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^-EQUIVALENCE CLASSES OF MULTIPLICATIONS ON 
CERTAIN FIBER SPACES 

CHAO-KUN CHENG 

The enumeration of the ^-equivalence classes of multiplications on a space 
is a topic of current interest. In this paper we try to study the H-equivalence 
classes of multiplications on a CW complex X with finitely many non-vanishing 
homotopy groups, by using the Postnikov decomposition of X and multiplier 
arguments [1; 4], This paper presents a way to compute the set of ^-equi
valence classes of multiplications on X from the knowledge of certain quotient 
sets of H*(B A B, S) and some homotopy equivalences of B, where B repre
sents the spaces in the Postnikov decomposition of X, and 2 denotes abelian 
groups corresponding to the homotopy groups of X. The results of this paper 
can be used to obtain Proposition A and B in [6], which in turn will give a 
counterexample to Problem 34 in [5], cf. [6]. 

In § 1 we shall state some definitions, notations and some theorems from [1], 
[4] and [6]. In § 2 we shall define an equivalence relation among multipliers. 
We shall show in Theorem 2.4 that the ^-equivalence class of multiplications 
is a disjoint union of Mm(f )/Rf, where Rf is a relation in Mm(f). In § 3 
we provide some more information about Rf and establish the main result 
Theorem 3.3. In § 4 we present a simple example to show how to use Theorem 
2.4, 3.1 and 3.3 in a rather novel computation of the set of inequivalence 
classes in certain situations. 

We restrict ourselves to the CW-category. 

1. Preliminary. 

Definition 1.1. An #-space is a triple (X, *, m) where (X, *) is a space with 
base point * and m : X X X —•> X is a mapping which satisfies m(x, *) = 
ra(*, x) = x for any x £ X. Such a map is called a multiplication on X. 

Let P, L and 12 be the free path functor, the path functor with fixed initial 
point and the loop functor respectively. 

Definition 1.2. An iJ-map from (X, *, m) to (F, *, n) is a map / : {X, *) —> 
(F, *) such that there exists a map F : X X X -+ PY such that e0F = 
no ( / X / ), exF — f o m and etF(x, *) = etF(*, x) = f(x) where et is the 
evaluation at /. F is called a multiplier of the i7-map/ . If etF = e0F for all /, 
we call / a multiplicative map. 
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Definition 1.3. Two multiplications nti and m2 on X are called i?-equivalent 
provided there exists an iJ-map / : (X, mi) —> (X, m2) that is a homotopy 
equivalence. Let us denote this by Wi ~ w2 (v ia / ). In particular, if / = id, 
we denote it by rax = m2. 

It is well known that both ~ and = are equivalence relations. 
From now on let n be a multiplication on 2£(2, / + 1) where 2 is an abelian 

group. (Note that up to homotopy, 2£(2, / + 1) admits only one multiplica
tion.) 

Definition 1.4. Two multipliers F f(i = 1, 2) of an iJ-map / : (X, mt) —> 
i£(2, Z + 1) = i£ are called il-equi valent, denoted by F\ ~ F2l provided: 

(i) there exist homotopy equivalence iJ-maps g : (X, mi) —> (X, m2) and 
g' : K -^> K with Q and Q' as multipliers respectively, 

(ii) there exists a homotopy G from g' oftofog 
(iii) there exists a secondary homotopy D : X2 —> P(PK) such that it pre

serves the boundary conditions 

e0D = Q ' o ( / X / ) , eiD=foQ 
Pe0D(x,y) = F2(g(x), g(y)) + Pn(G(x), G(y)) 
PeiD(x, y) = G(tni(x, y)) + g'Fi(x, y) 

where e0 and ei are the evaluation of each path at initial and terminal points 
(see Diagram 1). 

fQ 

fgmi g'/wi g'n(f X / ) 
— < 1 

I Q'(fxf) 

Gnu g'Fi 

F*(g X g) n(GXG) é 
-4 • <-

fmt(g X g) n(J X / ) (g X g) n(g' X g') (/ X / ) 

Diagram 1 

Definition 1.5. In the above definition, if we let m\ = ra2, g = id, g' = id, 
Q(x, y)(t) = Wi(x, y), Q'(u, v)(t) = n(u, v) and G(J, x) = fix), then Fi and 
F2 are called equivalent multipliers, denoted by F\ œ F2. 

(Note that, equivalent multipliers were called iJ-homotopic multipliers in 
[i]). _ 

It is easy to verify that both u ^ " and " œ " are equivalence relations. 
From now on let / be a positive integer and B be a space such that Uk(B) = 0 

if k ^ /. Let K = i£(2, / + 1) where S is an abelian group. Let the fibering 

QK-*E^B 

be induced from SlK —> Li£ —» K by a m a p / : B -^ K. E can be represented by 
{(b, X)|6 Ç J3, X G Li£ and £iX = /(&)}. The principal results of [4] are: 
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THEOREM 1.6. If E is an H-space, then B can be made into an H-space so that 
T and f are H-maps. 

THEOREM 1.7. Iff : (B, m) —> Kis an H-map, then for each multiplication s on 
E that makes -K an H-map, there exists a multiplier F off such that s is equivalent 
to s(F) : E X E —> E defined by 

s{F) {(pu Xi), (62, X2)) = (w(6i, b2), Pn(\h X2) + F(blt b2)) 

where " + " means the usual path joining. We will call s (F) the multiplication on E 
obtained from the multiplier F. 

Let H(E, m) be the family of all = equivalence classes of multiplications on 
E such that ir is multiplicative with respect to at least one multiplication on E 
in the == equivalence class and the multiplication m on B. And let Mm(f ) be 
œ equivalence classes of multipliers of/ : (B, m) —» K. 

Remark. Theorem 1.7 implies H(E, m) = {{s(F)}\{F} £ Mm(f)}. 

THEOREM 1.8. If m == m' on B, then there exists a bisection $ : Mm(f ) —> 
Mm>U) ™ch that for any [F] G Mm(f), {s(F)\ = {s(G)\ where G Ç ${F}. 

THEOREM 1.9. H(E, m) = H(E, mf) provided m ^ m'. H(E, m) H H(E, m') 
= 0 if m qk m'. 

Let H(E) be the family of all = classes on E. 

THEOREM 1.10. H(E) = Umev H(E, m) where Y is an arbitrary representa
tion of the set {a G H(B)\f is an H-map with respect to a). Moreover the union is 
disjoint union. 

The proofs of Theorem 1.6 and 1.7 can be found in [1; 4; 6]. The proofs of 
Theorem 1.8, 1.9 and 1.10 can be found in [1]. 

2. o^ relations. 

THEOREM 2.1. If g" : E —> E is a homotopy equivalence then there exist homo-
topy equivalences g : B —» B and gf : K —> K such that ir o g" is homotopic to 
go ir and fog is homotopic to gf o f. Conversely if g : B —> B and g' : K —> K 
are homotopy equivalences such that f o gis homotopic to gf of, then each homotopy 
equivalence g" : E —> E, such that ir o g is homotopic to g o ir, is homotopic to 
one of the form 

g"(b,\) = (g(b), Pg'(X) + G(b)) 

where G : B —> PK is a choice of the homotopy from gr o / to f o g. 

Proof. The proof of the first part of the theorem is contained in the material 
on pp. 438-441 of [3], or Proposition 2 in [6]. The converse can be easily proved 
using the exactness of —> [E, SIB] —> [£, &K] —» [£, E] —> [£, B] and dimen
sional considerations. 
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Let mx and m% be two multiplications on B. Let [Fi\ £ Mmi(f), {FÎ\ £ 
Mm2(f), s(Fi) = Si and s (Fi) = s2. In the following diagram 

(E, Sl) • ( £ , s2) 

r "I 
(B, mi) - (B, m,) 

, m,) s (5, 

I g' I 

Diagram 2 

g", g and g' are homotopy equivalences, all squares are commutative up to 
homotopy and T is multiplicative. In the light of Theorem 2.1 we assume 
g"(&, X) = (g(&), ^g'(X) + G(6)), where G : B ^ PK is a homotopy from 
g' of to fog. 

THEOREM 2.2. g" : (E, Si) —> (E, s2) is aw H-map if and only if 
(i) g : (B, Wi) —> (5, m2) awa7 g' are H-maps, and 

(ii) ^ere exists multipliers Q and Q' of g and gf respectively and there exists a 
secondary homotopy D : B X B —> P(PK) such that the Q, Qf, G, Fu F2, D,f, g, 
g', mly m2f satisfy Diagram 1. (i.e. Fi ~ F2). Moreover Q"((bi, \i)(b2, X2)) = 
(Q(bu b2), PQ'(\u X2) + D(bu b2)) is a multiplier of g". 

Proof. It is easy to show that (i) and (ii) imply Q" to be a multiplier of g". 
Assume g" is an i7-map. Let / : E X E —> PE be a multiplier of g". The 

composite function 

J Proj 
EXE > PE > P(PK) 

provides a map 0i : I X / X E X E -> K, such that 0i| J2 X E X £ is the 
function indicated in the following diagram (functions in the diagram are 
evaluated at (&i, b2) unless otherwise specified), 

m\ g'fmi g'n(f X / ) 

Gm\ iYFi Pg'n(Xi, X2) T 

4 — J2feXj) 0 __Pn(pX.G)_ iWXg')-(Xi,X,)J 
M ( g X g) «( / X /) (g X g) n(g' X g') (/ X / ) 

Diagram 3 

where the top line is the second coordinate of g" o $i(&i, Xi), (62, X2)) and 
the bottom line is the second coordinate of s2 o (g" X g")((bi, Xi), (b2, X2)). 
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There exists a cross section £ : Bl —> E. Let 02 = #i o (id X £ X £): 
J2 X ^ ! X Bl -^ K. By using Diagram 3, we can represent 02 in Diagram 4: 

mi Û m i g'nifXf) 
[ Gwi Pg 'F , iY«(Xi, X2) 

A 5 c 

[ Ft(g X g) 
< • 

Pn(G X G) 
1 

* W XgQ (Xi,X2) 

M ( g X g) « ( / X / ) (g X g) n(g' X g') (/ X / ) 

Diagram 4 

where f (6f) = (bh \t), i = 1, 2, and ^4, ^ and C indicate the restriction of 02 

on appropriate parts of P. 
Because gf is a homotopy equivalence and K is an Eilenberg-Maclane space, 

gr is an i7-map. Therefore there exists a multiplier Q' of g'. (Note that, Q' is 
unique up to homotopy.) Define the map Ci : I X I X Bl X Bl —> K as 
follows: 

&(t, s, bl9 b*) = O ' M * ) , Xa(s))(/). 

Therefore on P X Bl X Bl the function d is the function indicated in the 
following diagram. 

g'nijXf) 

Pg'n{\u A,) 

Ci 

i W X g') (Xi, X2) 

Vifxf) 

«(g'xg') ( / x / ) 
Diagram 5 

If we glue C\ to C from the right, the top and bottom line are the paths 
-Pg'n(\lt X2) + Pg'nÇki, X2) and -Pn(gf X g')(Xi, X2) + P»(g' X gf) 
(Xi, X2), ng'(f X f)(bi, 62) respectively. Therefore, by the homotopy exten
sion property, we can deform 

c C1 

to a map C2:I2 X Bl X Bl -> K such that C2|/2 X £ z X Bl preserves the 
boundary conditions and satisfies the conditions indicated in the following 

https://doi.org/10.4153/CJM-1975-084-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-084-7


FIBER SPACES 757 

square '«ax/) (pub,) 

BC\C Q'fxf 

n(g' X g') (g X g) (61, 61) 
Diagram 6 

where B (~\ C is the restriction of C to its left vertical side. Therefore if we 
glue C\ to 02 from the right, we obtain a boundary condition preserving map 
Dt : I X I X B' X B' -+ K, such that D^P X Bl X Bl satisfies the proper
ties indicated in the following diagram 

g'fmi fgm* 

A' 

Gm\ 

F*{g X g) 

D, 

Pg'F1 

Pn(G X G) 

g'nifXf) 

Q'(fXf) 

fm(g X g) n(g'Xg') (fXf) n{fXf) (gXg) 

Diagram 7 

where A' is the restriction of A to its left vertical side. 
Using obstruction theory we can extend the composite map 

lXBlXBlïàXiX\lXEXE >E — 
to a multiplier of g : (B, Wi) —» (B, m2), and let us call this multiplier Q. It is 
obvious t h a t / o Q\Bl X Bl = A''. 

By adding boundary conditions to Di, we define a map D2 roughly as 
indicated in the following diagram, where the dotted lines have the direction 
pointing out of the paper. 

• B 

K~ I X B V B 

BXB 

AB1XB1/ 

' ' '' / 
IXB1 XBl / 

/ 
/ 

Diagram 8 
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The precise definition of D2 : / X I X Bl X Bl\J I X / X B V B\J P X B X B 
—» K is as follows: 

D2(t, x, b, *) = D2(t, s, *, 6) = G(b)(s + 2t- 1). 

(Note that we use the convention that G(b)(r) = initial point if r < 0 and 
G(b)(r) = terminal point if r > 1.) 

D2(t, 1, 6i, 62) = g'Fiibu 62)(2/ - 1) if / ^ 1/2 
= Gm(bi,b2)(2t) if/ ^ 1/2 

£>2(/, 0, 6lf 62) = »(G(6i, ft2))(2/ - 1) if / ^ 1/2 

= ^2(^(61)^(62)) (20 if / ^ 1/2 

£ 2 (0 , s, bu 62) = fQ(blth)(s) 

ZMl,* f 61, 62) = Q'U(bi),f(P*))(s) 
D2\IX IXB1XB1 = A . 

It is routine to verify that Z?2 is a well defined function. By obstruction theory, 
Z}2 can be extended to a map D% : 7 X I X B X -B —> K, which will provide 
us a secondary homotopy D. And Q, Q' and Z) which we found above will 
satisfy (ii) of Theorem 2.2. Hence the theorem is proved. 

We shall use F\ ^ F2 (via g and g') to mean that we use g : (B, mi) —» 
(5, ra2) and g' : 2£ —> i£ as the functions in (i) of Definition 1.4. 

COROLLARY. S ( F I ) ^ ^(^2) (via g") if and only if that Fx ~ F2 {via g and gf) 
where g", g and gf are related as in Diagram 2. 

Let M(E) denote the iJ-equivalence classes of multiplications on E. Since 
every multiplication on £ is ~ equivalent to some s(F) for some multiplier F, 
in the light of Theorem 2.2 and the corollary, to study M(E) we need only 
to study the u ~" equivalence classes of multipliers. 

Let 5 : Mm(f) -> H(E) be defined by s{F\ = {s(F)} and let ¥ : H(E) -> 
M(E) be the quotient map which is defined by the fact that o^ is finer than = . 

THEOREM 2.3. Suppose g : (B, mi) —> (B, m2) is a homotopy equivalence and 
H-map. If there exists a map g' : K —» K such that f o g is homo topic to gf of, 
then 

Im {*os:Mmi(f)-*M(E)} = Im {* o s : Mm2(f -> M(E)}. 

Proof. For any {F} £ Mm2(f ), by using the homotopy extension property, 
the map g'"1 o {-Gmi + fQ + F(g X g) + n(G X G) - Q'(/ X / ) ) (see Dia
gram 1) can be deformed to a multiplier F* of / : (B, mi) —> K, where lt-\-" 
and u — " are the usual joining of paths with direction and G, Q, and Qf are 
as given in Picture 1. It is obvious that F ~ F* (via g and gf). 

Note on Theorem 2.3. The F* defined in the proof is unique up to homotopy 
relative to boundary conditions, and we shall use F* frequently in Sections 3 
and 4. 
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Define a relation "$" in H(B) as follows: {mi}${ra2} if and only if there 
exist homotopy equivalences g : (B, mi) —» (B, m2) and gf : K —* K which are 
ff-maps such t h a t / o g is homotopic to gf of. It is easy to see " $ " is a well 
defined equivalence relation on H(B). Let Q(B) be a set of representatives, 
one from each " $ " equivalence classes in H(B). 

For any multiplication m on 2?, let us define a relation, Rm(f) on Mm(f ) as 
follows: ({Fi}, {F2}) Ç tfTO(/ ) if and only if 

(i) there exist homotopy equivalences g : (B,m) —* (B,m) and g' : K —* K 
which are if-maps such t h a t / o g is homotopic to g' of, and 

(ii) Fi ~ F2 (via g and g'). 
It is easy to verify that Rm(f ) is an equivalence relation. 

From Theorem 1.10, 2.3 and corollary, we get: 

THEOREM 2.4. M(E) = UmçQ(s) Mm(f)/Rm(f)- Moreover it is a disjoint 
union. 

3. Some information about Rm(f). 

Note. From now on we deliberately make F £ Mm(f) ambiguous; F G 
Mm(f ) means a class or a representative of the class of multipliers. 

THEOREM 3.1. (i) Mw(») = H\B A B, S). 

(ii) Let Ji , 72 G Mm(#). 77^w J i ^ J2 i/ and ow/;y i/ £/^re exist homotopy 
equivalences g : (B, m) —> (B, m) and g' : K —> K which are H-maps such that 

g'*(Ji) ~ (g X g)*(/2) G {Im (m* : ff'(5, S) -> H ' ( 5 A 5 , 2))} 

w&ere ra*(x) = ra*(x) — 1 ® x — x (g) 1. 

Proof, (i) is Lemma 2.1 in [1]. 
(ii) From the definition of J\ ^ J2 (Definition 1.4), there exist homotopy 

equivalences g : (B, m) —> (B, m) and gf : K —> K which are if-maps. There 
also exist G : B —» &K and a secondary homotopy D as in Diagram 1. The 
edges of the rectangle in Diagram 1 are loops in K when/ = *. In fact on the 
two vertical sides, they are trivial loops. Therefore the existence of the secon
dary homotopy D is equivalent to 

g'*(Ji) + tn*(G) = l ® G + G ® l + ( g X g)*(/2). 

It is equivalent to say 

g'*Vi) - f e X g)*(/2) G Im (m* : ff'(B, X)-> H\B A 5 , 2)) . 

From Theorem 1.1 in [2], there exists a map q : K X K —> K such that the 
following composite 

Kti K 
K->X X^K 

K->K 
<1 
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is homotopic to the trivial map. In fact, K can be taken as an abelian group: 
thus q as a strict inverse. 

Let F 6 Mm(f). For any / G Mm(*), we define F ® J to be the class 
containing or the multiplier equal to (we allow this ambiguity) the composite. 

IxBxB^on,VXBXB-JL^K % ^ 

IXBXB j-^K 

Let F' £ Mm{f ). By the property of q, the restriction of the composite 

IXBXB = > 
diagonal IXBXB > K Q- > K 

X X X >K 
IXB XB >K ^ — > K 

F id 
on / X B y B is homotopic to the trivial map. Therefore by using the homotopy 
extension property, we can deform uniquely up to the homotopy relative to 
boundary conditions to a multiplier J' £ Mm{*). We define F Q F' = / ' . 

As in §2 in [1], we can show F® and FQ are well defined bijections and 
are inverse to each other. (FQ defined here differs from FQ defined in [1], 
but it is easy to show there is a homotopy between them which preserves the 
boundary condition.) 

Now we want to show that FQ preserves the " ^ " relation. As a matter of 
fact, we shall see, in Theorem 3.2, that by using F®, the " ^ " relation on 
Mm(*) will determine the " ~ " relation on Mm(f). 

Before the statement of Theorem 3.2, we will first set up some notation. 
Let g : (B, m) —» (B, m) and gf : K —» K be fixed homotopy equivalences 

and i/-maps such that gf of is homotopic to / o g. Let Q and Q' be fixed 
multipliers of g and g' respectively. For any Flt F2 G Mm(f ) and a homotopy 
G from g' of to f o g, let D(G, Fit F2) be a secondary homotopy in Definition 
1.4 which relates to G, Flf F2 and those fixed g, g'} Q and Q' according to 
Diagram 1. 

Let g, g', Q, Qf and G be fixed. Fix an F £ Mm(f ) and as in the note and 
proof of Theorem 2.3 we let F* be the multiplier of/ derived from deforming 

f'-io(-Gm1+fQ+ F(gXg) +n(GXG) -Q'(fXf)). 

Let Do = D(G, F*, F) be the obvious secondary homotopy of F and F*. From 
Theorem 2.2 in [1], for each Hu H2 G Mm(f ), there exist Ju J2 G Mm(*) such 
that F ® Ji = Hi and F* ® J2 = H2 in Mm(f ). Then we have the following 
theorem. 

THEOREM 3.2. There exists a secondary homotopy D(G', Hi, H2) for Hx ~ H2 

if and only if there exists a map H : B —> UK and a secondary homotopy 
D(H,JuJ2)for Jx ~J2. 
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Proof. For any homotopy G, G' from g' of to / o g, there exists a map 
H : B —* UK such that the composite 

B^PK 
PK B-^X X 

B -^QK 
H 

is homotopic to G' relative to the initial and terminal points. 
For any D(H, Jlt J2), define D0 + D(H, Ju Ji) to be the composite of 

* >K 
n IX IXBXB-

IX IXBXB 
>X 

IX IXBXB-
X - K 

D(H, Ji, Ji) 

It is a straightforward argument to show Do + D(H, JY, J2) is a secondary 
homotopy for Hx = F* 0 Jx ~ F © J2 = H2. Define a function D' : I X I X 
B V B -> K by 

H (s + 2t- 1), when 0 ^ 5 + 2t - 1 ^ 1 
otherwise. 

IT (/,*,*,*) = D'(t,s,*,x) = j f 

By the property of g, for any £>(G', Hu H2), where iJ l f # 2 G Mm(f), the 
restriction to / X / X 5w5 of the composite 

7 X / X B X B «•*»* ^XI***»™-"»"*, 
X 

IX IXB XB > 

X 

id 
-Do 

x- • x 

is homotopic to D'. Therefore this composite can be deformed to a secondary 
homotopy D" for F* © Hi ~ F Q H2 in Mm(*), which satisfies the properties 
described in the following diagram. 

Hm g'(F* Q Ha) 

(F 0 ffx) (g X g) n(H, H) 

Diagram 9 
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Since Ji ~ F* © Hi and J2 ~ F © i72, the theorem is proved. 

Since K is an Eilenberg-Maclane space, we can use obstruction theory to 
show that Q' is unique up to homotopy. 

For any T G Mm(* : B -> B) and Q G Mm(g : 5 -> B), let Q © T be the 
composite 

X ^ £ B XB-+X 
B XB W 

By a similar argument as to show F® is a bijection or as in pp. 1057-1059 in 
[1], Q © : Mm(* : B -> B) -> Mm(g : 5 -> 5 ) is a bijection. 

Let Z'(J3 A 5 , 2) be the subgroup of H\B A B, 2) generated by 
Im (m*:Hl(B, 2)-+Hl(B A B, 2)) and Im (12/ )* : [5 A B, QB] -> 
i?'(l? A £ , 2)) . Let F and F* be as before. Then we have: 

THEOREM 3.3. For any F* © Ju F © J2 G Mm(f), where Ju J2 G Mro(*), 
F* ® Ji ~ F ® J2 (via g and gf ) if and only if 

g*(Ji) ~ feXri*W G L ' ( 5 AB, 2) . 

Proof. F* © Ji ^ F © J2 (via g and g') if and only if there exists a multiplier 
Q © r of g : (B, m) —^ (B, m), where Q is the fixed multiplier of g and T G 
Mm(* : 5 —> B), and a homotopy G' from g' of t o / o g such that there exists a 
secondary homotopy Z>i which satisfies the properties indicated in the follow
ing diagram. 

f(Q ® T) 

m  

G'm 
• g'(F* © A) ] 

F © J2(g X g) 
4 m  

n(G' X G') 
è 

Q'(fxf) 

Diagram 10 

Because Q © T and Q + m2(T, m2(g X g)) are homotopic relative to 
end points, and so are (F © J2)(g X g) + fm2(T, m2(g X g)) and F © 
(J2 © fT(g~l X g~l))(g X g), where "-f" means the joining of two paths, 
therefore D\ can be deformed to a secondary homotopy D2 which satisfies the 
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properties indicated in the following diagram. 

fQ 

» > 
G'm 

g'(F* ® Jt) 1 

D2 

F®(J,® / r ( r x x r1))* x g 
i * _ 

n(G' X G') 
é 

Diagram 11 

Therefore from Theorem 3.2 we know there exists a secondary homotopy 
D(H, Ju J2 © jT{g~l X g~1)) for Jx and J2 ® fT(g~l X g"1). By Theorem 3.1, 
g.'(Ji) - fe X g)*(J2 © / r ^ - i X g'1)) € Im m*. Therefore g * ' ^ ) -
(g X g)*(Jï) £ £*(£ A .5, S). We omit the proof for the converse part, which 
is a straight forward argument. 

Evidently Theorem 3.3 provides a way to determine Rm(f ). 

4. Example. In general it is hard to find Rm(f), because of the lack of 
information about g's and what is F © F* £ Mm(*). In the case when B = 
K(Zvny t), we can give a method to compute M(E). We shall demonstrate this 
method in the following example. 

Let B = K(Zb, 3), K = X(Z5, 12) a n d / = p ^ a where a is the fundamental 
class of # 3 ( £ , Z5). Let£ = /3a. 

We know: 

HU(B A 5 , Z5) = Z5 (2b ® afc, 2ab ® b, b2 ® a, a <g> b2 ) 

m*(Hn(B, Z5)) = Z.5 (62 0 a + a ® 62 + 26 ® a& + 2afr ® b ) = Im m* 

and Im ( / * : [B A B, S2J3] -> [5 A 5 , fiJfT|) = 0 , where Z5<x,y) denotes the Z5 

module generated by x and y. 
The homotopy equivalences and if-maps g : B —+ B and g' \ K —± K such 

that g' o / is homotopic to f o g are maps induced from Iso (Z5, Z5) = 
{units of Z5J = {1, 2, 3, 4}. We will use 1, 2, 3, 4 to indicate the corresponding 
homotopy equivalences. 

Fix F Ç M r o ( / ), let F t* be the multiplier i n M w ( / ) defined in the Note to 
Theorem 2.3 with g = gf = i, 1 ^ ^ ^ 4 and any choice of G, Q and Q'. From 
Theorem 2.2 in [1], there exists At 6 MOT(*) such that F 0 i ^ = Ft*. We 
want to know more about A t. By the definition of F* we know the difference 
between Ft* = F ® A{ and the composite of 

BXB-^BXB-^K'P-^XK' 
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(ii)BXB-> X 0 ^ 0 X , X D , Q , X ^ H ^ 

is in the Im m*. Therefore the difference of the following two composites is 
in Im m*: 

(i)BXBÎ^BXB2^BXB-^K>^lK'lVLK< 

BXB^^BXB-^K'-^LK1 

BXB^^ÂBXB-^UK'J^KK1 

where n is the multiplication on K. Therefore A4 — 3̂ 4 2 G Im m*. Similarly 
we can show that A 3 — 2A 2 G Im m*. Since 1 is the identity map, it is obvious 
that Ai e Im m*. Let H = F 0 4,42 G Mm(f), and let iJ** be the multiplier 
in Mm(f) defined in the Note to Theorem 2.3 with g = gf = i 1 ̂  i g 4. 
From Theorem 2.2 in [1], there exists £* G Mm(*) such that H ® Bt = Ht*. 
A similar technique and the fact that H = F ® Z2 shows that £ 2 G Im m*. 
Therefore by suitable choice of F we can assume A2 G Im m*. 

Using Theorem 3.1, it can be shown that for any x, j G Mm(*) = 
Hil(B A B, Z5) the following four statements hold: 

(i) x ~ y (via 1 and 1) if and only if x — y G Im m* 
(ii) x ~ y (via 2 and 2) if and only if 2x — Ay G Im ra* 

(iii) x ̂  y (via 3 and 3) if and only if Sx — \.y G Im ra* 
(iv) x ̂  3/ (via 4 and 4) if and only if 4x — y G Im ra*. 
Using Theorem 3.3, it can be shown that for any w, z G Mm(f ) the following 

statement holds for i = 1, 2, 3, 4: 

(*) z# ~ 2 (via i and i) if and only if 

(w, z) G {(F © A i © x, F 0 y) |x ^ y (via i and i)}. 

Since A2 G Im ra*, ̂ 3 and ̂ 44 are both in Im ra*. Hence M(E) = 
{ ^ 0 F | F G Mm(*) = H"(B AB,Zb)}/Rm(f) where 

# » ( / ) = {(^ © ^ F ® V')\y - V £ Im m*, 2 7 - 4 7 ' G Im m*, 

3 7 - 4 7 ' G Im m* or 4 7 - 7 ' G Im m*\. 

In the above example the computations for the relations among A2, As and 
A4 rely on the fact that Iso (Z5, Z5) is a cyclic group. Since Iso (ZPn, ZPn) is a 
cyclic group if p is odd or p = 2 but n = 1, and Iso (Z, Z) is a cyclic group, 
therefore we can apply the same argument to those cases. 
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