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Abstract: With the discovery of now more than 500 exoplanets, we present a statistical analysis of the
planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the
structural variables of planetary orbits, i.e. planetary angular momentum and orbital period, are ‘quantized’ in
integer or half-integer multiples of the parent star’s rotation period. The Solar System is first shown to exhibit
quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443
exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply
that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a
discrete half-integer relationship with orbital ranks n = 0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining
these results by pure chance is p < 0.024. We discuss various mechanisms that could justify this planetary
quantization, such as the hybrid gravitational instability models of planet formation, along with possible
physical mechanisms such as the inner disc’s magnetospheric truncation, tidal dissipation, and resonance
trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge from the
formation processes of planetary systems and that this orbital quantization is highly dependent on the parent
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star’s rotation period.
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1 Introduction

The discovery of now more than 500 exoplanets has
provided the opportunity to study the various properties of
planetary systems and has considerably advanced our
understanding of planetary formation processes. One
long-suspected property of planetary systems has been the
quantum-like feature that resembles the mathematical
regularity of the empirical Titius—Bode (TB) law in the
Solar System. Various research papers have suggested
that such ‘quantized’ features and empirical relationships
might be possible in extra-solar multi-planetary systems,
such as Nottale (1996; 1997b), Nottale et al. (1997a;
2004), Rubcic & Rubcic (1998; 1999), Poveda & Lara
(2008), and Chang (2010), just to mention a few. In case
they truly exist, one main question that needs to be
answered is what physical processes might cause these
‘quantization’ features to develop. The gravitational
instability model of planet formation has been success-
fully used in the past to explain ‘discrete’ power law
distributions in planetary spacing (Griv & Gedalin 2005).
Similarly, hybrid models of planetary formation (e.g.
Durisen etal. 2005), are characterised by concentric dense
gas rings that are produced by resonances and discrete
spiral modes which, in theory, can be correlated with
orbital ‘quantization’ features. Also similarly, tidal dis-
sipation and angular momentum transfer, along with
mean-motion resonances and resonance trapping, play an
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important role in the final orbital configuration. In all of
these mechanisms, the stellar rotation period is a critical
parameter. The main motivation in this paper is therefore
(1) to statistically search for any apparent quantum-like
features in the orbital structure of exoplanetary systems;
(ii) to determine whether the quantization parameters are
related to any specific physical system property (the
stellar rotation rate is examined in this paper); and (iii) to
shed some light on the nature of the possible physical
processes that might lead to this apparent quantization.
We will argue on dynamical terms that a quasi-quantum
model might emerge naturally from the formation pro-
cesses that determine the final configuration of a plane-
tary system.

The plan of this paper is as follows: Section 2 describes
the basic methodology and simple quantum-like model.
In Section 3, the model is applied to the Solar System.
In Section 4, the analysis is expanded over a sample of
443 exoplanets, for which we could obtain stellar
rotation periods. In Section 5, a statistical analysis of
the results is presented demonstrating that the specific
angular momenta of all planetary orbits generally follow
half-integer multiples of the specific angular momentum
at the parent star’s corotation radius. Section 6 briefly
proposes various physical mechanisms that may justify
the obtained results. Prospects and conclusions are drawn
in Section 7.
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2 Methodology

We will be testing for the quantization of planetary
angular momentum, i.e. we will test whether planetary
angular momenta have discrete values in multiples of a
‘ground-state’ system-specific parameter. Within an order
of magnitude estimate, the corotation orbit represents
an approximate inferior limit to the position of planetary
orbits. This is confirmed by various physical mechanisms
that are discussed in Section 6, such as spin-orbit coupling
and tidal dissipation, as well as disc-locking and magnetic
braking which create a barrier and inferior limit to plan-
etary migration. On that basis, we postulate that the
corotation orbit represents the ground-state orbit of
planetary systems and assign to it the orbital rank n=1.
However, this does not negate the possibility of having
physical objects orbiting inside the corotation orbit.
Nevertheless, the corotation orbit (at » = 1) is particularly
chosen because of its importance as a base reference to the
orbital parameters of the entire planetary system, and in
particular, their relationship to the parent star’s rotation
period.

The corotation radius r is defined in terms of the star’s
rotation rate Qg by

where G is the gravitational constant and M and € are the
mass and rotation rate of the parent star respectively.
Similarly, the mean motion orbital velocity v, and
specific angular momentum J, (per unit mass) at the
corotation radius are given by

1
2
v (G_M) — (GMQ)", 2)
ro
1
G2M? /3
JO = Vory — ( Q > (3)

If our planetary quantization hypothesis is valid, then the
specific angular momentum J,, of any planetary orbit »
would follow discrete and quantized multiples of the
specific angular momentum J, at the corotation orbit
n=1.

G2M2) 1/3 @

J,=nJy = n< Q.
In other words, the ratio of the specific orbital angular
momentum J, of a planet in the n™ planetary orbit to the
specific angular momentum J, at the ‘ground-state’
corotation orbit ought to increase incrementally by a
discrete value.

n=— (5)
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For nearly circular orbits, Newton’s force-balance equa-
tion of motion gives

GM

v,z

and (6)

ry =

Iy = vt = (GMra) )

Combining equations (1), (5), and (7), we obtain an n* law
for the quantized semi-major axis 7, of the n'™ orbit, in
terms of the corotation radius ry, spin rotation rate Qg of
the central star, and orbital rank # by

1
GM] B

2 2
T =nTry=n [Qsz} (8)

From Kepler’s third law and Equation (8), the quantized
orbital period P, of the n™ planetary orbit is also given
in terms of the corotation orbital period P, and orbital
rank n by

P\
P, = n’Py = n’Pry, 0rn = ( . ) (9)
rot

Where P, is the planet’s orbital period and P, is the
corotation period which is by definition equal to P, the
star’s rotation period.

3 Solar System Application and Results
3.1 The Solar System Orbital Ranks

The quantum-like model described in Section 2 is first
applied to the planets of the Solar System in order to
discern any discrete pattern in their orbital ranks n. We
will calculate the orbital ranks 7 using the Sun’s rotation
period Ps,, taken from Allan’s Astrophysical Quantities
(Cox 1999) as 25.38 days and the solar rotation rate
Qqun=2.8x 107° rd s™'. The Sun’s corotation specific
angular momentum Jj, is calculated from Equation (3) and
will represent the base quantization parameter for all
possible planetary orbits in the Solar System. The plan-
etary orbital ranks are first calculated using the Sun’s
present rotation period (25.38 days) and presented in
Table 1. However, since the Sun’s rotation rate has
already decayed with age through angular momentum
loss, the orbital ranks are also calculated using the Sun’s
rotation rate at the early stage of planet formation. The
orbital parameters of the Solar System are assumed to
have settled into a long-term stable configuration at
around 650 Myr or so. Using data on solar-type stars in the
Hyades (age ~650 Myr), we selected star VB-15 which
has a B—V index similar to the Sun’s to estimate the Sun’s
rotation period of 8 days (Radick et al. 1987) at the
planets’ formation age, i.e. the time when the solar system
planets’ orbits have stabilised and the proposed quanti-
zation has ‘frozen in’. The planets’ orbital ranks n are
calculated from Equation (5) for each planetary orbit
using both the Sun’s present and earlier formation rotation
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periods (Jo=1.8319 and 1.2467m” s™' respectively).
The results are presented in Table 1.

Besides the main planets, the list includes main mass-
distribution peaks such as the asteroid belt families: Flora,
Ceres, Pallas, Cybele, and Thule, as well as centaurs,
trans-Neptunian cubewanos in the Kuiper belt, and the
recently discovered scattered disc object (SDO) 2003-
UB313, previously dubbed the ‘tenth planet’.

From Table 1, it can be observed from the orbital ranks
calculated using the Sun’s present rotation period that the
Solar System exhibits a discrete and quantized orbital
structure where the planets’ specific orbital angular mo-
menta J, are ranked in discrete half-integer multiples of
the specific angular momentum J, at the solar corotation
orbit (n=1.0, 1.5, 2.0, 2.5, 3.0, 3.5, etc.). The An devia-
tions from integer or half-integer values are included in
Table 1 and indicate that 16 out of 19 planetary orbits have
absolute deviations |An| <<0.07. The discrete nature of
planetary semi-major axes, mean orbital velocities, and
orbital periods, in terms of half-integer values, follows
logically from the quantized orbital angular momentum
results.

The inner planets Mercury (n = 1.5), Venus (n = 2.0),
Earth (n=2.5), and Mars (n=3.0) occupy the ranks
n=1.48, 2.07, 2.43, and 2.99 respectively with minimal
deviations An from the closest integer or half-integer
values. In the main asteroid belt, the orbits of the Flora
family are ranked at n = 3.5, with both Flora and Ariadne
occupying n=3.57. At the orbital rank » =4, the main
asteroid families of Ceres and Pallas represent the group
and both occupy the rank n =4.03. This orbital rank also
includes Misa, Eunomia, Lamberta, and the Chloris
families at n=3.90; Ino and Adeana at n =3.94; Dora
at n=23.96; Elpis, Herculina, Gyptis, Juewa, Minerva,
Thisbe, Dynamene, and Eunike, all at n =3.99; Eugenia
and Nemesis at n =4.0; Lydia, Gefion, and Pompeja at
n=4.01; and the Brasilia and Karin families at n =4.09.

The orbits of the Cybele family of asteroids are ranked
at n=4.5, with the main asteroid Cybele, for instance,
occupying rank n=4.48, Sibylla and Hermione at n=
4.47, Bertholda at n=4.49, Camilla at n=4.52, and
Sylvia at n =4.53. At the next orbital rank of n =15, the
main asteroid Thule occupies 7 = 5.03. At the orbital rank
of n=1>5.5, Jupiter occupies the rank n =5.54 along with
the Trojan asteroids such as Achilles at n =5.48, Diome-
des at n=15.49, Aeneas at n = 5.50, Patroclus and Nestor
at n=>5.51, Hektor at n=5.53, and Agamemnon at
n=>5.54. Beyond Jupiter, the orbital ranks at n=06.0,
n==6.5, and n="7.0 do not appear to be occupied by any
major object. However, this does not exclude various
periodic comets whose orbital properties match several
orbital ranks in the Solar System. To mention a few, the
comets 29/P Schwassmann-Wachmann-1 and 66/P
Du-Toit both occupy n=5.95 and n = 5.94 respectively.
Ranked also with the asteroid Thule, for instance, are the
comets 36/P Whipple at n=4.97, 115/P Maury at
n=>5.01,32/P Coma-Sola atn = 5.02, 59/P Kearns-Kwee
atn =5.05, 72/P Denning-Fuyikawa at n = 5.06, and 93/P
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Lovas at n=5.08. However, the unoccupied ranks
beyond Jupiter are better explained by orbital migration
and the outward expansion of the Solar System’s
boundaries.

Saturn occupies the rank n = 7.50 exactly, followed by
‘centaurs’ such as Chiron at n=9.01, Chariklo at n=
9.69, and Pholus at n=10.97. Uranus occupies the rank
n=10.65 and Neptune n = 13.34, with relatively higher
but nearly equal and opposite deviations from integer or
half-integer ranking, An = +0.14 and —0.16 respectively.
At the orbital rank of n = 15.5, Pluto occupies n = 15.28.
Beyond Pluto and at the orbital rank » = 16, some cube-
wanos, classified as trans-Neptunian objects (TNO), in
the Kuiper belt are included, such as Quaoar at » =16.00
and Varuna at n=15.97. The recently discovered SDO
Eris UB313 occupies the rank » = 17.95. This can be used
to predict the location of objects within and beyond the
SDOs. At n =20, for instance, an object may be discov-
ered orbiting at 67.85 AU.

We note that the deviations An from the closest integer
or half-integer are negligible up to Saturn and all orbital
ranks are occupied by planets or asteroid mass peaks
within that region. Beyond Saturn’s orbit, the deviations
An are relatively higher for Uranus, Neptune and Pluto
and several orbital ranks are vacant. One possible expla-
nation may be related to dissipation in the solar proto-
planetary disc that allows both inward and outward
planetary migrations, depending on the initial position
and the radius of maximum viscous stress located just
outside the orbit of Saturn (at around 10 AU). Hence, the
orbits of protoplanets forming within that critical radius
tend to compact, while those forming outside it are
stretched outwards. This could explain the relatively
higher An deviations beyond Saturn’s orbit and, more
importantly, the unoccupied orbital ranks produced by the
outward expansion.

The orbital ranks n that were calculated using the Sun’s
rotation period (8 days) at the formation age of 650 Myr
also exhibit a discrete and quantized structure, albeit with
higher deviations An from half-integer numbers. It can
therefore be inferred that the decay in solar rotation rate
has improved or at least had a minimal effect on the
quantized orbital ranks, most likely because the orbital
ranks are proportional to the cube root of the decreasing
rotation rate (Equation 5). The slowing down of the Sun’s
rotation rate has actually improved the discrete quantized
nature of the orbital structure with deviations from half-
integers approaching zero as the rotation rate decreases
asymptotically with age (Skumanich 1972), where it
reaches a limit value that has negligible further effect to
the orbital rank values. This effect is more clearly seen in
Section 4.1, where the model is applied to 443 exoplanets.

4 Exoplanetary Application and Results

4.1 Exoplanetary Orbital Ranks at Parent Stars’
Present Rotation Periods

To date, more than 500 exoplanets with 49 multi-
planetary systems have been discovered. In order to verify


https://doi.org/10.1071/AS09062

Quantization of Planetary Systems 181
Table 2. Rotation periods of Hyades stars used to match the B—V colour of exoplanetary stars
VB B-V Represents Prot Ref. VB B-V Represents Prot Ref.
No. B—V range (days) No. B—V range (days)
VB 94 0.396 Less than 0.430 1.67 2) VB 17 0.706 0.690 to 0.710 7.25 2)
VB 78 0.451 0.431 to 0.460 2.90 (1 VB 27 0.721 0.711 to 0.730 7.15 2)
VB 81 0.470 0.460 to 0.480 2.80 (1 VB 92 0.736 0.731 to 0.740 9.13 (6)
VB 121 0.500 0.480 to 0.510 3.70 7 VB 26 0.745 0.741 to 0.760 9.06 %)
VB 48 0.518 0.511 to 0.520 2.50 1 VB 22 0.770 0.761 to 0.780 5.61 7
VB 65 0.535 0.521 to 0.530 5.87 %) VB3 0.786 0.781 to 0.799 12.04 2)
VB 59 0.543 0.531 to 0.545 5.13 %) VB 21 0.816 0.800 to 0.819 5.49 3)
VB 29 0.548 0.546 to 0.559 3.00 (1 VB 79 0.831 0.820 to 0.839 9.71 (6)
VB 119 0.563 0.560 to 0.569 4.00 @) VB 153 0.855 0.840 to 0.869 9.18 “4)
VB 31 0.572 0.570 to 0.579 4.72 3) VB 138 0.871 0.870 to 0.879 19.19 2)
VB 52 0.592 0.580 to 0.599 5.64 3) VB 43 0.907 0.880 to 0.920 10.26 5)
VB 50 0.604 0.600 to 0.609 5.10 (1) VB 91 0.936 0.921 to 0.970 9.36 5)
VB 73 0.609 0.610 to 0.620 7.38 (6) VB 25 0.984 0.971 to 1.010 12.64 5)
VB 97 0.624 0.621 to 0.629 6.45 3) VB 175 1.031 1.011 to 1.080 10.82 %)
VB 18 0.640 0.630 to 0.649 8.65 4 VB 181 1.167 1.081 to 1.199 11.92 5)
VB 63 0.651 0.650 to 0.653 7.73 %) VB 173 1.237 1.200 to 1.300 14.14 5)
VB 15 0.657 0.654 to 0.660 7.43 3) VB 190 1.357 1.301 to 1.499 3.66 5)
VB 64 0.664 0.661 to 0.670 8.64 (6) H218 M3 M4 1.511 to 1.600 0.68 ®)
VB 58 0.680 0.671 to 0.689 6.20 @)
References

(1) Duncan et al. 1984, (2) Glebocki & Gnacinski 2005, (3) Paulsen et al. 2003, (4) Paulsen et al. 2004, (5) Radick et al. 1987, (6) Radick et al. 1995,

(7) Rutten 1987, (8) Scholz & Eisloffel 2007

whether the quantization of planetary angular momentum
in discrete half-integer values is a universal occurrence
and not just a coincidental property of the Solar System,
and in order to validate the dependency of this quantiza-
tion on stellar rotation, a sample of 443 exoplanets, for
which star rotation data is available, is analysed with
respect to the rotation periods of their parent stars. Out of
the 443 exoplanets, almost half (216 stars) have host
stars with rotation periods available from literature or
measured from log R’z k. These were obtained from the
planets’ discovery papers (49 parent stars; see references
in Table 3) or from Table 1 of Watson et al. (2010) (167
parent stars) which conveniently compiles all published
rotation periods of exoplanetary host stars. We preferred
to use Table 1 of Watson et al. (2010) and not Tables 2
and 3, as Table 1 compiles published rotation periods
while Table 2 and 3 use Markov-chain Monte Carlo
simulation to estimate them. Out of the 167 rotation
periods in Watson et al. (2010), 7 stars have actual
observed rotation period and these are: Rho CrB
(17 days), Tau Boo (14 days), Epsilon Eri (11.68 days),
HD 3651 (44 days), HD 62509 (135 days), HD 70573
(3.3 days), HD 89744 (9 days). The remaining 227 stellar
rotation periods were estimated from the projected rota-
tional velocities v sin i and stellar radii, with certain levels
of uncertainty. We have used the Catalogue of Nearby
Exoplanets (Butler et al. 20006), the Catalogue of Rota-
tional Velocities (Glebocki & Gnacinski 2005), the Exo-
planet Data Explorer Table (http://exoplanets.
org/; Wright & Marcy 2010), along with some planet
discovery papers, to obtain values of v sin i (see references
in Table 3). We noted that in many cases the values of
v sin i listed in the Exoplanet Data Explorer Table were
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truncated and rounded up, which is why we attempted as
much as possible to obtain more accurate values (to 2
significant digits) from the referenced papers. Moreover,
in some cases where the catalogues listed multiple values
of v sin i for a particular star, the values listed as upper
limits were generally avoided and similar values when
measured and corroborated by different sources were
selected. The absolute stellar radii were mainly taken from
the referenced planet discovery papers, the Fundamental
Parameters of Stars Catalogue (Allende, Prieto & Lam-
bert 1999), the Catalogue of Stellar Diameters (Pasinetti
Fracassini et al. 2001), or the Effective Temperatures and
Radii of Stars Catalogue (Masana et al. 2006).

4.2 Uncertainty Considerations

Most of the v sin i values we found are under 4 kms ™. The
inherent measurement uncertainty in these v sin i values is
atbestaround 0.5 km s~ ' and at worst 1 to2kms ™', As for
stellar radii, although they can be determined to a preci-
sion on the order of 5 percent for the small minority of
planets that transit their parent stars, the radius estimates
for the remainder are unlikely to be established to a
precision better than 10 percent. Moreover, the orbital
angular momenta of exoplanets depend on stellar mass
values which are mostly derived from isochrone fits and
have an inherent uncertainty on the order of 10 percent.
Therefore, the extra-solar orbital ranks, if calculated from
the planetary angular momenta in Equation (5), would be
uncertain by at least 30 percent (since M and Ry are
correlated on the main sequence) even before the uncer-
tainties in the measured v sin i (a further 30 percent) and
the effects of unknown orbital inclination are taken into
account.
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Fortunately the dependence on stellar mass in Equa-
tion (5) can be eliminated. Equation (9) is the key, as it
uses the orbital period of the planet and rotation period of
the star directly. By using Equation (9) to calculate the
orbital ranks, the use of the planet’s semi-major axis is
avoided, as it requires knowledge of the uncertain stellar
mass. Since the orbital period is one of the few planetary
parameters that is measured directly and with high preci-
sion, this is the best quantity to use. The same is true for
almost half of the exoplanet sample having directly
measured stellar rotation periods. The remaining rotation
periods were derived from measurements of v sin i, which
are typically uncertain by 20 to 30 percent, and estimates
of stellar radii are also uncertain by roughly 10 percent.
This may not be disastrous, since the ratio of the two
values is raised to the one-third power. Therefore, the
final estimates for the orbital ranks n are expected to be
uncertain by 5 to 10 percent. Moreover, the uncertainty
due the unknown inclination of the stellar rotation axis
takes the form of (sin /)~ "’*. For inclination angles ranging
from 45° to 90°, this factor is very close to unity, and
therefore has an insignificant effect on the calculated
orbital ranks n. For inclinations between 30° and 45°,
the (sin /)~ "/* factor can affect the » values by as much as
10 to 20 per cent. However, since the most likely inclina-
tion of a random stellar sample is 57° (Trilling et al. 2002)
and because the radial velocity technique is biased to-
wards detecting planetary systems with inclinations near
90°, the average value of is expected to range between /4
and unity. With the number of exoplanets under consid-
eration, the average value of sin i for the population
approaches the value for a random distribution. Hence,
the most likely effect of the inclination factor on the
calculated orbital ranks should again not exceed 7 to 10
per cent on average. A Monte Carlo treatment is used in
Section 5 to study the effect of these uncertainties.

In the first approach, the extra-solar orbital ranks » and
their related deviations from half-integer values An are
calculated using the ratio of the planet’s orbital period to
that of the parent star’s current rotation period, as in
Equation (9), and presented in Table 3.

4.3 Exoplanetary Orbital Ranks at the Planetary
Formation Epoch (~650 Myr)

In the second approach, we address the concern that the
half-integer orbital ranks are calculated using the rotation
period for the present age of the star, and not at the epoch
when planetary systems were formed, when it is known
that solar-type stars observed in young star clusters do not
rotate at constant rates throughout their lifetimes. We
therefore need to study whether any quantization feature
exist at the formation age when it is supposedly ‘frozen in’.

The rotation rates of stars with outer convection zones
generally decay with age, approximately as the inverse
square root of time (Skumanich 1972), through angular
momentum loss via hot magnetically channeled winds.
However, at around 600 Myr or so, planetary systems

https://doi.org/10.1071/AS09062 Published online by Cambridge University Press

J.-P. A. Zoghbi

eventually settle into long-term stable configurations and
their orbital periods are constant while the stellar rotation
periods continue to increase. However, Soderblom et al.
(2001) indicate that the rotation of solar-type stars, in
evolving from the Pleiades (100 Myr) to the Hyades
(650 Myr), changes only modestly in the mean, but under-
goes a huge convergence in the spread of rotation rates.
Thus, at any one mass in the Pleiades (100 Myr), the range
of rotation rates varies by an order of magnitude or more,
yet in the Hyades (650 Myr), stars of the same mass have
nearly identical rotation rates. The convergence occurs
for upper bound rotation rates, as the lower bounds of both
clusters are nearly identical (Soderblom et al. 2001).
Since most of our sample of exoplanetary stars have
rotation periods near the lower bounds, we can assume
that these have remained essentially unchanged over
the period 100-650 Myr (Soderblom et al. 2001), i.e.
during the period of planetary formation. With this mini-
mal decay in rotation periods, it is therefore logical to
expect a quantized distribution of orbital ranks around
half-integer values at the early formation age period.

Nevertheless, rather than using only the present rota-
tion periods of these stars, we additionally adopt a stellar
rotation period at the fiducial planet-formation age
(650 Myr), that can be derived from the star’s B—V colour
and the known rotation periods of stars of the same colour
in the Hyades (aged 650 Myr). This procedure has the
advantage that it can be based on direct measurements of
stellar rotation periods in stellar clusters of known age,
near the epoch when the proposed planetary quantization
would have been established. This bypasses the difficul-
ties arising from the uncertainties in v sin Z, inclination,
stellar radius, and stellar age.

Table 2 presents the Hyades stars, their B—V color, and
directly measured rotation periods which were used in
matching the 443 exoplanetary star sample. The Hyades
stars’ B—V colour range from 0.41 to 1.53. However, we
could not find any measured rotation periods for Hyades
stars in the B—V ranges from 0.30 to 0.40, 0.69 to 0.73,
0.78 to 0.80, and 0.87 to 0.88. Instead, five Hyades stars
(HD 28911, HD 26756, HD 27282, HD 21663, and HD
26397) with rotation periods derived from v sin i and
stellar radii were selected to supplement for the missing
B—V ranges. Additionally, one Praesepe star H218
(of similar age ~650 Myr), having a directly measured
rotational period, was selected to cover for the few
exoplanetary stars of similar spectral type, M2 to M4
(Scholz & Eisloffel 2007). A Monte Carlo treatment is
presented in Section 5 to address the inherent uncertainty
in these rotation periods.

The B—V colour values for the exoplanetary stars were
obtained primarily from the All-sky Compiled Catalogue
of 2.5 Million Stars (Kharchenko 2001), the NOMAD
Catalog (Zacharias et al. 2005), and the Hipparcos &
Tycho Catalogue (ESA 1997) and were matched with the
corresponding value from the Hyades stars to obtain an
estimate of their early rotation periods at the age of
650 Myr. These rotation periods were then used to
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calculate the orbital ranks »n near the planet-formation
epoch when the proposed quantization would have been
established.

In Table 3, the orbital rank for each exoplanet is
calculated using both the present stellar rotation period
and the fiducial star rotation period at formation age
(650 Myr) and the following is presented:

(1) The exoplanetary orbital periods, obtained from the
updated online database of the Exoplanets Encyclo-
pedia website (Schneider');

(2) The present orbital ranks » and deviations from half-
integer An, calculated from the current stellar rotation
periods at present, either directly measured P, or
derived from v sin i and the stellar radii (see v sin i and
P, references);

(3) The fiducial orbital ranks » at formation age
(650 Myr) and deviations from half-integer An,
calculated from directly measured rotation periods
at the fiducial age of 650 Myr from Hyades stars
having B—V values that match those of the exoplane-
tary stars (Table 2 above).

5 Statistical Analysis of Quantization Results

5.1 Statistical Rest for An Deviations
from Half-integer Values

From Section 4.1, the distribution of the orbital ranks » for
the 443 exoplanets (in bins of 0.1 increment) that were
calculated for the present stellar rotation periods is pre-
sented in Fig. 1, along with the distribution of deviations
An from half-integers in Fig. 2. It can be observed that the
orbital ranks » indeed tend to cluster around integer or
half-integer values, similar to the Solar System results.
Around 288 exoplanets (65 percent) have absolute
deviations of |An| < 0.1. If there is no correlation between
the stellar rotation periods and the planetary orbital per-
iods, the deviations from half-integer An would follow a
uniform distribution as opposed to the distribution
observed in Fig. 2. To test that the results were not
obtained by chance, we therefore need to reject the null
hypothesis corresponding to a uniform distribution of
deviations Arn in the interval [—0.25, 0.25]. A Kolmogorov—
Smirnov one-sample test between the observed cumula-
tive An distribution and that of a uniform distribution
yields a maximum difference statistic D=0.54 and a
probability p < 0.046 to have been obtained by chance.
Using a x° test with 20 bins, we obtain x* = 32.89 and the
probability for An to be drawn from a uniform distribu-
tion, i.e. the probability for the results to be obtained by
chance is p < 0.024

5.2 Monte Carlo Simulation for Uncertainty
in Present v sin i and Rotation Periods

To address the uncertainty in rotation periods derived
from stellar radii and v sin i, we have used a Monte Carlo

! The Extrasolar Planets Encyclopedia: Interactive Extrasolar Planets
catalog. http://exoplanet.cu/catalog.php
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treatment and calculated the orbital ranks from 25
randomly generated rotation periods ranging within
420 per cent of the estimated rotation period for each of
the 443 exoplanetary stars and resulting in a total of
11,075 simulated orbital ranks. The Monte Carlo distri-
bution of orbital ranks is presented in Fig. 3 and their
deviation from half-integer An is presented in Fig. 4. We
note a clustering of orbital ranks around half-integers for
n=0.5, 1.0, and 1.5, representing around 50 percent of
all exoplanets, while the distribution of orbital ranks
beyond n > 2.0 starts to resemble a uniform distribution.
This is expected since the uncertainty in rotation periods,
discussed in Section 4.1, was expected to result in a
10 percent uncertainty in orbital ranks »n, which in turn
exceeds the critical absolute deviation |[An|=0.25 for
orbital ranks higher than n>2.0. Nonetheless, a
Kolmogorov—Smirnov one-sample test between the
observed cumulative An distribution and that of a uniform
distribution yields a maximum difference statistic
D=0.54 and a probability p<<0.046 to have been
obtained by chance.

5.3 Statistical Test for An Distribution Using
Estimated Rotation Periods at Formation Age

Using the alternative approach of Section 4.2, the distri-
bution of orbital ranks calculated from the stellar rotation
periods at the formation epoch, which were derived from
the B—V colour of Hyades stars at the fiducial age of
650 Myr, is presented in Fig. 5 and the distribution of
deviations from half-integer values is presented in Fig. 6.
Clustering around half-integers is again apparent. If the
results were obtained by chance, the deviations from half-
integer An would follow a uniform distribution. However,
out of the 443 exoplanets in the sample, 252 planets (57%)
have |[An| < 0.1. The mean absolute deviation from inte-
ger or half-integer values is |An|=0.09 with a standard
deviation of 0.05. The average deviations taken as a
percentage of the orbital ranks, An/n, is 5 per cent. A
Kolmogorov—Smirnov one-sample test between the
observed cumulative An distribution and that of a uniform
distribution yields a maximum difference statistic
D =0.54. For the 443 data points, this result has a prob-
ability p < 0.046 to be obtained by chance. Using a x* test
with 11 degrees of freedom (bins), we obtain x> =574
and the probability for An to be drawn from a uniform
distribution, i.e. the probability for the results to be
obtained by chance, is p <2.8 x 1075,

5.4 Monte Carlo Simulation for Uncertainty
in Estimated Rotation Periods at Formation Age

According to Radick et al. (1995), the measured rotation
periods for Hyades stars vary between 2 to 8 per cent and
have an accuracy of + 0.1 day. We have taken the worst
case and considered 8 per cent uncertainty in all measured
rotation periods, which translates to around + 1 day for
the majority of the stellar rotation periods. To address this
inherent uncertainty, we apply a Monte Carlo treatment
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Figure 1 Distribution of present orbital ranks n for the 443 exoplanets indicating an obvious clustering
around discrete half-integer values, with peaks at n =0.5, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 6.5.
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Figure 2 Distribution of An deviations from the nearest half-integer for the 443 exoplanets, indicating that
65% of deviations are within 0.1 of the nearest half-integer. The probability to obtain these results by chance

is p<0.024.

and calculate the orbital ranks », using 50 randomly
generated rotation periods (within +£8 per cent of the
measured rotation periods) for each of the 443 exopla-
netary stars, resulting in a total of 11,075 orbital ranks.
The Monte Carlo distribution of orbital ranks and their
deviation from half-integer An is presented in Fig. 4.
Again, a clustering around half-integers is obvious, all the
way up to orbital ranks n < 6, representing around 90% of
all exoplanets. A Kolmogorov—Smirnov one-sample test
yields a maximum difference statistic D =0.52 between
the observed cumulative distribution and that of a uniform
distribution. For the 11,075 data points, this result has a
probability p < 0.0035 to be obtained by chance. Using a
x> test with 20 degrees of freedom (bins), we obtain
x>=1,835 and the probability for the results to be
obtained by chance is nil.

5.5 Test for Mathematical Artefacts

In order to investigate the origin of the apparent quanti-
zation in Figs. 1 to 7, we shuffled the stellar and planetary
angular velocities, to give randomised matches between
the properties of the stars and the properties of the planets,
to see whether the quantization persists. As a result, the

https://doi.org/10.1071/AS09062 Published online by Cambridge University Press

An deviations gave a uniform distribution in the interval
[—0.25,0.25], and the quantized distribution disappeared,
which again supports the hypothesis that quantization did
not occur by chance.

It is important to note that while the obtained quanti-
zation results are valid for stellar rotation periods both at
present and at the formation age, it is observed that the
tendency to cluster around half-integers seems to improve
and become more pronounced as stellar rotation P,y
increases and rotation slows down. The mean absolute
|An| deviation from half-integer values is 0.1 for rotation
periods derived at the present age and is also the same
value for those derived at the formation age. However, the
standard deviation for |An| derived from present rotation
periods is 0.068 and is improved compared to the standard
deviation of 0.075 for |An| derived from estimated rota-
tion periods at formation age. Additionally, the |An]
distribution’s peak at formation age is more flat (with a
positive kurtosis £=0.97) and becomes much sharper
(with a negative kurtosis k= —0.71) as rotation slows
down to the present values, i.e. the quantization features
improve.

The distribution of the ratio r of the planetary orbital
period to the stellar rotation period is not uniform, but
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Figure 3 Distribution of orbital ranks » calculated from 25 randomly generated rotation periods (within 20%
uncertainty) for each of the 443 exoplanets, indicating a clustering around discrete half-integer values with obvious
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peaks atn=0.5, 1, 1.5, 3.0, 3.5, 4.0, 4.5, 5.0.
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Figure 4 Distribution of deviations from half-integer values An calculated from the 25 randomly generated
rotation periods (within 20% uncertainty) for each of the 443 exoplanetary parent stars. The probability to obtain

these results by chance is p < 0.046.

decreases with increasing » due to the bias in detecting
exoplanets with short orbital periods. In order to test
whether the above quantization result is fundamental in
nature or whether it is simply the result of this selection
effect, the following test was proposed. A continuous ‘toy’
distribution of  is used which has the gross properties of the
actual distribution, that is, it reflects the observational
biases rather than real biases. A histogram for the distribu-
tion of orbital ranks » is then generated using the same
method as in Section 4, i.e. using the cubic root relationship
of Equation (9). We then searched to see whether any
quantization features persisted, which would support the
hypothesis that they are not fundamental in nature, but
effectively a mathematical artefact. However, as shown in
Fig. 8, the quantization features almost disappeared and no
major clustering around half-integer was observed except
for a peak at 0.6, which was expected due to the large
number of short-period planets observed. The distribution
around the peak at n = 0.6 is gradual, uniform, and not as
sharp as the distribution around » = 0.5 in Fig. 1 and Fig. 3.
Moreover, the original peaks in Fig. 1 and Fig. Satn = 1.0,
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1.5,2.0,3.0,and 3.5 have almost disappeared in Fig. 8. This
implies that the hypothesised quantization is not the result
of mathematical artefacts and must have some fundamental
physical basis.

5.6 Statistical Analysis Summary

In summary, if the planetary orbital periods are not
quantized with respect to the stellar rotation period, the
orbital ranks n and their deviation An from half-integer
values would have exhibited a uniform distribution.
However, the peaks in orbital ranks # at half-integer and
the observed distribution in Az, indicates that this is not
the case and that the probability to obtain such a distri-
bution by chance is p < 0.024. This was done for orbital
ranks derived both from present rotation periods and from
those estimated at the formation age (~650 Myr).

The uncertainties in v sin i and rotation periods were
dealt with using a Monte Carlo treatment by generating
random rotation periods within a range of 20 per cent of
the estimated rotation periods. The derived distribution of
orbital ranks continued to show some quantization peaks,
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Figure 5 Distribution of orbital ranks 7 for the 443 exoplanets, calculated from rotation periods of matching
Hyades stars at the fiducial age of 650 Myr, again indicating an obvious clustering around discrete integer or half-
integer values.
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Figure 6 Distribution of An deviations from the nearest half-integer for the 443 exoplanets, calculated using
the matching Hyades stars at formation age of 650 Myr. The probability to obtain these results by chance is
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p<28x107%

which were, however, less pronounced. The test for
mathematical artefacts proves that a uniform distribution
of r, i.e. the ratio of planetary orbital periods to the star’s
rotation period, does not produce the hypothesised quan-
tization results.

In the above statistical analysis, we did not include the
Solar System results, for which the planetary orbital periods
and the Sun’s rotation period are accurately determined.
Regardless of the uncertainties in stellar rotation periods,
the orbital ranks 7 in the Solar System are clearly quantized
over half-integer values and this provides additional sup-
port to the quantization hypothesis.

6 Discussion

6.1 Quantized Orbits Featuring in Hybrid Models

of Planet Formation
The statistically significant results confirm the hypothesis
that the specific orbital angular momenta of planets in the
Solar System and extra-solar systems tend to be discrete
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and quantized, clustering around half-integer multiples of
the specific angular momentum at the central star’s
corotation radius. This half-integer orbital quantization is
therefore directly dependent on the parent star’s rotation
rate and is not related to any universal constant, but is a
system-specific physical property. This provides a more
physical description of the Titus—Bode empirical law
found in the Solar System and possibly some extra-solar
multi-planetary systems, which can now be interpreted
using a quasi-quantum physical model with stellar
rotation as the main quantization parameter.

One possible theoretical justification for having half-
integers as the fundamental unit of quantization and not
some other fraction, such 1/3, 1/5, or even integer multi-
ples, might have to do with the similarity of the planetary
quantization with the Bohr—Sommerfeld atomic quantum
model. The planetary quantization and its dependency on
stellar rotation is consistent with a corresponding depen-
dency at the atomic scale, where the discrete angular
momenta of electron orbits are integer multiples of
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Figure 7 Distribution of orbital ranks » calculated from 50 randomly generated rotation periods (within 8% uncertainty) for each of the 443
exoplanets, indicating an obvious clustering around discrete integer or half-integer values. The probability to obtain these results by chance is

almost nil.

Planck’s reduced constant 7 and the spin angular momen-
tum is in discrete multiples of 1/27%. Regardless of the
theoretical justification, the study shows that this plane-
tary quantization, with its dependency on stellar rotation,
is better explained as a product of physical mechanisms
involved in the planet-formation process.

The diverse properties of exoplanets, i.e. orbital semi-
major axes, orbital eccentricities, masses, and inclina-
tions, are the result of a combination of events that took
place during the initial formation stage (which includes
possible migration and disc interactions), and the longer-
term dynamical evolution stage which followed after the
protoplanetary disc dissipated. It is not yet clear which of
the two stages govern the shaping of the system’s dynam-
ical properties and long-term stability. Both current
theories of planet formation, core accretion and gravita-
tion instability, have their limitations (D’Angelo et al.
2010). The core-accretion model suffers from timescales
that are too long for observed disc lifetimes and the
gravitational instability model has some difficulties
explaining the low disc temperatures needed for its
operation. A new trend of hybrid models has emerged
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where the virtues of both models complement each other.
In such hybrid models (e.g. Durisen et al. 2005), concen-
tric dense gas rings created by gravitational instabilities
enhance the growth rate of solid cores by drawing solids
towards their centres, thus accelerating core-accretion
and runaway growth (Haghighipour & Boss 2003). Durisen
et al. (2005) indicated that the dense rings appear to
be produced by resonances with discrete spiral modes,
which we suggest can be correlated with a quantum-like
structure. The hybrid gravitational instability model of
planet formation appears to be the best suited for explain-
ing the reported quantization of planetary orbits. One
reason is that the gravitational instability model has been
successfully used in the past to explain ‘discrete’ power
law distributions such as the mathematical regularity in
planetary spacing observed in the empirical Titius—Bode
law (Griv & Gedalin 2005). Another reason is that it
requires minimal orbital migration, at least initially,
because the self-gravitating disc gas flows inward, past
the protoplanets, leaving them relatively undisturbed (e.g.
Boss 2005). This implies that planets can form directly in
situ, or even by accelerated core-accretion, within the
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Figure 8 Distribution of orbital ranks # calculated from a ‘toy’ distribution of » (» being the ratio of planetary
orbital period to the star’s rotation period), showing insignificant quantization features, supporting the hypothesis
that quantization is not the result of mathematical artefacts.

quantized spatial structures. However, even when proto-
planets do migrate from their original birthplace, reso-
nance can provide traps at discrete density jumps that
enhance the accumulation of planetesimals (Masset et al.
2006) at these discrete ‘quantized’ locations.

6.2 Disc Magnetospheric Truncation and
the Lowest-ranking Orbits (at n=0.5)

Various other natural mechanisms play a role in planetary
structure and may explain the proposed quantization and
its dependence on stellar rotation. One such possible
mechanism is inner disc truncation by stellar magneto-
spheres (Lin & Papaloizou 1996). The stellar magnetic
field of a spinning star couples to the protoplanetary disc
and expels ionized gas from its innermost part, carving an
inner gap at the truncation radius in the range of 3-10
stellar radii, depending on the disc accretion rate and
magnetic field strength, which in turn is a function of the
star’s rotation rate. A migrating planet that reaches this
inner gap can remain parked there indefinitely, no longer
being dragged in by the accreting disc nor forced to
exchange angular momentum with it. Hence, the trunca-
tion radius at the disc’s inner gap serves as a physical
inferior limit for planetary orbits and acts as the planets’
last line of defence against their fall into the star. Yi
(1995) modelled magnetic braking and found that the
final size of the truncation gap was in the range of 3—10
stellar radii and that radius is highly dependent on the
stellar rotation period. Therefore, the orbital angular
momenta of migrating planets that end up at their parent
star’s truncation gap should correlate well with the star’s
rotation period.

From the half-integer quantization results of Table 3,
the inferior limit of planetary orbits in any planetary
system is at the discrete orbital rank » =0.5. In terms of
the corotation radius y and Equation (8), this inferior
limit corresponds to a semi-major axis of 0.25r,. In order
to verify the relationship between the lowest ranking
orbits and the stars’ disc truncation radii, we calculated
the semi-major axis (0.25r) of the lowest ranking orbit
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(at n=0.5) for each exoplanetary system under consider-
ation. We found that the lowest ranking orbits range from
0.02 to 0.09 AU with a peak and mean semi-major axis of
0.043 AU (=~ 8 mean stellar radii). The cumulative distri-
bution, expressed in terms of the respective parent stars’
radii, indicated that the lowest ranking orbits (n = 0.5) are
clustered in the range 3—10 stellar radii, which is consis-
tent with the predictions of protoplanetary disc models for
magnetospheric inner gap sizes (e.g. Yi 1995). Hence, it is
reasonable to suspect that the quantized lowest ranking
orbits (n=0.5) are physically described by the parent
star’s disc’s inner gap size at the magnetospheric trunca-
tion radius. This is significant, since the correlation
between the disc’s inner gap size and stellar rotation
(Yi 1995) provides further support for the dependency
of the quantized lowest ranking orbits on stellar rotation.

6.3 Tidal Dissipation and the Corotation
Orbit (m=1.0)

Another mechanism that can explain the dependency of
orbital ranks on stellar rotation is tidal dissipation. Lin &
Papaloizou (1996) suggested that as a migrating planet
approaches the central star, it will raise tidal bulges in that
star which will transfer angular momentum from the
rapidly spinning star to the more slowly spinning planet.
The tidal dissipation within the star can circularise the
planet’s orbit and synchronize its orbital period to the
star’s rotation. The resulting spin—orbit coupling can be
effective at pushing the planet outwards, keeping it at or
near the corotation radius. Indeed, observations indicate
that planets within 0.1 AU are nearly always on circular or
nearly circular orbits, while beyond 0.3 AU the distribu-
tion of eccentricities appears essentially uniform between
0 and 0.8 (Butler et al. 2006). This observed split in the
eccentricity—period distribution is evidence of orbital
circularization for short-period planets by internal tidal
dissipation (Rasio et al. 1996). The tidal locking mecha-
nism can therefore provide a natural physical justification
for exoplanets with discrete orbital ranks » =1, since by
definition these planets are located at the corotation orbit.
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Recently, Alves et al. (2010) confirmed that the angular
momentum of exoplanet parent stars follows, at least
qualitatively, Kraft’s relation. The mechanism of angular
momentum transfer must then certainly have a role in
producing this apparent quantization in the exoplanets
angular momentum distribution.

6.4 Hot Jupiters and Multi-planetary Sample Analysis

The sample of 443 exoplanets can be split into 2 samples:
75 ‘hot Jupiters’ and 368 ‘non-hot Jupiters’. We analysed
each sample separately to see whether the quantization
features would be different for systems with hot Jupiters.
In both samples, the distribution of deviations from half-
integers remains almost the same with 65 percent of
planets having an absolute |[An| < 0.1. However, we also
found that more than 60 per cent of hot Jupiters are
clustered either at the orbital rank » = 0.5 (which possibly
represents the disc magnetospheric inner radius) or at
n=1 (the corotation orbit), evidence of synchronization
and spin—orbit coupling. Out of those, we found the
majority of hot Jupiters with host-stars rotation of P <
10 days (7T.¢> 6000 K) to be synchronized at the coro-
tation orbit # = 1, while the majority of hot Jupiters with
star rotation of P, > 10 days (7.¢ < 6000 K) are orbiting
even closer at n=0.5, i.e. at the proposed disc magneto-
spheric truncation radius.

We also examined the 49 multi-planetary systems in
our samples, in which 6 systems harbor hot Jupiter
planets, and found that the multi-planetary systems hav-
ing hot Jupiters tend to have on average a lower absolute
deviation from half-integer values (mean |An|=0.086)
than multi-planetary systems that do not harbor any hot
Jupiters (mean |[An| =0.107). This implies that quantiza-
tion features may be more pronounced in multi-planetary
systems with hot Jupiters. However, the sample is still too
small to draw any solid conclusions at this stage; this will
have to await the discovery of more multi-planetary
systems with hot Jupiters.

6.5 The Role of Resonance Trapping in Forming
Discrete Planetary Orbits

Resonance mechanisms may play an important role in
explaining the quantized planetary orbits. Mean-motion
resonances, for instance, have already been used to
explain the sequence of planetary spacing in the empirical
Titius—Bode law (e.g. Patterson 1987). Additionally,
mean-motion resonances were shown to influence the
formation sites of protoplanets and were proposed as a
means to halt planetary migration (resonance trapping).
The migration of solid particles in a protoplanetary
disc causes their orbits to decay and both eccentricity
and inclination are damped with the loss of angular mo-
mentum. Under certain initial conditions, however, res-
onance between the planetesimals and an already formed
planet embryo can counteract this orbital decay and trap
the particles in a stable resonant orbit. There are strong
indications that this mechanism can also explain the
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near-commensurabilities of the Solar System outer pla-
nets (Beauge et al. 1994; Malhotra 1995), as well as the
spacing of the terrestrial planets (Laskar 1997).

Furthermore, resonance trapping was shown to be at
work in more than 20 per cent of the 19 multiple
exoplanetary systems considered by Tinney et al.
(2006). Motivated by these observations, different studies
have shown that during migration the capture of giant
planets into resonances is a natural expectation (Nelson &
Papaloizou 2002). The planets subsequently migrate
maintaining this commensurability. Resonance was also
shown to play a key role in the formation of concentric
density rings in the hybrid gravitational instability model
of planet formation (Durisen et al. 2005). These resonant
disc structures act as traps for infalling protoplanetary
seeds and migrating planets and may provide a natural
explanation for planetary orbits of higher discrete ranking
(n>1). Similarly, within the context of multiple planets
forming in a disc, migration of the innermost planet might
be stopped by either the magnetospheric gap at the
truncation radius (r=0.5) or by the star’s tidal barrier
at the corotation radius (» = 1.0). The size of these inner
orbits is highly dependent on the stellar rotation rate. Now
a second protoplanet approaching the star would stop
when entering a low-order resonance with the innermost
planet. The second planet’s orbit would then be expected
to correlate with the star’s rotation rate as well. Therefore,
the various features of resonance mechanisms may also
provide a physical justification for the observed quantiza-
tion in planetary orbits and their dependence on the star’s
rotation period. The multi-planetary system of GI876
provides evidence for this. The inner planet GI876d
occupies the orbital rank of n=0.6, which we suggest
may correspond to the disc magnetospheric truncation
radius. The remaining planets, GI1876 c, b, e, are locked in
a 1:2:4 Laplace resonance (with orbital ranks n=1.58,
2.00, 2.54 respectively).

7 Conclusion and Prospects

We have shown that the orbital structure of planetary
systems exhibits quantized features that must have
evolved from the dynamical process of planetary
formation. Our results demonstrate that planetary orbital
periods and the parent star rotation period are correlated
by discrete integer or half-integer values. Of course, the
orbital period quantization also implies a quantization of
planetary angular momenta, semi-major axes, and mean
orbital velocities as well. This was confirmed for the Solar
System and statistically verified over a list of 443
exoplanets, using both present rotation periods and those
estimated at the fiducial formation age of 650 Myr. The
statistical probability to obtain these results by pure
chance is p <0.046. Future measurements for more
accurate values of stellar rotation are needed to reduce
uncertainties and support the conclusions presented here.

The quantization in planetary orbits is a function of
stellar rotation and, consequently, is not related to any
arbitrary universal constant (as in Nottale et al. 1996) but
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is specific to each exoplanetary system. Stellar rotation
and the transfer of angular momentum play a key role in
several planetary formation processes, such as tidal dissi-
pation, disc truncation, and resonance, all of which could
play a role in the resulting quantization reported here.
Further investigation is required to understand the role of
these physical processes.

The dependency on the central star’s rotation rate
corresponds to a strikingly similar relationship between
the atomic orbital quantization (in integer multiples of the
reduced Planck’s constant 7) and the central proton’s spin
(1/2%) in Bohr’s model of the hydrogen atom. The
quantization dependency on central body rotation, from
atomic scales to large-scale gravitational systems, may be
at the heart of a more general natural law or self-organiz-
ing principle that guides the formation of all rotating
systems. Therefore, in addition to planetary systems,
future investigation into the applications of this quan-
tum-like model to other gravitational systems such as
planetary satellites and ring systems, binary stars, and
galactic centers, is intended to identify any discrete or
quantized features in their orbital structure, and to vali-
date the role and dependency of that quantization on the
central body rotation rate. In concluding, the quantization
of planetary orbits in half-integer multiples of the parent-
star rotation period is now a statistically significant fact
that should not be ignored in future models of planet
formation.
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