be the quotient map which is defined by the fact that ~ is finer than =2,

THEOREM 2.3. Suppose g : (B, m1) — (B, ma) 15 a homotopy equivalence and
H-map. If there exists a map g’ : K — K such that f o g is homotopic to g’ o f,
then

Im {Yos: M, (f)—> ME)} =Im{¥os: M,,(f — ME)]}.

Proof. For any {F} € M,,(f), by using the homotopy extension property,
themap g'~'o (—=Gm; + fQ + F(g X g) + n(G X G) — Q'(f X f)) (see Dia-
gram 1) can be deformed to a multiplier F* of f: (B, m;) — K, where “+4"
and ‘="’ are the usual joining of paths with direction and G, Q, and Q' are
as given in Picture 1. It is obvious that F ~ F* (via g and g’).

Note on Theorem 2.3. The F* defined in the proof is unique up to homotopy

relative to boundary conditions, and we shall use F* frequently in Sections 3
and 4.
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Define a relation “$” in H(B) as follows: {m,}${m,} if and only if there
exist homotopy equivalences g : (B, m;) — (B, m:) and g’ : K — K which are
H-maps such that f o g is homotopic to g’ of. It is easy to see “‘$’ is a well
defined equivalence relation on H(B). Let Q(B) be a set of representatives,
one from each “‘$" equivalence classes in H(B).

For any multiplication 7 on B, let us define a relation, R,(f ) on M,(f) as
follows: ({F1}, {Fs}) € R,(f) if and only if

(i) there exist homotopy equivalences g : (B, m) —» (B,m)and g’ : K > K
which are H-maps such that f o g is homotopic to ¢’ of, and

(ii) Fy ~ F, (via g and g’).

It is easy to verify that R, (f) is an equivalence relation.

From Theorem 1.10, 2.3 and corollary, we get:

THEOREM 2.4. M(E) = Unca Mu(f)/Ru(f). Moreover it is a disjoint
union.

3. Some information about R, (f).

Note. From now on we deliberately make F € M, (f) ambiguous; F €
M,,(f) means a class or a representative of the class of multipliers.

TueorEM 3.1. (i) M,.(x) = HY(B A B, Z).

(ii) Let Jy, Jo € M, (s). Then J1 ~ Jo if and only if there exist homotopy
equivalences g : (B, m) — (B, m) and ¢’ : K — K which are H-maps such that

ge(J1) — (@ X 9*(2) € {Im (m*: HY(B, Z) > H'(B A B, 2))}
where m*(x) = m*(x) —1 Q@ x —x ® 1.

Proof. (i) is Lemma 2.1 in [1].

(ii) From the definition of J; ~ Jy (Definition 1.4), there exist homotopy
equivalences g : (B, m) — (B, m) and g’ : K — K which are H-maps. There
also exist G : B — QK and a secondary homotopy D as in Diagram 1. The
edges of the rectangle in Diagram 1 are loops in K when f = ,. In fact on the

two vertical sides, they are trivial loops. Therefore the existence of the secon-
dary homotopy D is equivalent to

ge(J) +m*(G) =10 G+G®1+ (g X g)*(J).
It is equivalent to say
g«(J1) — (g X ©*(Js) € Im (m* : HY(B, ) — HY(B A B, 2)).
From Theorem 1.1 in [2], there exists a map ¢ : K X K — K such that the

following composite
KidK
K—-X X—=K
K ? K
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is homotopic to the trivial map. In fact, K can be taken as an abelian group:

thus ¢ as a strict inverse.
Let F € M,(f). For any J € M, (*), we define F @ J to be the class
containing or the multiplier equal to (we allow this ambiguity) the composite.

. F
IXBXBdlagonalIXBXB————-—aK "

X X —K
IXBXB — K
Let F' € M, (f). By the property of ¢, the restriction of the composite
diagonal IXBXB—1 LK —9 LK
IXBXB—=""5, < < % n X
I XBXB » K ~— K
F id

on I X BV B is homotopic to the trivial map. Therefore by using the homotopy
extension property, we can deform uniquely up to the homotopy relative to
boundary conditions to a multiplier J' € M, (). We define F © F' = J'.

As in § 2 in [1], we can show F® and FO© are well defined bijections and
are inverse to each other. (F© defined here differs from F© defined in [1],
but it is easy to show there is a homotopy between them which preserves the
boundary condition.)

Now we want to show that F® preserves the ‘‘ ~' relation. As a matter of
fact, we shall see, in Theorem 3.2, that by using F®, the ‘‘~" relation on
M, (*) will determine the ‘‘~"’ relation on M, (f).

Before the statement of Theorem 3.2, we will first set up some notation.

Let g: (B, m) > (B, m) and g’ : K — K be fixed homotopy equivalences
and H-maps such that g’ o f is homotopic to fo g. Let Q and Q' be fixed
multipliers of g and g’ respectively. For any Fy, F, € M, (f) and a homotopy
G from g’ o f to fo g, let D(G, Fi, F:) be a secondary homotopy in Definition
1.4 which relates to G, F;, F, and those fixed g, ¢/, Q and Q' according to
Diagram 1.

Let g, ¢/, O, Q' and G be fixed. Fix an F € M, (f) and as in the note and
proof of Theorem 2.3 we let F* be the multiplier of f derived from deforming

f7o (=Gmy + fQ + F(g X g) + n(G X G) = Q'(f X ))).

Let Dy = D(G, F*, F) be the obvious secondary homotopy of Fand F*. From
Theorem 2.2 in [1], for each Hy, Hy € M, (f ), there exist J;, J» € M,,(*) such
that F® J, = Hyand F* ® J, = H,in M, (f ). Then we have the following
theorem.

THEOREM 3.2. There exists a secondary homotopy D(G’, H, H,) for H, ~ H,
if and only if there exists a map H : B — QK and a secondary homotopy
D(H, J], J2) fOT’ J1 ~ JQ.
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Proof. For any homotopy G, G’ from g’ of to fog, there exists a map
H : B — QK such that the composite
B S rr
B— X X — PK
B — QK
H
is homotopic to G’ relative to the initial and terminal points.
For any D(H, J,, J2), define Dy + D(H, J1, J2) to be the composite of

IXIXBXB—P2 |k i
IXIXBXBe—— % X" K
—_—
IXIXBXBpmg—7y K

It is a straightforward argument to show Dy + D(H, J3, J2) is a secondary
homotopy for H; = F* @ J; ~ F @ J, = H,. Defineafunction D’ : I X I X
BV B— Kby

H(s+2t—1), when0=s+4+2t—1=51
’ ¥\ — )/ * = ’
Dt s, %,%) = D't s, %, x) = {*, otherwise.
By the property of ¢, for any D(G’, H,, H,), where Hy, H, € M, (f), the
restriction to I X I X BuB of the composite

’
diagonal IXIXBXBD_(G_’__H"Hz)_,
_ dragonal |

IXIXBXB %
IXIXBXB———s
D,
PO R
X X K

is homotopic to D’. Therefore this composite can be deformed to a secondary
homotopy D" for F* © H, ~ F © H;in M, (*), which satisfies the properties
described in the following diagram.

Hm T (PO Hy

(FO Hy) (g X g . "MH H

Diagram 9
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Since J, ~ F* © H, and J, ~ F © H,, the theorem is proved.

Since K is an Eilenberg-Maclane space, we can use obstruction theory to
show that Q' is unique up to homotopy.
Forany T € M,,(*: B— B) and Q € M,(g: B— B), let Q ® T be the

composite
BXBQPBm
BXB— X X — B
BXB?QB

By a similar argument as to show F@® is a bijection or as in pp. 1057-1059 in
1,0® : M,(*: B— B) —» M,(g: B— B) is a bijection.

Let LY(B A B, Z) be the subgroup of H'(B A B, Z) generated by
Im (@w*: H(B, 2)—>HY (B A B, Z)) and Im (Qf)*:[B A B, QB]—
H'Y (B A B, 2)). Let F and F* be as before. Then we have:

THEOREM 3.3. For any F* @ J,, F® Js € M, (f), where Jy, Jo € M, (*),
F*® J, ~ F® J (via g and ¢') if and only if

g’ (J1) — (g X 9)*(J2) € LYB A B, Z).

Proof. F* ®J, ~ F® J, (via g and g’) if and only if there exists a multiplier
Q@®Tof g: (B, m)— (B, m), where Q is the fixed multiplier of g and 7" €
M,,(* : B— B), and a homotopy G’ from g’ o f to f o g such that there exists a
secondary homotopy D; which satisfies the properties indicated in the follow-
ing diagram.

G'm g(F* @ Jy)

Jee 1) D, QX1

F@® Jo(g X g n(G X G')

°

Diagram 10

Because Q @ T and Q + mq(1, ma(g X g)) are homotopic relative to
end points, and so are (F @ Js)(g X g) + fma(T, ma(g X g)) and F @
(Je @ fT(g7* X g71)) (g X g), where ‘4"’ means the joining of two paths,
therefore D; can be deformed to a secondary homotopy D, which satisfies the
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properties indicated in the following diagram.

' ¢ @7y

fe D,

FO® (J,®fT(g'Xg)egXg n(G' X G)

0

Diagram 11

Therefore from Theorem 3.2 we know there exists a secondary homotopy
DH, J1, Jo @ fT(g7* X g)) for Jyand J» ® fT(g7! X ¢g~1). By Theorem 3.1,
g’ (J1) — (g X 9*(J2 @ fT(g* X ¢g7Y)) € Im m*. Therefore g’ (J1) —
(g X g)*(J2) € LY(B A B, Z). We omit the proof for the converse part, which
is a straight forward argument.

Evidently Theorem 3.3 provides a way to determine &,,( f ).

4. Example. In general it is hard to find R,,(f), because of the lack of
information about g's and what is F © F* € M, (*). In the case when B =
K(Z,, t), we can give a method to compute M (E). We shall demonstrate this
method in the following example.

Let B = K(Z;,3), K = K(Z5,12) and f = p'Ba where a is the fundamental
class of H*(B, Z5). Let b = Ba.

We know:

HY(B A B, Zs) = Z5(2b ® ab, 2ab @ b, * @ a, ¢ @ b*)
w*(HY (B, Z5)) = Z; (0 Q@ a+a® b +20Q ab + 2ab ® b) = Im m*

andIm (f*:[B A B,QB] — [B A B,QK]) = 0, where Z;(x,y) denotes the Z;
module generated by x and y.

The homotopy equivalences and H-maps ¢: B — B and ¢’ : K — K such
that g’ of is homotopic to fo g are maps induced from Iso (Z; Z;) =
{units of Zs} = {1, 2, 3, 4}. We will use 1, 2, 3, 4 to indicate the corresponding
homotopy equivalences.

Fix F € M,(f), let F;* be the multiplier in M, (f ) defined in the Note to
Theorem 2.3 with g = ¢’ = 7,1 £ 1 £ 4 and any choice of G, Q and Q'. From
Theorem 2.2 in [1], there exists A; € M, (*) such that F ® 4, = F;*. We
want to know more about 4 ;. By the definition of F.;* we know the difference
between F* = F @ A, and the composite of

. . —1
BxB XL pxp I g PO g
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is in the Im si*. Therefore the difference of the following two composites is

in Im #*:
O BxB2XLpxB2X2pxp F gt PO g1 PB) g
BxB2X2BxB F'K'P(3)’K'p(n)
BXB——5BXB 2 LK 2/ Kf

where » is the multiplication on K. Therefore 4, — 34, € Im ®m*. Similarly
we can show that A3 — 24, € Im #*. Since 1 is the identity map, it is obvious
that A, € Imm*. Let H = F ® 44, € M, (f ), and let H* be the multiplier
in M,(f) defined in the Note to Theorem 2.3 with g =g’ =711 =7 < 4.
From Theorem 2.2 in [1], there exists B, € M, (*) such that H @ B, = H*.
A similar technique and the fact that H = F @ Z, shows that B, € Im @*.
Therefore by suitable choice of F we can assume 4, € Im ¥,

Using Theorem 3.1, it can be shown that for any x, y € M,(*) =
H™(B A B, Zs) the following four statements hold:

(i) x ~y (vialand 1) if and only if x — y € Im m*

(ii) x ~ ¥ (via 2 and 2) if and only if 2x — 4y € Im m*

(iii) x ~ y (via 3 and 3) if and only if 3x — 4y € Im m*

(iv) x ~ v (via 4 and 4) if and only if 4x — y € Im m*.

Using Theorem 3.3, it can be shown that for any w, z € M,,(f ) the following
statement holds for z = 1, 2, 3, 4:

(*) w ~z (via 7 and 7) if and only if

(w,2) E {(F@A,®x, F® y)|x ~y (viaand 7)}.
Since A; € Im #*, A; and A, are both in Im #* Hence M(E) =

{F® V|V € M,(*) = H*(B A B, Z5)}/Rn(f) where
R.(f) ={(F® V,F® V)|V — V' € Im m* 2V — 4V’ € Im m*,

3V — 4V’ € Imm* or 4V — V' € Im mi*}.

In the above example the computations for the relations among 4., 43 and
A4 rely on the fact that Iso (Zs, Z5) is a cyclic group. Since Iso (Z,, Z,,) is a

cyclic group if p is odd or p = 2 but n = 1, and Iso (Z, Z) is a cyclic group,
therefore we can apply the same argument to those cases.
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