H-EQUIVALENCE CLASSES OF MULTIPLICATIONS ON CERTAIN FIBER SPACES

CHAO-KUN CHENG

The enumeration of the H-equivalence classes of multiplications on a space is a topic of current interest. In this paper we try to study the H-equivalence classes of multiplications on a $C W$ complex X with finitely many non-vanishing homotopy groups, by using the Postnikov decomposition of X and multiplier arguments $[\mathbf{1} ; \mathbf{4}]$. This paper presents a way to compute the set of H-equivalence classes of multiplications on X from the knowledge of certain quotient sets of $H^{*}(B \wedge B, \Sigma)$ and some homotopy equivalences of B, where B represents the spaces in the Postnikov decomposition of X, and Σ denotes abelian groups corresponding to the homotopy groups of X. The results of this paper can be used to obtain Proposition A and B in [6], which in turn will give a counterexample to Problem 34 in [5], c.f. [6].

In § 1 we shall state some definitions, notations and some theorems from [1], [4] and [6]. In § 2 we shall define an equivalence relation among multipliers. We shall show in Theorem 2.4 that the H-equivalence class of multiplications is a disjoint union of $M_{m}(f) / R_{f}$, where R_{f} is a relation in $M_{m}(f)$. In §3 we provide some more information about R_{f} and establish the main result Theorem 3.3. In § 4 we present a simple example to show how to use Theorem 2.4, 3.1 and 3.3 in a rather novel computation of the set of H-equivalence classes in certain situations.

We restrict ourselves to the $C W$-category.

1. Preliminary.

Definition 1.1. An H-space is a triple $(X, *, m)$ where $(X, *)$ is a space with base point $*$ and $m: X \times X \rightarrow X$ is a mapping which satisfies $m(x, *)=$ $m(*, x)=x$ for any $x \in X$. Such a map is called a multiplication on X.

Let P, L and Ω be the free path functor, the path functor with fixed initial point and the loop functor respectively.

Definition 1.2. An H-map from $(X, *, m)$ to $(Y, *, n)$ is a map $f:(X, *) \rightarrow$ $(Y, *)$ such that there exists a map $F: X \times X \rightarrow P Y$ such that $e_{0} F=$ $n \circ(f \times f), e_{1} F=f \circ m$ and $e_{t} F(x, *)=e_{t} F(*, x)=f(x)$ where e_{t} is the evaluation at t. Fis called a multiplier of the H-map f. If $e_{t} F=e_{0} F$ for all t, we call f a multiplicative map.

Received April 27, 1973 and in revised form, March 14, 1975.

Definition 1.3. Two multiplications m_{1} and m_{2} on X are called H-equivalent provided there exists an H-map $f:\left(X, m_{1}\right) \rightarrow\left(X, m_{2}\right)$ that is a homotopy equivalence. Let us denote this by $m_{1} \simeq m_{2}$ (via f). In particular, if $f=$ id, we denote it by $m_{1} \cong m_{2}$.

It is well known that both \simeq and \cong are equivalence relations.
From now on let n be a multiplication on $K(\Sigma, l+1)$ where Σ is an abelian group. (Note that up to homotopy, $K(\Sigma, l+1)$ admits only one multiplication.)

Definition 1.4. Two multipliers $F_{i}(i=1,2)$ of an H-map $f:\left(X, m_{i}\right) \rightarrow$ $K(\Sigma, l+1)=K$ are called H-equivalent, denoted by $F_{1} \sim F_{2}$, provided:
(i) there exist homotopy equivalence H-maps $g:\left(X, m_{1}\right) \rightarrow\left(X, m_{2}\right)$ and $g^{\prime}: K \rightarrow K$ with Q and Q^{\prime} as multipliers respectively,
(ii) there exists a homotopy G from $g^{\prime} \circ f$ to $f \circ g$
(iii) there exists a secondary homotopy $D: X^{2} \rightarrow P(P K)$ such that it preserves the boundary conditions

$$
\begin{aligned}
& e_{0} D=Q^{\prime} \circ(f \times f), \quad e_{1} D=f \circ Q \\
& P e_{0} D(x, y)=F_{2}(g(x), g(y))+P_{n}(G(x), G(y)) \\
& P e_{1} D(x, y)=G\left(m_{1}(x, y)\right)+g^{\prime} F_{1}(x, y)
\end{aligned}
$$

where e_{0} and e_{1} are the evaluation of each path at initial and terminal points (see Diagram 1).

Definition 1.5. In the above definition, if we let $m_{1}=m_{2}, g=\mathrm{id}, g^{\prime}=\mathrm{id}$, $Q(x, y)(t)=m_{1}(x, y), Q^{\prime}(u, v)(t)=n(u, v)$ and $G(t, x)=f(x)$, then F_{1} and F_{2} are called equivalent multipliers, denoted by $F_{1} \approx F_{2}$.
(Note that, equivalent multipliers were called H-homotopic multipliers in [1]).

It is easy to verify that both " \sim " and " \approx " are equivalence relations.
From now on let l be a positive integer and B be a space such that $\Pi_{k}(B)=0$ if $k \geqq l$. Let $K=K(\Sigma, l+1)$ where Σ is an abelian group. Let the fibering

$$
\Omega K \rightarrow E \xrightarrow{\pi} B
$$

be induced from $\Omega K \rightarrow L K \rightarrow K$ by a map $f: B \rightarrow K$. E can be represented by $\left\{(b, \lambda) \mid b \in B, \lambda \in L K\right.$ and $\left.e_{1} \lambda=f(b)\right\}$. The principal results of [4] are:

Theorem 1.6. If E is an H-space, then B can be made into an H-space so that π and f are H-maps.

Theorem 1.7. If $f:(B, m) \rightarrow K$ is an H-map, then for each multiplication s on E that makes π an H-map, there exists a multiplier F of f such that s is equivalent to $s(F): E \times E \rightarrow E$ defined by

$$
s(F)\left(\left(b_{1}, \lambda_{1}\right),\left(b_{2}, \lambda_{2}\right)\right)=\left(m\left(b_{1}, b_{2}\right), \operatorname{Pn}\left(\lambda_{1}, \lambda_{2}\right)+F\left(b_{1}, b_{2}\right)\right)
$$

where " + " means the usual path joining. We will call $s(F)$ the multiplication on E obtained from the multiplier F.

Let $H(E, m)$ be the family of all \cong equivalence classes of multiplications on E such that π is multiplicative with respect to at least one multiplication on E in the \cong equivalence class and the multiplication m on B. And let $M_{m}(f)$ be \approx equivalence classes of multipliers of $f:(B, m) \rightarrow K$.

Remark. Theorem 1.7 implies $H(E, m)=\left\{\{s(F)\} \mid\{F\} \in M_{m}(f)\right\}$.
Theorem 1.8. If $m \cong m^{\prime}$ on B, then there exists a bijection $\Phi: M_{m}(f) \rightarrow$ $M_{m^{\prime}}(f)$ such that for any $\{F\} \in M_{m}(f),\{s(F)\}=\{s(G)\}$ where $G \in \Phi\{F\}$.

Theorem 1.9. $H(E, m)=H\left(E, m^{\prime}\right)$ provided $m \cong m^{\prime} . H(E, m) \cap H\left(E, m^{\prime}\right)$ $=\emptyset$ if $m \not \approx m^{\prime}$.

Let $H(E)$ be the family of all \cong classes on E.
Theorem 1.10. $H(E)=\cup_{m \in \Gamma} H(E, m)$ where Γ is an arbitrary representation of the set $\{\alpha \in H(B) \mid f$ is an H-map with respect to $\alpha\}$. Moreover the union is disjoint union.

The proofs of Theorem 1.6 and 1.7 can be found in $[\mathbf{1 ; 4 ; 6]}$. The proofs of Theorem 1.8, 1.9 and 1.10 can be found in [1].

2. \simeq relations.

Theorem 2.1. If $g^{\prime \prime}: E \rightarrow E$ is a homotopy equivalence then there exist homotopy equivalences $g: B \rightarrow B$ and $g^{\prime}: K \rightarrow K$ such that $\pi \circ g^{\prime \prime}$ is homotopic to $g \circ \pi$ and $f \circ g$ is homotopic to $g^{\prime} \circ f$. Conversely if $g: B \rightarrow B$ and $g^{\prime}: K \rightarrow K$ are homotopy equivalences such that $f \circ g$ is homotopic to $g^{\prime} \circ f$, then each homotopy equivalence $g^{\prime \prime}: E \rightarrow E$, such that $\pi \circ g$ is homotopic to $g \circ \pi$, is homotopic to one of the form

$$
g^{\prime \prime}(b, \lambda)=\left(g(b), P g^{\prime}(\lambda)+G(b)\right)
$$

where $G: B \rightarrow P K$ is a choice of the homotopy from $g^{\prime} \circ f$ to $f \circ g$.
Proof. The proof of the first part of the theorem is contained in the material on pp. 438-441 of [3], or Proposition 2 in [6]. The converse can be easily proved using the exactness of $\rightarrow[E, \Omega B] \rightarrow[E, \Omega K] \rightarrow[E, E] \rightarrow[E, B]$ and dimensional considerations.

Let m_{1} and m_{2} be two multiplications on B. Let $\left\{F_{1}\right\} \in M_{m_{1}}(f),\left\{F_{2}\right\} \in$ $M_{m_{2}}(f), s\left(F_{1}\right)=s_{1}$ and $s\left(F_{2}\right)=s_{2}$. In the following diagram

Diagram 2
$g^{\prime \prime}, g$ and g^{\prime} are homotopy equivalences, all squares are commutative up to homotopy and π is multiplicative. In the light of Theorem 2.1 we assume $g^{\prime \prime}(b, \lambda)=\left(g(b), P g^{\prime}(\lambda)+G(b)\right)$, where $G: B \rightarrow P K$ is a homotopy from $g^{\prime} \circ f$ to $f \circ g$.

Theorem 2.2. $g^{\prime \prime}:\left(E, s_{1}\right) \rightarrow\left(E, s_{2}\right)$ is an H-map if and only if
(i) $g:\left(B, m_{1}\right) \rightarrow\left(B, m_{2}\right)$ and g^{\prime} are H-maps, and
(ii) there exists multipliers Q and Q^{\prime} of g and g^{\prime} respectively and there exists a secondary homotopy $D: B \times B \rightarrow P(P K)$ such that the $Q, Q^{\prime}, G, F_{1}, F_{2}, D, f, g$, g^{\prime}, m_{1}, m_{2}, satisfy Diagram 1. (i.e. $\left.F_{1} \sim F_{2}\right)$. Moreover $Q^{\prime \prime}\left(\left(b_{1}, \lambda_{1}\right)\left(b_{2}, \lambda_{2}\right)\right)=$ $\left(Q\left(b_{1}, b_{2}\right), P Q^{\prime}\left(\lambda_{1}, \lambda_{2}\right)+D\left(b_{1}, b_{2}\right)\right)$ is a multiplier of $g^{\prime \prime}$.

Proof. It is easy to show that (i) and (ii) imply $Q^{\prime \prime}$ to be a multiplier of $g^{\prime \prime}$.
Assume $g^{\prime \prime}$ is an H-map. Let $J: E \times E \rightarrow P E$ be a multiplier of $g^{\prime \prime}$. The composite function

$$
E \times E \xrightarrow{J} P E \xrightarrow{\text { Proj }} P(P K)
$$

provides a map $\theta_{1}: I \times I \times E \times E \rightarrow K$, such that $\theta_{1} \mid \dot{I}^{2} \times E \times E$ is the function indicated in the following diagram (functions in the diagram are evaluated at (b_{1}, b_{2}) unless otherwise specified),

Diagram 3
where the top line is the second coordinate of $\left.g^{\prime \prime} \circ s_{1}\left(b_{1}, \lambda_{1}\right),\left(b_{2}, \lambda_{2}\right)\right)$ and the bottom line is the second coordinate of $s_{2} \circ\left(g^{\prime \prime} \times g^{\prime \prime}\right)\left(\left(b_{1}, \lambda_{1}\right),\left(b_{2}, \lambda_{2}\right)\right)$.

There exists a cross section $\xi: B^{l} \rightarrow E$. Let $\theta_{2}=\theta_{1} \circ(\mathrm{id} \times \xi \times \xi)$: $I^{2} \times B^{l} \times B^{l} \rightarrow K$. By using Diagram 3, we can represent θ_{2} in Diagram 4:

Diagram 4
where $\xi\left(b_{i}\right)=\left(b_{i}, \lambda_{i}\right), i=1,2$, and A, B and C indicate the restriction of θ_{2} on appropriate parts of I^{2}.

Because g^{\prime} is a homotopy equivalence and K is an Eilenberg-Maclane space, g^{\prime} is an H-map. Therefore there exists a multiplier Q^{\prime} of g^{\prime}. (Note that, Q^{\prime} is unique up to homotopy.) Define the map $C_{1}: I \times I \times B^{l} \times B^{l} \rightarrow K$ as follows:

$$
C_{1}\left(t, s, b_{1}, b_{2}\right)=Q^{\prime}\left(\lambda_{1}(s), \lambda_{2}(s)\right)(t)
$$

Therefore on $\dot{I}^{2} \times B^{l} \times B^{l}$ the function C_{1} is the function indicated in the following diagram.

Diagram 5
If we glue C_{1} to C from the right, the top and bottom line are the paths $-P g^{\prime} n\left(\lambda_{1}, \lambda_{2}\right)+P g^{\prime} n\left(\lambda_{1}, \lambda_{2}\right)$ and $-P n\left(g^{\prime} \times g^{\prime}\right)\left(\lambda_{1}, \lambda_{2}\right)+P n\left(g^{\prime} \times g^{\prime}\right)$ $\left(\lambda_{1}, \lambda_{2}\right), n g^{\prime}(f \times f)\left(b_{1}, b_{2}\right)$ respectively. Therefore, by the homotopy extension property, we can deform

C	C_{1}

to a map $C_{2}: I^{2} \times B^{l} \times B^{l} \rightarrow K$ such that $C_{2} \mid \dot{I}^{2} \times B^{l} \times B^{l}$ preserves the boundary conditions and satisfies the conditions indicated in the following
square

where $B \cap C$ is the restriction of C to its left vertical side. Therefore if we glue C_{1} to θ_{2} from the right, we obtain a boundary condition preserving map $D_{1}: I \times I \times B^{l} \times B^{l} \rightarrow K$, such that $D_{1} \mid \dot{I}^{2} \times B^{l} \times B^{l}$ satisfies the properties indicated in the following diagram

where A^{\prime} is the restriction of A to its left vertical side.
Using obstruction theory we can extend the composite map

$$
I \times B^{\imath} \times B^{\imath} \xrightarrow{\text { id } \times \xi \times \xi} I \times E \times E \xrightarrow{J} E \xrightarrow{\pi} B
$$

to a multiplier of $g:\left(B, m_{1}\right) \rightarrow\left(B, m_{2}\right)$, and let us call this multiplier Q. It is obvious that $f \circ Q \mid B^{l} \times B^{l}=A^{\prime}$.

By adding boundary conditions to D_{1}, we define a map D_{2} roughly as indicated in the following diagram, where the dotted lines have the direction pointing out of the paper.

Diagram 8

The precise definition of $D_{2}: I \times I \times B^{l} \times B^{l} \cup I \times I \times B \vee B \cup \dot{I}^{2} \times B \times B$ $\rightarrow K$ is as follows:

$$
D_{2}(t, x, b, *)=D_{2}\left(t, s,_{*}, b\right)=G(b)(s+2 t-1) .
$$

(Note that we use the convention that $G(b)(r)=$ initial point if $r<0$ and $G(b)(r)=$ terminal point if $r>1$.)

$$
\begin{array}{rlrl}
D_{2}\left(t, 1, b_{1}, b_{2}\right) & =g^{\prime} F_{1}\left(b_{1}, b_{2}\right)(2 t-1) & & \text { if } t \geqq 1 / 2 \\
& =G m\left(b_{1}, b_{2}\right)(2 t) & & \text { if } t \leqq 1 / 2 \\
D_{2}\left(t, 0, b_{1}, b_{2}\right) & =n\left(G\left(b_{1}, b_{2}\right)\right)(2 t-1) & & \text { if } t \geqq 1 / 2 \\
& =F_{2}\left(g\left(b_{1}\right), g\left(b_{2}\right)\right)(2 t) & & \text { if } t \leqq 1 / 2 \\
D_{2}\left(0, s, b_{1}, b_{2}\right) & =f Q\left(b_{1}, b_{2}\right)(s) & \\
D_{2}\left(1, s, b_{1}, b_{2}\right) & =Q^{\prime}\left(f\left(b_{1}\right), f\left(b_{2}\right)\right)(s) & \\
D_{2} \mid I \times I \times B^{l} \times B^{l}=D_{1} . & &
\end{array}
$$

It is routine to verify that D_{2} is a well defined function. By obstruction theory, D_{2} can be extended to a map $D_{3}: I \times I \times B \times B \rightarrow K$, which will provide us a secondary homotopy D. And Q, Q^{\prime} and D which we found above will satisfy (ii) of Theorem 2.2. Hence the theorem is proved.

We shall use $F_{1} \sim F_{2}$ (via g and $\left.g^{\prime}\right)$ to mean that we use $g:\left(B, m_{1}\right) \rightarrow$ (B, m_{2}) and $g^{\prime}: K \rightarrow K$ as the functions in (i) of Definition 1.4.

Corollary. $s\left(F_{1}\right) \simeq s\left(F_{2}\right)\left(\right.$ via $\left.g^{\prime \prime}\right)$ if and only if that $F_{1} \sim F_{2}\left(\right.$ via g and $\left.g^{\prime}\right)$ where $g^{\prime \prime}, g$ and g^{\prime} are related as in Diagram 2.

Let $M(E)$ denote the H-equivalence classes of multiplications on E. Since every multiplication on E is \simeq equivalent to some $s(F)$ for some multiplier F, in the light of Theorem 2.2 and the corollary, to study $M(E)$ we need only to study the " \sim " equivalence classes of multipliers.

Let $s: M_{m}(f) \rightarrow H(E)$ be defined by $s\{F\}=\{s(F)\}$ and let $\Psi: H(E) \rightarrow$ $M(E)$ be the quotient map which is defined by the fact that \simeq is finer than \cong.

Theorem 2.3. Suppose $g:\left(B, m_{1}\right) \rightarrow\left(B, m_{2}\right)$ is a homotopy equivalence and $H-m a p$. If there exists a map $g^{\prime}: K \rightarrow K$ such that $f \circ g$ is homotopic to $g^{\prime} \circ f$, then

$$
\operatorname{Im}\left\{\Psi \circ s: M_{m_{1}}(f) \rightarrow M(E)\right\}=\operatorname{Im}\left\{\Psi \circ s: M_{m_{2}}(f \rightarrow M(E)\}\right.
$$

Proof. For any $\{F\} \in M_{m_{2}}(f)$, by using the homotopy extension property, the map $g^{\prime-1} \circ\left(-G m_{1}+f Q+F(g \times g)+n(G \times G)-Q^{\prime}(f \times f)\right)$ (see Diagram 1) can be deformed to a multiplier F^{*} of $f:\left(B, m_{1}\right) \rightarrow K$, where "+" and " -" are the usual joining of paths with direction and G, Q, and Q^{\prime} are as given in Picture 1. It is obvious that $F \sim F^{*}$ (via g and g^{\prime}).

Note on Theorem 2.3. The F^{*} defined in the proof is unique up to homotopy relative to boundary conditions, and we shall use F^{*} frequently in Sections 3 and 4.

Define a relation " $\$$ " in $H(B)$ as follows: $\left\{m_{1}\right\} \$\left\{m_{2}\right\}$ if and only if there exist homotopy equivalences $g:\left(B, m_{1}\right) \rightarrow\left(B, m_{2}\right)$ and $g^{\prime}: K \rightarrow K$ which are H-maps such that $f \circ g$ is homotopic to $g^{\prime} \circ f$. It is easy to see " $\$$ " is a well defined equivalence relation on $H(B)$. Let $Q(B)$ be a set of representatives, one from each " $\$$ " equivalence classes in $H(B)$.

For any multiplication m on B, let us define a relation, $R_{m}(f)$ on $M_{m}(f)$ as follows: $\left(\left\{F_{1}\right\},\left\{F_{2}\right\}\right) \in R_{m}(f)$ if and only if
(i) there exist homotopy equivalences $g:(B, m) \rightarrow(B, m)$ and $g^{\prime}: K \rightarrow K$ which are H-maps such that $f \circ g$ is homotopic to g^{\prime} of, and
(ii) $F_{1} \sim F_{2}$ (via g and g^{\prime}).

It is easy to verify that $R_{m}(f)$ is an equivalence relation.
From Theorem 1.10, 2.3 and corollary, we get:
Theorem 2.4. $M(E)=\bigcup_{m \in Q(B)} M_{m}(f) / R_{m}(f)$. Moreover it is a disjoint union.

3. Some information about $R_{m}(f)$.

Note. From now on we deliberately make $F \in M_{m}(f)$ ambiguous; $F \in$ $M_{m}(f)$ means a class or a representative of the class of multipliers.

Theorem 3.1. (i) $M_{m}(*)=H^{l}(B \wedge B, \Sigma)$.
(ii) Let $J_{1}, J_{2} \in M_{m}(*)$. Then $J_{1} \sim J_{2}$ if and only if there exist homotopy equivalences $g:(B, m) \rightarrow(B, m)$ and $g^{\prime}: K \rightarrow K$ which are H-maps such that

$$
g^{\prime}{ }_{*}\left(J_{1}\right)-(g \times g)^{*}\left(J_{2}\right) \in\left\{\operatorname{Im}\left(\tilde{m}^{*}: H^{l}(B, \Sigma) \rightarrow H^{l}(B \wedge B, \Sigma)\right)\right\}
$$

where $\tilde{m}^{*}(x)=m^{*}(x)-1 \otimes x-x \otimes 1$.
Proof. (i) is Lemma 2.1 in [1].
(ii) From the definition of $J_{1} \sim J_{2}$ (Definition 1.4), there exist homotopy equivalences $g:(B, m) \rightarrow(B, m)$ and $g^{\prime}: K \rightarrow K$ which are H-maps. There also exist $G: B \rightarrow \Omega K$ and a secondary homotopy D as in Diagram 1. The edges of the rectangle in Diagram 1 are loops in K when $f={ }_{*}$. In fact on the two vertical sides, they are trivial loops. Therefore the existence of the secondary homotopy D is equivalent to

$$
g^{\prime}{ }_{*}\left(J_{1}\right)+m^{*}(G)=1 \otimes G+G \otimes 1+(g \times g)^{*}\left(J_{2}\right)
$$

It is equivalent to say

$$
g^{\prime}{ }^{(}\left(J_{1}\right)-(g \times g)^{*}\left(J_{2}\right) \in \operatorname{Im}\left(\tilde{m}^{*}: H^{l}(B, \Sigma) \rightarrow H^{l}(B \wedge B, \Sigma)\right) .
$$

From Theorem 1.1 in [2], there exists a map $q: K \times K \rightarrow K$ such that the following composite

$$
K \rightarrow \underset{K}{\underset{q}{\rightarrow}} \stackrel{\times}{K} \stackrel{\text { id }}{K} \times \xrightarrow{\times} K
$$

is homotopic to the trivial map. In fact, K can be taken as an abelian group: thus q as a strict inverse.

Let $F \in M_{m}(f)$. For any $J \in M_{m}\left({ }^{*}\right)$, we define $F \oplus J$ to be the class containing or the multiplier equal to (we allow this ambiguity) the composite.

Let $F^{\prime} \in M_{m}(f)$. By the property of q, the restriction of the composite

$$
\begin{aligned}
I \times B \times B \xrightarrow{\text { diagonal }} I \times B \times B \xrightarrow{F} & K \xrightarrow{q} \\
\times & \\
& \times \\
& \times \xrightarrow{n} \xrightarrow{n} K
\end{aligned}
$$

on $I \times B \vee B$ is homotopic to the trivial map. Therefore by using the homotopy extension property, we can deform uniquely up to the homotopy relative to boundary conditions to a multiplier $J^{\prime} \in M_{m}(*)$. We define $F \Theta F^{\prime}=J^{\prime}$.

As in $\S 2$ in [1], we can show $F \oplus$ and $F \Theta$ are well defined bijections and are inverse to each other. ($F \ominus$ defined here differs from $F \ominus$ defined in [1], but it is easy to show there is a homotopy between them which preserves the boundary condition.)

Now we want to show that $F \oplus$ preserves the " \sim " relation. As a matter of fact, we shall see, in Theorem 3.2, that by using $F \oplus$, the " \sim " relation on $\left.M_{m}{ }^{*}\right)$ will determine the " \sim " relation on $M_{m}(f)$.

Before the statement of Theorem 3.2, we will first set up some notation.
Let $g:(B, m) \rightarrow(B, m)$ and $g^{\prime}: K \rightarrow K$ be fixed homotopy equivalences and H-maps such that $g^{\prime} \circ f$ is homotopic to $f \circ g$. Let Q and Q^{\prime} be fixed multipliers of g and g^{\prime} respectively. For any $F_{1}, F_{2} \in M_{m}(f)$ and a homotopy G from $g^{\prime} \circ f$ to $f \circ g$, let $D\left(G, F_{1}, F_{2}\right)$ be a secondary homotopy in Definition 1.4 which relates to G, F_{1}, F_{2} and those fixed g, g^{\prime}, Q and Q^{\prime} according to Diagram 1.

Let $g, g^{\prime}, Q, Q^{\prime}$ and G be fixed. Fix an $F \in M_{m}(f)$ and as in the note and proof of Theorem 2.3 we let F^{*} be the multiplier of f derived from deforming

$$
f^{\prime-1} \circ\left(-G m_{1}+f Q+F(g \times g)+n(G \times G)-Q^{\prime}(f \times f)\right) .
$$

Let $D_{0}=D\left(G, F^{*}, F\right)$ be the obvious secondary homotopy of F and F^{*}. From Theorem 2.2 in [1], for each $H_{1}, H_{2} \in M_{m}(f)$, there exist $J_{1}, J_{2} \in M_{m}\left({ }^{*}\right)$ such that $F \oplus J_{1}=H_{1}$ and $F^{*} \oplus J_{2}=H_{2}$ in $M_{m}(f)$. Then we have the following theorem.

Theorem 3.2. There exists a secondary homotopy $D\left(G^{\prime}, H_{1}, H_{2}\right)$ for $H_{1} \sim H_{2}$ if and only if there exists a map $H: B \rightarrow \Omega K$ and a secondary homotopy $D\left(H, J_{1}, J_{2}\right)$ for $J_{1} \sim J_{2}$.

Proof. For any homotopy G, G^{\prime} from $g^{\prime} \circ f$ to $f \circ g$, there exists a map $H: B \rightarrow \Omega K$ such that the composite

$$
B \rightarrow \underset{\rightarrow}{B} \stackrel{G}{\rightarrow} P K
$$

is homotopic to G^{\prime} relative to the initial and terminal points.
For any $D\left(H, J_{1}, J_{2}\right)$, define $D_{0}+D\left(H, J_{1}, J_{2}\right)$ to be the composite of

It is a straightforward argument to show $D_{0}+D\left(H, J_{1}, J_{2}\right)$ is a secondary homotopy for $H_{1}=F^{*} \oplus J_{1} \sim F \oplus J_{2}=H_{2}$. Define a function $D^{\prime}: I \times I \times$ $B \vee B \rightarrow K$ by

$$
D^{\prime}\left(t, s, x,{ }^{*}\right)=D^{\prime}\left(t, s,{ }^{*}, x\right)= \begin{cases}H(s+2 t-1), & \text { when } 0 \leqq s+2 t-1 \leqq 1 \\ *, & \text { otherwise }\end{cases}
$$

By the property of q, for any $D\left(G^{\prime}, H_{1}, H_{2}\right)$, where $H_{1}, H_{2} \in M_{m}(f)$, the restriction to $I \times I \times B v B$ of the composite

is homotopic to D^{\prime}. Therefore this composite can be deformed to a secondary homotopy $D^{\prime \prime}$ for $F^{*} \Theta H_{1} \sim F \ominus H_{2}$ in $\left.M_{m}{ }^{*}\right)$, which satisfies the properties described in the following diagram.

Diagram 9

Since $J_{1} \sim F^{*} \Theta H_{1}$ and $J_{2} \sim F \ominus H_{2}$, the theorem is proved.
Since K is an Eilenberg-Maclane space, we can use obstruction theory to show that Q^{\prime} is unique up to homotopy.

For any $T \in M_{m}\left({ }^{*}: B \rightarrow B\right)$ and $Q \in M_{m}(g: B \rightarrow B)$, let $Q \oplus T$ be the composite

$$
B \times B \rightarrow \begin{gathered}
B \times B \\
B \times B \underset{T}{\rightarrow} P B \\
\times \underset{\rightarrow}{m} B \\
\hline
\end{gathered}
$$

By a similar argument as to show $F \oplus$ is a bijection or as in pp. 1057-1059 in $\left.[\mathbf{1}], Q \oplus: M_{m}{ }^{*}: B \rightarrow B\right) \rightarrow M_{m}(g: B \rightarrow B)$ is a bijection.

Let $L^{l}(B \wedge B, \Sigma)$ be the subgroup of $H^{l}(B \wedge B, \Sigma)$ generated by $\operatorname{Im}\left(\tilde{m}^{*}: H^{l}(B, \Sigma) \rightarrow H^{l}(B \wedge B, \Sigma)\right)$ and $\operatorname{Im}(\Omega f)^{*}:[B \wedge B, \Omega B] \rightarrow$ $\left.H^{l}(B \wedge B, \Sigma)\right)$. Let F and F^{*} be as before. Then we have:

Theorem 3.3. For any $F^{*} \oplus J_{1}, F \oplus J_{2} \in M_{m}(f)$, where $J_{1}, J_{2} \in M_{m}\left({ }^{*}\right)$, $F^{*} \oplus J_{1} \sim F \oplus J_{2}\left(v i a g\right.$ and $\left.g^{\prime}\right)$ if and only if

$$
g_{*}^{\prime}\left(J_{1}\right)-(g \times g)^{*}\left(J_{2}\right) \in L^{l}(B \wedge B, \Sigma)
$$

Proof. $F^{*} \oplus J_{1} \sim F \oplus J_{2}$ (via g and g^{\prime}) if and only if there exists a multiplier $Q \oplus T$ of $g:(B, m) \rightarrow(B, m)$, where Q is the fixed multiplier of g and $T \in$ $\left.M_{m}{ }^{*}: B \rightarrow B\right)$, and a homotopy G^{\prime} from $g^{\prime} \circ f$ to $f \circ g$ such that there exists a secondary homotopy D_{1} which satisfies the properties indicated in the following diagram.

Diagram 10

Because $Q \oplus T$ and $Q+m_{2}\left(T, m_{2}(g \times g)\right)$ are homotopic relative to end points, and so are $\left(F \oplus J_{2}\right)(g \times g)+f m_{2}\left(T, m_{2}(g \times g)\right)$ and $F \oplus$ $\left(J_{2} \oplus f T\left(g^{-1} \times g^{-1}\right)\right)(g \times g)$, where " + " means the joining of two paths, therefore D_{1} can be deformed to a secondary homotopy D_{2} which satisfies the
properties indicated in the following diagram.

Therefore from Theorem 3.2 we know there exists a secondary homotopy $D\left(H, J_{1}, J_{2} \oplus f T\left(g^{-1} \times g^{-1}\right)\right)$ for J_{1} and $J_{2} \oplus f T\left(g^{-1} \times g^{-1}\right)$. By Theorem 3.1, $g_{*}{ }^{\prime}\left(J_{1}\right)-(g \times g)^{*}\left(J_{2} \oplus f T\left(g^{-1} \times g^{-1}\right)\right) \in \operatorname{Im} \tilde{m}^{*}$. Therefore $g_{*}{ }^{\prime}\left(J_{1}\right)-$ $(g \times g)^{*}\left(J_{2}\right) \in L^{l}(B \wedge B, \Sigma)$. We omit the proof for the converse part, which is a straight forward argument.

Evidently Theorem 3.3 provides a way to determine $R_{m}(f)$.
4. Example. In general it is hard to find $R_{m}(f)$, because of the lack of information about g 's and what is $F \ominus F^{*} \in M_{m}\left({ }^{*}\right)$. In the case when $B=$ $K\left(Z_{p^{n}, t}\right)$, we can give a method to compute $M(E)$. We shall demonstrate this method in the following example.

Let $B=K\left(Z_{5}, 3\right), K=K\left(Z_{5}, 12\right)$ and $f=p^{1} \beta a$ where a is the fundamental class of $H^{3}\left(B, Z_{5}\right)$. Let $b=\beta a$.

We know:

$$
\begin{aligned}
& H^{11}\left(B \wedge B, Z_{5}\right)=Z_{5}\left\langle 2 b \otimes a b, 2 a b \otimes b, b^{2} \otimes a, a \otimes b^{2}\right\rangle \\
& \tilde{m}^{*}\left(H^{11}\left(B, Z_{5}\right)\right)=Z_{5}\left\langle b^{2} \otimes a+a \otimes b^{2}+2 b \otimes a b+2 a b \otimes b\right\rangle=\operatorname{Im} \tilde{m}^{*}
\end{aligned}
$$

and $\operatorname{Im}\left(f^{*}:[B \wedge B, \Omega B] \rightarrow[B \wedge B, \Omega K]\right)=0$, where $Z_{5}\langle x, y\rangle$ denotes the Z_{5} module generated by x and y.

The homotopy equivalences and H-maps $g: B \rightarrow B$ and $g^{\prime}: K \rightarrow K$ such that $g^{\prime} \circ f$ is homotopic to $f \circ g$ are maps induced from Iso $\left(Z_{5}, Z_{5}\right)=$ \{units of $\left.Z_{5}\right\}=\{1,2,3,4\}$. We will use 1, 2, 3, 4 to indicate the corresponding homotopy equivalences.

Fix $F \in M_{m}(f)$, let $F_{i}{ }^{*}$ be the multiplier in $M_{m}(f)$ defined in the Note to Theorem 2.3 with $g=g^{\prime}=i, 1 \leqq i \leqq 4$ and any choice of G, Q and Q^{\prime}. From Theorem 2.2 in [1], there exists $A_{i} \in M_{m}\left({ }^{*}\right)$ such that $F \oplus A_{i}=F_{i}{ }^{*}$. We want to know more about A_{i}. By the definition of $F_{i}{ }^{*}$ we know the difference between $F_{i}{ }^{*}=F \oplus A_{i}$ and the composite of

$$
B \times B \xrightarrow{i \times i} B \times B \xrightarrow{F} K^{I} \xrightarrow{P\left(i^{-1}\right)} K^{I}
$$

is in the $\operatorname{Im} \tilde{m}^{*}$. Therefore the difference of the following two composites is in $\operatorname{Im} \tilde{m}^{*}$:
$(i) B \times B \xrightarrow{2 \times 2} B \times B \xrightarrow{2 \times 2} B \times B \xrightarrow{F} K^{I} \xrightarrow{P(3)} K^{I} \xrightarrow{P(3)} K^{I}$

where n is the multiplication on K. Therefore $A_{4}-3 A_{2} \in \operatorname{Im} \tilde{m}^{*}$. Similarly we can show that $A_{3}-2 A_{2} \in \operatorname{Im} \tilde{m}^{*}$. Since 1 is the identity map, it is obvious that $A_{1} \in \operatorname{Im} \tilde{m}^{*}$. Let $H=F \oplus 4 A_{2} \in M_{m}(f)$, and let $H_{i}{ }^{*}$ be the multiplier in $M_{m}(f)$ defined in the Note to Theorem 2.3 with $g=g^{\prime}=i 1 \leqq i \leqq 4$. From Theorem 2.2 in [1], there exists $B_{i} \in M_{m}\left({ }^{*}\right)$ such that $H \oplus B_{i}=H_{i}^{*}$. A similar technique and the fact that $H=F \oplus Z_{2}$ shows that $B_{2} \in \operatorname{Im} \tilde{m}^{*}$. Therefore by suitable choice of F we can assume $A_{2} \in \operatorname{Im} \tilde{m}^{*}$.

Using Theorem 3.1, it can be shown that for any $x, y \in M_{m}\left({ }^{*}\right)=$ $H^{\mathrm{I}_{1}}\left(B \wedge B, Z_{5}\right)$ the following four statements hold:
(i) $x \sim y$ (via 1 and 1) if and only if $x-y \in \operatorname{Im} \tilde{m}^{*}$
(ii) $x \sim y$ (via 2 and 2) if and only if $2 x-4 y \in \operatorname{Im} \tilde{m}^{*}$
(iii) $x \sim y$ (via 3 and 3) if and only if $3 x-4 y \in \operatorname{Im} \tilde{m}^{*}$
(iv) $x \sim y$ (via 4 and 4) if and only if $4 x-y \in \operatorname{Im} \tilde{m}^{*}$.

Using Theorem 3.3, it can be shown that for any $w, z \in M_{m}(f)$ the following statement holds for $i=1,2,3,4$:
(*) $w \sim z$ (via i and i) if and only if

$$
(w, z) \in\left\{\left(F \oplus A_{i} \oplus x, F \oplus y\right) \mid x \sim y(\text { via } i \text { and } i)\right\}
$$

Since $A_{2} \in \operatorname{Im} \tilde{m}^{*}, A_{3}$ and A_{4} are both in $\operatorname{Im} \tilde{m}^{*}$. Hence $M(E)=$ $\left\{F \oplus V \mid V \in M_{m}\left({ }^{*}\right)=H^{11}\left(B \wedge B, Z_{5}\right)\right\} / R_{m}(f)$ where

$$
\begin{aligned}
R_{m}(f)=\{(F \oplus V, F \oplus & \left.V^{\prime}\right) \mid V-V^{\prime} \in \operatorname{Im} \tilde{m}^{*}, 2 V-4 V^{\prime} \in \operatorname{Im} \tilde{m}^{*} \\
& \left.3 V-4 V^{\prime} \in \operatorname{Im} \tilde{m}^{*} \text { or } 4 V-V^{\prime} \in \operatorname{Im} \tilde{m}^{*}\right\}
\end{aligned}
$$

In the above example the computations for the relations among A_{2}, A_{3} and A_{4} rely on the fact that Iso $\left(Z_{5}, Z_{5}\right)$ is a cyclic group. Since Iso $\left(Z_{p^{n}}, Z_{p_{n}}\right)$ is a cyclic group if p is odd or $p=2$ but $n=1$, and Iso (Z, Z) is a cyclic group, therefore we can apply the same argument to those cases.

References

1. C. K. Cheng, Multiplications on a space with finitely many non-vanishing homotopy groups, Can. J. Math. 24 (1972), 1052-1062.
2. I. M. James, On H-spaces and their homotopy groups, Quart. J. Math. Oxford Ser. 11 (1960), 161-179.
3. D. W. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963), 432-450.
4. J. D. Stasheff, On extensions of H-spaces, Trans. Amer. Math. Soc. 105 (1962), 126-135. 5. H-space problems, H-spaces, Neuchâtel (Suisse), Août 1970 (Springer-Verlag Notes, Vol. 196) 122-136.
5. F. D. Williams, Quasi-commutativity of H-spaces, Michigan Math. J. 19 (1972), 209-213.

State University College, Potsdam, New York

