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1. Introduction 

Kuhn & Miller (1989, KM hereafter) proposed that a small stellar system in orbit around a large 
galaxy could be heated through resonant coupling between the orbital motion and internal modes 
of oscillation of the satellite. They further argued that the apparently large mass-to-light (M/L) 
ratios of dwarf spheroidal (dSph) galaxies around the Milky Way (e.g., Armandroff, Olszewski & 
Pryor 1995) could be illusory because the satellites are far from virial equilibrium as a consequence 
of such resonant heating. We note that if the true M/Ls are small, some dSphs have much more 
kinetic energy than is required to unbind them; a resonant pumping mechanism which adds a 
modest amount of energy each cycle could not achieve this (Pryor 1996). 

Nevertheless, KM raise two interesting issues. First, can stellar systems support large-amplitude 
pulsation modes? Second, if yes, can these internal modes be pumped by resonances with the orbit? 
We here confirm that certain low-concentration, spherical stellar systems support pulsation modes 
that are at most very weakly damped. We also report that we have been unable to excite these 
modes through orbital motion of the small stellar system in an external logarithmic potential. 

Oscillations of spherical stellar systems have been studied using numerical simulations, begin­
ning with the seminal paper by Henon (1973) who was, however, most interested in instabilities. 
Systems which support weakly-damped oscillations were noted by David & Theuns (1989), while 
Miller & Smith (1994) report large-amplitude pulsations that appeared to be long-lived. Other 
models were constructed by Louis & Gerhard (1988) and by Sridhar (1989). Mathur (1990) demon­
strated the existence of discrete neutral pulsation modes in certain stellar systems and further work 
on 1-D systems is reported by Weinberg (1991) and by Louis (1992). It is clear from this work that 
oscillation modes can be sustained only when resonances between the mode and the frequencies of 
internal motion of the particles can be avoided. 

2. Damped and long-lived oscillations 

We have created a number of TV-body realisations of different King-type and polytropic models of 
isolated spherical stellar systems. We searched for possible long-lived pulsations by disturbing the 
initial equilibrium in various ways and allowing the models to evolve. Although we tried a number 
of aspherical initial disturbances, we here focus on spherically-symmetric oscillations, since all of 
the long-lived oscillations that we have found so far are of this form. 

Each of our 100 000 particles moves in response to the accelerations determined from the global 
mass distribution. The gravitational field is determined through a surface harmonic expansion (to 
I = 4 only) of the particle distribution in a large number (usually 200) of fixed spherical shells. All 
of the unperturbed models were in excellent equilibrium at the start and appeared to be stable. 

We here present experimental results from a number of spherical models with isotropic velocity 
dispersions. These include a low-concentration King model and spherical stellar polytropes of dif­
ferent indices; such systems are described in detail in Binney & Tremaine (1987, §4.4.3). The King 
model has WQ = 3 and a tidal radius of 4.6994 King radii. Quantities in this paper are given in 
units in which G = M = a = 1; the unit of frequency is therefore (GM/a3)1'2. Here, M is the total 
mass of the model and a is either the King radius or the limiting radius for the polytrope. 
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Figure 1. Radii containing various mass fractions of a Wo = 3 King model (left) and an n = 2 polytrope (right). 
The equilibrium of both models was disturbed at the outset. 

Figure 1 shows the time evolution of radii containing 5%, 15%, . . . , 95% of the mass of the 
King model on the left and of an n = 2 polytrope on the right. In these cases, both models were 
disturbed by scaling the initial speeds of the particles so as to increase their kinetic energies near 
the center and to decrease them further out; the net result is a small increase in the overall kinetic 
energy. The disturbance to the King model decays quickly, while the polytrope appears to sustain 
a long-lived oscillation. 

We have applied the mode-finding apparatus previously described by Sellwood & Athanassoula 
(1986) to the time evolution of these models. We were able to obtain only a very rough estimate 
for the mode frequency in the King model, 0.35 — 0.21i, because the amplitude decayed so quickly. 
For the polytrope, on the other hand, we find a spherically symmetric pulsation mode of frequency 
1.96 and no detectable decay rate. 

We have found very weakly decaying modes in all polytropes with n < 2.5 and strongly damped 
modes in the more centrally concentrated polytropes with n > 2.7. Although the shapes of the 
eigenmodes resemble those predicted by Samimi & Sobouti (1995), our frequencies do not agree 
closely with their predicted values. 

The oscillation in the King model appears to decay through Landau damping by resonant 
particles. The nearly-horizontal line in each panel of Figure 2 marks the locus in energy, angular 
momentum (E, L) space of the particles that have radial periods equal to our estimated period of 
the oscillation. Apparently, the very low-concentration polytrope can oscillate at a frequency low 
enough that no particle inside the truncation radius is in resonance, whereas there are resonant 
particles present in the King model, which presumably damp the oscillation. 

Having determined the radial profile of the long-lived mode in the polytrope, we solved the 
radial continuity equation to determine a better initial perturbation that would excite the mode 
more cleanly. We tried a number of perturbations of increasing initial amplitude and found that 
the largest pulsation which we could excite in this manner caused the virial coefficient to oscillate 
by ~ ±10% about 0.5 and the central density to vary by ~ ±15%. Pulsations from yet larger initial 
perturbations damped to about this amplitude. 

3. Orbit-mode coupling? 

We have performed a number of experiments in which we place our equilibrium n = 2 polytrope into 
orbit in a fixed external logarithmic potential to search for possible coupling between the orbital 
motion and the internal oscillation mode. The orbital velocity was added to every particle and the 
grid recentered on the center of mass of the satellite at every step. 
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Figure 2. Undisturbed distributions of particles in (E, £)-space for a Wo = 3 King model (left) and an n = 2 
polytrope (right). The lower curved line marks the circular-orbit boundary. The dots indicate our initial particle 
distributions, which were selected with only 200 distinct E values. The upper, more nearly horizontal line, marks the 
locus in this space of test particles having radial periods equal to the oscillation period we estimated from the models 
shown in Figure 1. 

KM suggest that the mode can be excited if the satellite is on a circular orbit with a period 
equal to the pulsation period. However, these low-concentration models are easily disrupted by a 
tidal field and are therefore able to survive only if they orbit far from the center of a large galaxy. 
In an external logarithmic potential, we find that rapid tidal disruption occurs at any orbital radius 
inside where the orbital period is about twice the fundamental pulsation period of the polytrope. 
The 1:1 resonance envisioned by KM is not possible for these pulsations. 

We tried a number of larger orbits, both circular and eccentric, but could not find one that 
led to significant excitation of the pulsation mode. We tried setting either the circular or epicycle 
frequency of the satellite's motion equal to a simple fraction of the pulsation mode frequency and 
saw no excitation. We also tried a circular frequency that would couple to the precession rate of 
the lines of apsides of orbits within the polytrope, again with no secular effects. 

Since the pulsation mode to be excited is spherically symmetric, while the tidal field is bisym-
metric, it is perhaps not too surprising that we were unable to excite it. 

4. Conclusions 

We have found that very low-concentration polytropes can support long-lived, spherical pulsation 
modes, while only slightly more centrally-condensed models do not. These systems can oscillate 
only if the pulsation frequency can avoid resonating with any particles; otherwise the mode is 
strongly Landau damped. We have so far found that ~ 10% departures from virial equilibrium 
can be sustained, apparently indefinitely. We were unable to excite this mode through coupling to 
orbital motion of the satellite in an external potential and conclude that it is unlikely that the high 
M/Ls of the dSphs could be accounted for, even in part, by resonantly excited pulsation modes. 

This work was supported in part by grants NSF AST 93/18617 and NASA Theory NAG 5-2803 
(to JAS) and NSF AST 96/19510 (to CP). 
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