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Abstract: With the discovery of now more than 500 exoplanets, we present a statistical analysis of the

planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the

structural variables of planetary orbits, i.e. planetary angular momentum and orbital period, are ‘quantized’ in

integer or half-integer multiples of the parent star’s rotation period. The Solar System is first shown to exhibit

quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443

exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply

that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a

discrete half-integer relationship with orbital ranks n¼ 0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining

these results by pure chance is p, 0.024. We discuss various mechanisms that could justify this planetary

quantization, such as the hybrid gravitational instability models of planet formation, along with possible

physical mechanisms such as the inner disc’s magnetospheric truncation, tidal dissipation, and resonance

trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge from the

formation processes of planetary systems and that this orbital quantization is highly dependent on the parent

star’s rotation period.
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1 Introduction

The discovery of now more than 500 exoplanets has

provided the opportunity to study the various properties of

planetary systems and has considerably advanced our

understanding of planetary formation processes. One

long-suspected property of planetary systems has been the

quantum-like feature that resembles the mathematical

regularity of the empirical Titius–Bode (TB) law in the

Solar System. Various research papers have suggested

that such ‘quantized’ features and empirical relationships

might be possible in extra-solar multi-planetary systems,

such as Nottale (1996; 1997b), Nottale et al. (1997a;

2004), Rubcic & Rubcic (1998; 1999), Poveda & Lara

(2008), and Chang (2010), just to mention a few. In case

they truly exist, one main question that needs to be

answered is what physical processes might cause these

‘quantization’ features to develop. The gravitational

instability model of planet formation has been success-

fully used in the past to explain ‘discrete’ power law

distributions in planetary spacing (Griv & Gedalin 2005).

Similarly, hybrid models of planetary formation (e.g.

Durisen et al. 2005), are characterised by concentric dense

gas rings that are produced by resonances and discrete

spiral modes which, in theory, can be correlated with

orbital ‘quantization’ features. Also similarly, tidal dis-

sipation and angular momentum transfer, along with

mean-motion resonances and resonance trapping, play an

important role in the final orbital configuration. In all of

these mechanisms, the stellar rotation period is a critical

parameter. The main motivation in this paper is therefore

(i) to statistically search for any apparent quantum-like

features in the orbital structure of exoplanetary systems;

(ii) to determine whether the quantization parameters are

related to any specific physical system property (the

stellar rotation rate is examined in this paper); and (iii) to

shed some light on the nature of the possible physical

processes that might lead to this apparent quantization.

We will argue on dynamical terms that a quasi-quantum

model might emerge naturally from the formation pro-

cesses that determine the final configuration of a plane-

tary system.

The plan of this paper is as follows: Section 2 describes

the basic methodology and simple quantum-like model.

In Section 3, the model is applied to the Solar System.

In Section 4, the analysis is expanded over a sample of

443 exoplanets, for which we could obtain stellar

rotation periods. In Section 5, a statistical analysis of

the results is presented demonstrating that the specific

angular momenta of all planetary orbits generally follow

half-integer multiples of the specific angular momentum

at the parent star’s corotation radius. Section 6 briefly

proposes various physical mechanisms that may justify

the obtained results. Prospects and conclusions are drawn

in Section 7.
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2 Methodology

We will be testing for the quantization of planetary

angular momentum, i.e. we will test whether planetary

angular momenta have discrete values in multiples of a

‘ground-state’ system-specific parameter. Within an order

of magnitude estimate, the corotation orbit represents

an approximate inferior limit to the position of planetary

orbits. This is confirmed by various physical mechanisms

that are discussed in Section 6, such as spin-orbit coupling

and tidal dissipation, as well as disc-locking andmagnetic

braking which create a barrier and inferior limit to plan-

etary migration. On that basis, we postulate that the

corotation orbit represents the ground-state orbit of

planetary systems and assign to it the orbital rank n¼ 1.

However, this does not negate the possibility of having

physical objects orbiting inside the corotation orbit.

Nevertheless, the corotation orbit (at n¼ 1) is particularly

chosen because of its importance as a base reference to the

orbital parameters of the entire planetary system, and in

particular, their relationship to the parent star’s rotation

period.

The corotation radius r0 is defined in terms of the star’s

rotation rate Os by

r0 ¼ GM

Os
2

� �1=3

; ð1Þ

whereG is the gravitational constant andM andOs are the

mass and rotation rate of the parent star respectively.

Similarly, the mean motion orbital velocity v0 and

specific angular momentum J0 (per unit mass) at the

corotation radius are given by

v0 ¼ GM

r0

� �1=2

¼ GMOsð Þ1=3; ð2Þ

J0 ¼ v0r0 ¼ G2M2

Os

� �1=3

ð3Þ

If our planetary quantization hypothesis is valid, then the

specific angular momentum Jn of any planetary orbit n

would follow discrete and quantized multiples of the

specific angular momentum J0 at the corotation orbit

n¼ 1.

Jn ¼ nJ0 ¼ n
G2M2

Os

� �1=3

ð4Þ

In other words, the ratio of the specific orbital angular

momentum Jn of a planet in the nth planetary orbit to the

specific angular momentum J0 at the ‘ground-state’

corotation orbit ought to increase incrementally by a

discrete value.

n ¼ Jn

J0
ð5Þ

For nearly circular orbits, Newton’s force-balance equa-

tion of motion gives

rn ¼ GM

vn2
; and ð6Þ

Jn ¼ vnrn ¼ ðGMrnÞ1=2 ð7Þ

Combining equations (1), (5), and (7), we obtain an n2 law

for the quantized semi-major axis rn of the nth orbit, in

terms of the corotation radius r0, spin rotation rate Os of

the central star, and orbital rank n by

rn ¼ n2r0 ¼ n2
GM

Os
2

� �1=3
ð8Þ

From Kepler’s third law and Equation (8), the quantized

orbital period Pn of the nth planetary orbit is also given

in terms of the corotation orbital period P0 and orbital

rank n by

Pn ¼ n3P0 ¼ n3Prot; or n ¼ Pn

Prot

� �1=3

ð9Þ

Where Pn is the planet’s orbital period and P0 is the

corotation period which is by definition equal to Prot, the

star’s rotation period.

3 Solar System Application and Results

3.1 The Solar System Orbital Ranks

The quantum-like model described in Section 2 is first

applied to the planets of the Solar System in order to

discern any discrete pattern in their orbital ranks n. We

will calculate the orbital ranks n using the Sun’s rotation

period PSun taken from Allan’s Astrophysical Quantities

(Cox 1999) as 25.38 days and the solar rotation rate

OSun¼ 2.8� 10�6 rd s�1. The Sun’s corotation specific

angular momentum J0 is calculated fromEquation (3) and

will represent the base quantization parameter for all

possible planetary orbits in the Solar System. The plan-

etary orbital ranks are first calculated using the Sun’s

present rotation period (25.38 days) and presented in

Table 1. However, since the Sun’s rotation rate has

already decayed with age through angular momentum

loss, the orbital ranks are also calculated using the Sun’s

rotation rate at the early stage of planet formation. The

orbital parameters of the Solar System are assumed to

have settled into a long-term stable configuration at

around 650Myr or so. Using data on solar-type stars in the

Hyades (age ,650Myr), we selected star VB-15 which

has a B–V index similar to the Sun’s to estimate the Sun’s

rotation period of 8 days (Radick et al. 1987) at the

planets’ formation age, i.e. the time when the solar system

planets’ orbits have stabilised and the proposed quanti-

zation has ‘frozen in’. The planets’ orbital ranks n are

calculated from Equation (5) for each planetary orbit

using both the Sun’s present and earlier formation rotation
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periods (J0¼ 1.8319 and 1.2467m2 s�1 respectively).

The results are presented in Table 1.

Besides the main planets, the list includes main mass-

distribution peaks such as the asteroid belt families: Flora,

Ceres, Pallas, Cybele, and Thule, as well as centaurs,

trans-Neptunian cubewanos in the Kuiper belt, and the

recently discovered scattered disc object (SDO) 2003-

UB313, previously dubbed the ‘tenth planet’.

From Table 1, it can be observed from the orbital ranks

calculated using the Sun’s present rotation period that the

Solar System exhibits a discrete and quantized orbital

structure where the planets’ specific orbital angular mo-

menta Jn are ranked in discrete half-integer multiples of

the specific angular momentum J0 at the solar corotation

orbit (n¼ 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, etc.). The Dn devia-

tions from integer or half-integer values are included in

Table 1 and indicate that 16 out of 19 planetary orbits have

absolute deviations |Dn|, 0.07. The discrete nature of

planetary semi-major axes, mean orbital velocities, and

orbital periods, in terms of half-integer values, follows

logically from the quantized orbital angular momentum

results.

The inner planets Mercury (n¼ 1.5), Venus (n¼ 2.0),

Earth (n¼ 2.5), and Mars (n¼ 3.0) occupy the ranks

n¼ 1.48, 2.07, 2.43, and 2.99 respectively with minimal

deviations Dn from the closest integer or half-integer

values. In the main asteroid belt, the orbits of the Flora

family are ranked at n¼ 3.5, with both Flora and Ariadne

occupying n¼ 3.57. At the orbital rank n¼ 4, the main

asteroid families of Ceres and Pallas represent the group

and both occupy the rank n¼ 4.03. This orbital rank also

includes Misa, Eunomia, Lamberta, and the Chloris

families at n¼ 3.90; Ino and Adeana at n¼ 3.94; Dora

at n¼ 3.96; Elpis, Herculina, Gyptis, Juewa, Minerva,

Thisbe, Dynamene, and Eunike, all at n¼ 3.99; Eugenia

and Nemesis at n¼ 4.0; Lydia, Gefion, and Pompeja at

n¼ 4.01; and the Brasilia and Karin families at n¼ 4.09.

The orbits of the Cybele family of asteroids are ranked

at n¼ 4.5, with the main asteroid Cybele, for instance,

occupying rank n¼ 4.48, Sibylla and Hermione at n¼
4.47, Bertholda at n¼ 4.49, Camilla at n¼ 4.52, and

Sylvia at n¼ 4.53. At the next orbital rank of n¼ 5, the

main asteroid Thule occupies n¼ 5.03. At the orbital rank

of n¼ 5.5, Jupiter occupies the rank n¼ 5.54 along with

the Trojan asteroids such as Achilles at n¼ 5.48, Diome-

des at n¼ 5.49, Aeneas at n¼ 5.50, Patroclus and Nestor

at n¼ 5.51, Hektor at n¼ 5.53, and Agamemnon at

n¼ 5.54. Beyond Jupiter, the orbital ranks at n¼ 6.0,

n¼ 6.5, and n¼ 7.0 do not appear to be occupied by any

major object. However, this does not exclude various

periodic comets whose orbital properties match several

orbital ranks in the Solar System. To mention a few, the

comets 29/P Schwassmann-Wachmann-1 and 66/P

Du-Toit both occupy n¼ 5.95 and n¼ 5.94 respectively.

Ranked also with the asteroid Thule, for instance, are the

comets 36/P Whipple at n¼ 4.97, 115/P Maury at

n¼ 5.01, 32/P Coma-Sola at n¼ 5.02, 59/P Kearns-Kwee

at n¼ 5.05, 72/P Denning-Fuyikawa at n¼ 5.06, and 93/P

Lovas at n¼ 5.08. However, the unoccupied ranks

beyond Jupiter are better explained by orbital migration

and the outward expansion of the Solar System’s

boundaries.

Saturn occupies the rank n¼ 7.50 exactly, followed by

‘centaurs’ such as Chiron at n¼ 9.01, Chariklo at n¼
9.69, and Pholus at n¼ 10.97. Uranus occupies the rank

n¼ 10.65 and Neptune n¼ 13.34, with relatively higher

but nearly equal and opposite deviations from integer or

half-integer ranking,Dn¼þ0.14 and�0.16 respectively.

At the orbital rank of n¼ 15.5, Pluto occupies n¼ 15.28.

Beyond Pluto and at the orbital rank n¼ 16, some cube-

wanos, classified as trans-Neptunian objects (TNO), in

the Kuiper belt are included, such as Quaoar at n¼ 16.00

and Varuna at n¼ 15.97. The recently discovered SDO

Eris UB313 occupies the rank n¼ 17.95. This can be used

to predict the location of objects within and beyond the

SDOs. At n¼ 20, for instance, an object may be discov-

ered orbiting at 67.85AU.

We note that the deviationsDn from the closest integer

or half-integer are negligible up to Saturn and all orbital

ranks are occupied by planets or asteroid mass peaks

within that region. Beyond Saturn’s orbit, the deviations

Dn are relatively higher for Uranus, Neptune and Pluto

and several orbital ranks are vacant. One possible expla-

nation may be related to dissipation in the solar proto-

planetary disc that allows both inward and outward

planetary migrations, depending on the initial position

and the radius of maximum viscous stress located just

outside the orbit of Saturn (at around 10AU). Hence, the

orbits of protoplanets forming within that critical radius

tend to compact, while those forming outside it are

stretched outwards. This could explain the relatively

higher Dn deviations beyond Saturn’s orbit and, more

importantly, the unoccupied orbital ranks produced by the

outward expansion.

The orbital ranks n that were calculated using the Sun’s

rotation period (8 days) at the formation age of 650Myr

also exhibit a discrete and quantized structure, albeit with

higher deviations Dn from half-integer numbers. It can

therefore be inferred that the decay in solar rotation rate

has improved or at least had a minimal effect on the

quantized orbital ranks, most likely because the orbital

ranks are proportional to the cube root of the decreasing

rotation rate (Equation 5). The slowing down of the Sun’s

rotation rate has actually improved the discrete quantized

nature of the orbital structure with deviations from half-

integers approaching zero as the rotation rate decreases

asymptotically with age (Skumanich 1972), where it

reaches a limit value that has negligible further effect to

the orbital rank values. This effect is more clearly seen in

Section 4.1, where themodel is applied to 443 exoplanets.

4 Exoplanetary Application and Results

4.1 Exoplanetary Orbital Ranks at Parent Stars’

Present Rotation Periods

To date, more than 500 exoplanets with 49 multi-

planetary systems have been discovered. In order to verify
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whether the quantization of planetary angular momentum

in discrete half-integer values is a universal occurrence

and not just a coincidental property of the Solar System,

and in order to validate the dependency of this quantiza-

tion on stellar rotation, a sample of 443 exoplanets, for

which star rotation data is available, is analysed with

respect to the rotation periods of their parent stars. Out of

the 443 exoplanets, almost half (216 stars) have host

stars with rotation periods available from literature or

measured from log R0
H K. These were obtained from the

planets’ discovery papers (49 parent stars; see references

in Table 3) or from Table 1 of Watson et al. (2010) (167

parent stars) which conveniently compiles all published

rotation periods of exoplanetary host stars. We preferred

to use Table 1 of Watson et al. (2010) and not Tables 2

and 3, as Table 1 compiles published rotation periods

while Table 2 and 3 use Markov-chain Monte Carlo

simulation to estimate them. Out of the 167 rotation

periods in Watson et al. (2010), 7 stars have actual

observed rotation period and these are: Rho CrB

(17 days), Tau Boo (14 days), Epsilon Eri (11.68 days),

HD 3651 (44 days), HD 62509 (135 days), HD 70573

(3.3 days), HD 89744 (9 days). The remaining 227 stellar

rotation periods were estimated from the projected rota-

tional velocities v sin i and stellar radii, with certain levels

of uncertainty. We have used the Catalogue of Nearby

Exoplanets (Butler et al. 2006), the Catalogue of Rota-

tional Velocities (Glebocki & Gnacinski 2005), the Exo-

planet Data Explorer Table (http://exoplanets.
org/; Wright & Marcy 2010), along with some planet

discovery papers, to obtain values of v sin i (see references

in Table 3). We noted that in many cases the values of

v sin i listed in the Exoplanet Data Explorer Table were

truncated and rounded up, which is why we attempted as

much as possible to obtain more accurate values (to 2

significant digits) from the referenced papers. Moreover,

in some cases where the catalogues listed multiple values

of v sin i for a particular star, the values listed as upper

limits were generally avoided and similar values when

measured and corroborated by different sources were

selected. The absolute stellar radiiweremainly taken from

the referenced planet discovery papers, the Fundamental

Parameters of Stars Catalogue (Allende, Prieto & Lam-

bert 1999), the Catalogue of Stellar Diameters (Pasinetti

Fracassini et al. 2001), or the Effective Temperatures and

Radii of Stars Catalogue (Masana et al. 2006).

4.2 Uncertainty Considerations

Most of the v sin i valueswe found are under 4 km s�1. The

inherent measurement uncertainty in these v sin i values is

at best around 0.5 km s�1 and at worst 1 to 2 km s�1. As for

stellar radii, although they can be determined to a preci-

sion on the order of 5 percent for the small minority of

planets that transit their parent stars, the radius estimates

for the remainder are unlikely to be established to a

precision better than 10 percent. Moreover, the orbital

angular momenta of exoplanets depend on stellar mass

values which are mostly derived from isochrone fits and

have an inherent uncertainty on the order of 10 percent.

Therefore, the extra-solar orbital ranks, if calculated from

the planetary angular momenta in Equation (5), would be

uncertain by at least 30 percent (since Ms and Rs are

correlated on the main sequence) even before the uncer-

tainties in the measured v sin i (a further 30 percent) and

the effects of unknown orbital inclination are taken into

account.

Table 2. Rotation periods of Hyades stars used to match the B]V colour of exoplanetary stars

VB

No.

B–V Represents

B–V range

Prot

(days)

Ref. VB

No.

B–V Represents

B–V range

Prot

(days)

Ref.

VB 94 0.396 Less than 0.430 1.67 (2) VB 17 0.706 0.690 to 0.710 7.25 (2)

VB 78 0.451 0.431 to 0.460 2.90 (1) VB 27 0.721 0.711 to 0.730 7.15 (2)

VB 81 0.470 0.460 to 0.480 2.80 (1) VB 92 0.736 0.731 to 0.740 9.13 (6)

VB 121 0.500 0.480 to 0.510 3.70 (7) VB 26 0.745 0.741 to 0.760 9.06 (5)

VB 48 0.518 0.511 to 0.520 2.50 (1) VB 22 0.770 0.761 to 0.780 5.61 (7)

VB 65 0.535 0.521 to 0.530 5.87 (5) VB 3 0.786 0.781 to 0.799 12.04 (2)

VB 59 0.543 0.531 to 0.545 5.13 (5) VB 21 0.816 0.800 to 0.819 5.49 (3)

VB 29 0.548 0.546 to 0.559 3.00 (1) VB 79 0.831 0.820 to 0.839 9.71 (6)

VB 119 0.563 0.560 to 0.569 4.00 (7) VB 153 0.855 0.840 to 0.869 9.18 (4)

VB 31 0.572 0.570 to 0.579 4.72 (3) VB 138 0.871 0.870 to 0.879 19.19 (2)

VB 52 0.592 0.580 to 0.599 5.64 (3) VB 43 0.907 0.880 to 0.920 10.26 (5)

VB 50 0.604 0.600 to 0.609 5.10 (1) VB 91 0.936 0.921 to 0.970 9.36 (5)

VB 73 0.609 0.610 to 0.620 7.38 (6) VB 25 0.984 0.971 to 1.010 12.64 (5)

VB 97 0.624 0.621 to 0.629 6.45 (3) VB 175 1.031 1.011 to 1.080 10.82 (5)

VB 18 0.640 0.630 to 0.649 8.65 (4) VB 181 1.167 1.081 to 1.199 11.92 (5)

VB 63 0.651 0.650 to 0.653 7.73 (5) VB 173 1.237 1.200 to 1.300 14.14 (5)

VB 15 0.657 0.654 to 0.660 7.43 (3) VB 190 1.357 1.301 to 1.499 3.66 (5)

VB 64 0.664 0.661 to 0.670 8.64 (6) H218 M3 M4 1.511 to 1.600 0.68 (8)

VB 58 0.680 0.671 to 0.689 6.20 (1)

References

(1) Duncan et al. 1984, (2) Glebocki & Gnacinski 2005, (3) Paulsen et al. 2003, (4) Paulsen et al. 2004, (5) Radick et al. 1987, (6) Radick et al. 1995,

(7) Rutten 1987, (8) Scholz & Eisloffel 2007
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Fortunately the dependence on stellar mass in Equa-

tion (5) can be eliminated. Equation (9) is the key, as it

uses the orbital period of the planet and rotation period of

the star directly. By using Equation (9) to calculate the

orbital ranks, the use of the planet’s semi-major axis is

avoided, as it requires knowledge of the uncertain stellar

mass. Since the orbital period is one of the few planetary

parameters that is measured directly and with high preci-

sion, this is the best quantity to use. The same is true for

almost half of the exoplanet sample having directly

measured stellar rotation periods. The remaining rotation

periods were derived frommeasurements of v sin i, which

are typically uncertain by 20 to 30 percent, and estimates

of stellar radii are also uncertain by roughly 10 percent.

This may not be disastrous, since the ratio of the two

values is raised to the one-third power. Therefore, the

final estimates for the orbital ranks n are expected to be

uncertain by 5 to 10 percent. Moreover, the uncertainty

due the unknown inclination of the stellar rotation axis

takes the form of (sin i)�1/3. For inclination angles ranging

from 458 to 908, this factor is very close to unity, and

therefore has an insignificant effect on the calculated

orbital ranks n. For inclinations between 308 and 458,
the (sin i)�1/3 factor can affect the n values by as much as

10 to 20 per cent. However, since the most likely inclina-

tion of a random stellar sample is 578 (Trilling et al. 2002)
and because the radial velocity technique is biased to-

wards detecting planetary systems with inclinations near

908, the average value of is expected to range betweenp/4
and unity. With the number of exoplanets under consid-

eration, the average value of sin i for the population

approaches the value for a random distribution. Hence,

the most likely effect of the inclination factor on the

calculated orbital ranks should again not exceed 7 to 10

per cent on average. A Monte Carlo treatment is used in

Section 5 to study the effect of these uncertainties.

In the first approach, the extra-solar orbital ranks n and

their related deviations from half-integer values Dn are

calculated using the ratio of the planet’s orbital period to

that of the parent star’s current rotation period, as in

Equation (9), and presented in Table 3.

4.3 Exoplanetary Orbital Ranks at the Planetary

Formation Epoch (,650Myr)

In the second approach, we address the concern that the

half-integer orbital ranks are calculated using the rotation

period for the present age of the star, and not at the epoch

when planetary systems were formed, when it is known

that solar-type stars observed in young star clusters do not

rotate at constant rates throughout their lifetimes. We

therefore need to study whether any quantization feature

exist at the formation age when it is supposedly ‘frozen in’.

The rotation rates of stars with outer convection zones

generally decay with age, approximately as the inverse

square root of time (Skumanich 1972), through angular

momentum loss via hot magnetically channeled winds.

However, at around 600Myr or so, planetary systems

eventually settle into long-term stable configurations and

their orbital periods are constant while the stellar rotation

periods continue to increase. However, Soderblom et al.

(2001) indicate that the rotation of solar-type stars, in

evolving from the Pleiades (100Myr) to the Hyades

(650Myr), changes onlymodestly in the mean, but under-

goes a huge convergence in the spread of rotation rates.

Thus, at any onemass in the Pleiades (100Myr), the range

of rotation rates varies by an order of magnitude or more,

yet in the Hyades (650Myr), stars of the same mass have

nearly identical rotation rates. The convergence occurs

for upper bound rotation rates, as the lower bounds of both

clusters are nearly identical (Soderblom et al. 2001).

Since most of our sample of exoplanetary stars have

rotation periods near the lower bounds, we can assume

that these have remained essentially unchanged over

the period 100–650Myr (Soderblom et al. 2001), i.e.

during the period of planetary formation. With this mini-

mal decay in rotation periods, it is therefore logical to

expect a quantized distribution of orbital ranks around

half-integer values at the early formation age period.

Nevertheless, rather than using only the present rota-

tion periods of these stars, we additionally adopt a stellar

rotation period at the fiducial planet-formation age

(650Myr), that can be derived from the star’s B–V colour

and the known rotation periods of stars of the same colour

in the Hyades (aged 650Myr). This procedure has the

advantage that it can be based on direct measurements of

stellar rotation periods in stellar clusters of known age,

near the epoch when the proposed planetary quantization

would have been established. This bypasses the difficul-

ties arising from the uncertainties in v sin i, inclination,

stellar radius, and stellar age.

Table 2 presents the Hyades stars, their B–V color, and

directly measured rotation periods which were used in

matching the 443 exoplanetary star sample. The Hyades

stars’ B–V colour range from 0.41 to 1.53. However, we

could not find any measured rotation periods for Hyades

stars in the B–V ranges from 0.30 to 0.40, 0.69 to 0.73,

0.78 to 0.80, and 0.87 to 0.88. Instead, five Hyades stars

(HD 28911, HD 26756, HD 27282, HD 21663, and HD

26397) with rotation periods derived from v sin i and

stellar radii were selected to supplement for the missing

B–V ranges. Additionally, one Praesepe star H218

(of similar age ,650Myr), having a directly measured

rotational period, was selected to cover for the few

exoplanetary stars of similar spectral type, M2 to M4

(Scholz & Eisloffel 2007). A Monte Carlo treatment is

presented in Section 5 to address the inherent uncertainty

in these rotation periods.

The B–V colour values for the exoplanetary stars were

obtained primarily from the All-sky Compiled Catalogue

of 2.5 Million Stars (Kharchenko 2001), the NOMAD

Catalog (Zacharias et al. 2005), and the Hipparcos &

Tycho Catalogue (ESA 1997) and were matched with the

corresponding value from the Hyades stars to obtain an

estimate of their early rotation periods at the age of

650Myr. These rotation periods were then used to
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calculate the orbital ranks n near the planet-formation

epoch when the proposed quantization would have been

established.

In Table 3, the orbital rank for each exoplanet is

calculated using both the present stellar rotation period

and the fiducial star rotation period at formation age

(650Myr) and the following is presented:

(1) The exoplanetary orbital periods, obtained from the

updated online database of the Exoplanets Encyclo-

pedia website (Schneider1);

(2) The present orbital ranks n and deviations from half-

integerDn, calculated from the current stellar rotation

periods at present, either directly measured Prot or

derived from v sin i and the stellar radii (see v sin i and

Prot references);

(3) The fiducial orbital ranks n at formation age

(650Myr) and deviations from half-integer Dn,
calculated from directly measured rotation periods

at the fiducial age of 650Myr from Hyades stars

having B–V values that match those of the exoplane-

tary stars (Table 2 above).

5 Statistical Analysis of Quantization Results

5.1 Statistical Rest for Dn Deviations

from Half-integer Values

From Section 4.1, the distribution of the orbital ranks n for

the 443 exoplanets (in bins of 0.1 increment) that were

calculated for the present stellar rotation periods is pre-

sented in Fig. 1, along with the distribution of deviations

Dn from half-integers in Fig. 2. It can be observed that the

orbital ranks n indeed tend to cluster around integer or

half-integer values, similar to the Solar System results.

Around 288 exoplanets (65 percent) have absolute

deviations of |Dn|, 0.1. If there is no correlation between

the stellar rotation periods and the planetary orbital per-

iods, the deviations from half-integer Dn would follow a

uniform distribution as opposed to the distribution

observed in Fig. 2. To test that the results were not

obtained by chance, we therefore need to reject the null

hypothesis corresponding to a uniform distribution of

deviationsDn in the interval [�0.25, 0.25].AKolmogorov–

Smirnov one-sample test between the observed cumula-

tive Dn distribution and that of a uniform distribution

yields a maximum difference statistic D¼ 0.54 and a

probability p, 0.046 to have been obtained by chance.

Using a x2 test with 20 bins, we obtain x2¼ 32.89 and the

probability for Dn to be drawn from a uniform distribu-

tion, i.e. the probability for the results to be obtained by

chance is p, 0.024

5.2 Monte Carlo Simulation for Uncertainty

in Present v sin i and Rotation Periods

To address the uncertainty in rotation periods derived

from stellar radii and v sin i, we have used a Monte Carlo

treatment and calculated the orbital ranks from 25

randomly generated rotation periods ranging within

�20 per cent of the estimated rotation period for each of

the 443 exoplanetary stars and resulting in a total of

11,075 simulated orbital ranks. The Monte Carlo distri-

bution of orbital ranks is presented in Fig. 3 and their

deviation from half-integer Dn is presented in Fig. 4. We

note a clustering of orbital ranks around half-integers for

n¼ 0.5, 1.0, and 1.5, representing around 50 percent of

all exoplanets, while the distribution of orbital ranks

beyond n. 2.0 starts to resemble a uniform distribution.

This is expected since the uncertainty in rotation periods,

discussed in Section 4.1, was expected to result in a

10 percent uncertainty in orbital ranks n, which in turn

exceeds the critical absolute deviation |Dn|¼ 0.25 for

orbital ranks higher than n. 2.0. Nonetheless, a

Kolmogorov–Smirnov one-sample test between the

observed cumulativeDn distribution and that of a uniform
distribution yields a maximum difference statistic

D¼ 0.54 and a probability p, 0.046 to have been

obtained by chance.

5.3 Statistical Test for Dn Distribution Using

Estimated Rotation Periods at Formation Age

Using the alternative approach of Section 4.2, the distri-

bution of orbital ranks calculated from the stellar rotation

periods at the formation epoch, which were derived from

the B–V colour of Hyades stars at the fiducial age of

650Myr, is presented in Fig. 5 and the distribution of

deviations from half-integer values is presented in Fig. 6.

Clustering around half-integers is again apparent. If the

results were obtained by chance, the deviations from half-

integerDnwould follow a uniform distribution. However,

out of the 443 exoplanets in the sample, 252 planets (57%)

have |Dn|, 0.1. The mean absolute deviation from inte-

ger or half-integer values is |Dn|¼ 0.09 with a standard

deviation of 0.05. The average deviations taken as a

percentage of the orbital ranks, Dn/n, is 5 per cent. A

Kolmogorov–Smirnov one-sample test between the

observed cumulativeDn distribution and that of a uniform
distribution yields a maximum difference statistic

D¼ 0.54. For the 443 data points, this result has a prob-

ability p, 0.046 to be obtained by chance. Using a x2 test
with 11 degrees of freedom (bins), we obtain x2¼ 57.4

and the probability for Dn to be drawn from a uniform

distribution, i.e. the probability for the results to be

obtained by chance, is p, 2.8� 10�8.

5.4 Monte Carlo Simulation for Uncertainty

in Estimated Rotation Periods at Formation Age

According to Radick et al. (1995), the measured rotation

periods for Hyades stars vary between 2 to 8 per cent and

have an accuracy of� 0.1 day. We have taken the worst

case and considered 8 per cent uncertainty in all measured

rotation periods, which translates to around� 1 day for

the majority of the stellar rotation periods. To address this

inherent uncertainty, we apply a Monte Carlo treatment

1
The Extrasolar Planets Encyclopedia: Interactive Extrasolar Planets

catalog. http://exoplanet.eu/catalog.php
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and calculate the orbital ranks n, using 50 randomly

generated rotation periods (within �8 per cent of the

measured rotation periods) for each of the 443 exopla-

netary stars, resulting in a total of 11,075 orbital ranks.

The Monte Carlo distribution of orbital ranks and their

deviation from half-integer Dn is presented in Fig. 4.

Again, a clustering around half-integers is obvious, all the

way up to orbital ranks n, 6, representing around 90% of

all exoplanets. A Kolmogorov–Smirnov one-sample test

yields a maximum difference statistic D¼ 0.52 between

the observed cumulative distribution and that of a uniform

distribution. For the 11,075 data points, this result has a

probability p, 0.0035 to be obtained by chance. Using a

x2 test with 20 degrees of freedom (bins), we obtain

x2¼ 1,835 and the probability for the results to be

obtained by chance is nil.

5.5 Test for Mathematical Artefacts

In order to investigate the origin of the apparent quanti-

zation in Figs. 1 to 7, we shuffled the stellar and planetary

angular velocities, to give randomised matches between

the properties of the stars and the properties of the planets,

to see whether the quantization persists. As a result, the

Dn deviations gave a uniform distribution in the interval

[�0.25, 0.25], and the quantized distribution disappeared,

which again supports the hypothesis that quantization did

not occur by chance.

It is important to note that while the obtained quanti-

zation results are valid for stellar rotation periods both at

present and at the formation age, it is observed that the

tendency to cluster around half-integers seems to improve

and become more pronounced as stellar rotation Prot

increases and rotation slows down. The mean absolute

|Dn| deviation from half-integer values is 0.1 for rotation

periods derived at the present age and is also the same

value for those derived at the formation age. However, the

standard deviation for |Dn| derived from present rotation

periods is 0.068 and is improved compared to the standard

deviation of 0.075 for |Dn| derived from estimated rota-

tion periods at formation age. Additionally, the |Dn|
distribution’s peak at formation age is more flat (with a

positive kurtosis k¼ 0.97) and becomes much sharper

(with a negative kurtosis k520.71) as rotation slows

down to the present values, i.e. the quantization features

improve.

The distribution of the ratio r of the planetary orbital

period to the stellar rotation period is not uniform, but
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Figure 2 Distribution of Dn deviations from the nearest half-integer for the 443 exoplanets, indicating that
65% of deviations are within�0.1 of the nearest half-integer. The probability to obtain these results by chance
is p, 0.024.
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Figure 1 Distribution of present orbital ranks n for the 443 exoplanets indicating an obvious clustering
around discrete half-integer values, with peaks at n¼ 0.5, 1.0, 1.5, 2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 6.5.
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decreases with increasing r due to the bias in detecting

exoplanets with short orbital periods. In order to test

whether the above quantization result is fundamental in

nature or whether it is simply the result of this selection

effect, the following test was proposed. A continuous ‘toy’

distribution of r is usedwhich has the gross properties of the

actual distribution, that is, it reflects the observational

biases rather than real biases. A histogram for the distribu-

tion of orbital ranks n is then generated using the same

method as in Section 4, i.e. using the cubic root relationship

of Equation (9). We then searched to see whether any

quantization features persisted, which would support the

hypothesis that they are not fundamental in nature, but

effectively a mathematical artefact. However, as shown in

Fig. 8, the quantization features almost disappeared and no

major clustering around half-integer was observed except

for a peak at 0.6, which was expected due to the large

number of short-period planets observed. The distribution

around the peak at n¼ 0.6 is gradual, uniform, and not as

sharp as the distribution around n¼ 0.5 in Fig. 1 and Fig. 3.

Moreover, the original peaks in Fig. 1 and Fig. 5 at n¼ 1.0,

1.5, 2.0, 3.0, and 3.5 have almost disappeared in Fig. 8. This

implies that the hypothesised quantization is not the result

ofmathematical artefacts andmust have some fundamental

physical basis.

5.6 Statistical Analysis Summary

In summary, if the planetary orbital periods are not

quantized with respect to the stellar rotation period, the

orbital ranks n and their deviation Dn from half-integer

values would have exhibited a uniform distribution.

However, the peaks in orbital ranks n at half-integer and

the observed distribution in Dn, indicates that this is not
the case and that the probability to obtain such a distri-

bution by chance is p, 0.024. This was done for orbital

ranks derived both from present rotation periods and from

those estimated at the formation age (,650Myr).

The uncertainties in v sin i and rotation periods were

dealt with using a Monte Carlo treatment by generating

random rotation periods within a range of 20 per cent of

the estimated rotation periods. The derived distribution of

orbital ranks continued to show some quantization peaks,
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rotation periods (within 20% uncertainty) for each of the 443 exoplanetary parent stars. The probability to obtain
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which were, however, less pronounced. The test for

mathematical artefacts proves that a uniform distribution

of r, i.e. the ratio of planetary orbital periods to the star’s

rotation period, does not produce the hypothesised quan-

tization results.

In the above statistical analysis, we did not include the

Solar System results, forwhich the planetary orbital periods

and the Sun’s rotation period are accurately determined.

Regardless of the uncertainties in stellar rotation periods,

the orbital ranks n in the Solar System are clearly quantized

over half-integer values and this provides additional sup-

port to the quantization hypothesis.

6 Discussion

6.1 Quantized Orbits Featuring in Hybrid Models

of Planet Formation

The statistically significant results confirm the hypothesis

that the specific orbital angular momenta of planets in the

Solar System and extra-solar systems tend to be discrete

and quantized, clustering around half-integer multiples of

the specific angular momentum at the central star’s

corotation radius. This half-integer orbital quantization is

therefore directly dependent on the parent star’s rotation

rate and is not related to any universal constant, but is a

system-specific physical property. This provides a more

physical description of the Titus–Bode empirical law

found in the Solar System and possibly some extra-solar

multi-planetary systems, which can now be interpreted

using a quasi-quantum physical model with stellar

rotation as the main quantization parameter.

One possible theoretical justification for having half-

integers as the fundamental unit of quantization and not

some other fraction, such 1/3, 1/5, or even integer multi-

ples, might have to do with the similarity of the planetary

quantization with the Bohr–Sommerfeld atomic quantum

model. The planetary quantization and its dependency on

stellar rotation is consistent with a corresponding depen-

dency at the atomic scale, where the discrete angular

momenta of electron orbits are integer multiples of
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Figure 6 Distribution ofDn deviations from the nearest half-integer for the 443 exoplanets, calculated using
the matching Hyades stars at formation age of 650Myr. The probability to obtain these results by chance is
p, 2.8� 10�8.
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Hyades stars at the fiducial age of 650Myr, again indicating an obvious clustering around discrete integer or half-
integer values.
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Planck’s reduced constant �h and the spin angular momen-

tum is in discrete multiples of 1/2�h. Regardless of the

theoretical justification, the study shows that this plane-

tary quantization, with its dependency on stellar rotation,

is better explained as a product of physical mechanisms

involved in the planet-formation process.

The diverse properties of exoplanets, i.e. orbital semi-

major axes, orbital eccentricities, masses, and inclina-

tions, are the result of a combination of events that took

place during the initial formation stage (which includes

possible migration and disc interactions), and the longer-

term dynamical evolution stage which followed after the

protoplanetary disc dissipated. It is not yet clear which of

the two stages govern the shaping of the system’s dynam-

ical properties and long-term stability. Both current

theories of planet formation, core accretion and gravita-

tion instability, have their limitations (D’Angelo et al.

2010). The core-accretion model suffers from timescales

that are too long for observed disc lifetimes and the

gravitational instability model has some difficulties

explaining the low disc temperatures needed for its

operation. A new trend of hybrid models has emerged

where the virtues of both models complement each other.

In such hybrid models (e.g. Durisen et al. 2005), concen-

tric dense gas rings created by gravitational instabilities

enhance the growth rate of solid cores by drawing solids

towards their centres, thus accelerating core-accretion

and runawaygrowth (Haghighipour&Boss 2003). Durisen

et al. (2005) indicated that the dense rings appear to

be produced by resonances with discrete spiral modes,

which we suggest can be correlated with a quantum-like

structure. The hybrid gravitational instability model of

planet formation appears to be the best suited for explain-

ing the reported quantization of planetary orbits. One

reason is that the gravitational instability model has been

successfully used in the past to explain ‘discrete’ power

law distributions such as the mathematical regularity in

planetary spacing observed in the empirical Titius–Bode

law (Griv & Gedalin 2005). Another reason is that it

requires minimal orbital migration, at least initially,

because the self-gravitating disc gas flows inward, past

the protoplanets, leaving them relatively undisturbed (e.g.

Boss 2005). This implies that planets can form directly in

situ, or even by accelerated core-accretion, within the
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Figure 7 Distribution of orbital ranks n calculated from 50 randomly generated rotation periods (within 8% uncertainty) for each of the 443
exoplanets, indicating an obvious clustering around discrete integer or half-integer values. The probability to obtain these results by chance is
almost nil.
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quantized spatial structures. However, even when proto-

planets do migrate from their original birthplace, reso-

nance can provide traps at discrete density jumps that

enhance the accumulation of planetesimals (Masset et al.

2006) at these discrete ‘quantized’ locations.

6.2 Disc Magnetospheric Truncation and

the Lowest-ranking Orbits (at n¼ 0.5)

Various other natural mechanisms play a role in planetary

structure and may explain the proposed quantization and

its dependence on stellar rotation. One such possible

mechanism is inner disc truncation by stellar magneto-

spheres (Lin & Papaloizou 1996). The stellar magnetic

field of a spinning star couples to the protoplanetary disc

and expels ionized gas from its innermost part, carving an

inner gap at the truncation radius in the range of 3–10

stellar radii, depending on the disc accretion rate and

magnetic field strength, which in turn is a function of the

star’s rotation rate. A migrating planet that reaches this

inner gap can remain parked there indefinitely, no longer

being dragged in by the accreting disc nor forced to

exchange angular momentum with it. Hence, the trunca-

tion radius at the disc’s inner gap serves as a physical

inferior limit for planetary orbits and acts as the planets’

last line of defence against their fall into the star. Yi

(1995) modelled magnetic braking and found that the

final size of the truncation gap was in the range of 3–10

stellar radii and that radius is highly dependent on the

stellar rotation period. Therefore, the orbital angular

momenta of migrating planets that end up at their parent

star’s truncation gap should correlate well with the star’s

rotation period.

From the half-integer quantization results of Table 3,

the inferior limit of planetary orbits in any planetary

system is at the discrete orbital rank n¼ 0.5. In terms of

the corotation radius r0 and Equation (8), this inferior

limit corresponds to a semi-major axis of 0.25r0. In order

to verify the relationship between the lowest ranking

orbits and the stars’ disc truncation radii, we calculated

the semi-major axis (0.25r0) of the lowest ranking orbit

(at n¼ 0.5) for each exoplanetary system under consider-

ation. We found that the lowest ranking orbits range from

0.02 to 0.09AU with a peak and mean semi-major axis of

0.043AU (E8 mean stellar radii). The cumulative distri-

bution, expressed in terms of the respective parent stars’

radii, indicated that the lowest ranking orbits (n¼ 0.5) are

clustered in the range 3–10 stellar radii, which is consis-

tent with the predictions of protoplanetary disc models for

magnetospheric inner gap sizes (e.g. Yi 1995). Hence, it is

reasonable to suspect that the quantized lowest ranking

orbits (n¼ 0.5) are physically described by the parent

star’s disc’s inner gap size at the magnetospheric trunca-

tion radius. This is significant, since the correlation

between the disc’s inner gap size and stellar rotation

(Yi 1995) provides further support for the dependency

of the quantized lowest ranking orbits on stellar rotation.

6.3 Tidal Dissipation and the Corotation

Orbit (n¼ 1.0)

Another mechanism that can explain the dependency of

orbital ranks on stellar rotation is tidal dissipation. Lin &

Papaloizou (1996) suggested that as a migrating planet

approaches the central star, it will raise tidal bulges in that

star which will transfer angular momentum from the

rapidly spinning star to the more slowly spinning planet.

The tidal dissipation within the star can circularise the

planet’s orbit and synchronize its orbital period to the

star’s rotation. The resulting spin–orbit coupling can be

effective at pushing the planet outwards, keeping it at or

near the corotation radius. Indeed, observations indicate

that planets within 0.1 AU are nearly always on circular or

nearly circular orbits, while beyond 0.3AU the distribu-

tion of eccentricities appears essentially uniform between

0 and 0.8 (Butler et al. 2006). This observed split in the

eccentricity–period distribution is evidence of orbital

circularization for short-period planets by internal tidal

dissipation (Rasio et al. 1996). The tidal locking mecha-

nism can therefore provide a natural physical justification

for exoplanets with discrete orbital ranks n¼ 1, since by

definition these planets are located at the corotation orbit.
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Figure 8 Distribution of orbital ranks n calculated from a ‘toy’ distribution of r (r being the ratio of planetary
orbital period to the star’s rotation period), showing insignificant quantization features, supporting the hypothesis
that quantization is not the result of mathematical artefacts.
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Recently, Alves et al. (2010) confirmed that the angular

momentum of exoplanet parent stars follows, at least

qualitatively, Kraft’s relation. The mechanism of angular

momentum transfer must then certainly have a role in

producing this apparent quantization in the exoplanets

angular momentum distribution.

6.4 Hot Jupiters and Multi-planetary Sample Analysis

The sample of 443 exoplanets can be split into 2 samples:

75 ‘hot Jupiters’ and 368 ‘non-hot Jupiters’. We analysed

each sample separately to see whether the quantization

features would be different for systems with hot Jupiters.

In both samples, the distribution of deviations from half-

integers remains almost the same with 65 percent of

planets having an absolute |Dn|, 0.1. However, we also

found that more than 60 per cent of hot Jupiters are

clustered either at the orbital rank n¼ 0.5 (which possibly

represents the disc magnetospheric inner radius) or at

n¼ 1 (the corotation orbit), evidence of synchronization

and spin–orbit coupling. Out of those, we found the

majority of hot Jupiters with host-stars rotation of Prot,
10 days (Teff. 6000 K) to be synchronized at the coro-

tation orbit n¼ 1, while the majority of hot Jupiters with

star rotation of Prot. 10 days (Teff, 6000K) are orbiting

even closer at n¼ 0.5, i.e. at the proposed disc magneto-

spheric truncation radius.

We also examined the 49 multi-planetary systems in

our samples, in which 6 systems harbor hot Jupiter

planets, and found that the multi-planetary systems hav-

ing hot Jupiters tend to have on average a lower absolute

deviation from half-integer values (mean |Dn|¼ 0.086)

than multi-planetary systems that do not harbor any hot

Jupiters (mean |Dn|¼ 0.107). This implies that quantiza-

tion features may be more pronounced in multi-planetary

systems with hot Jupiters. However, the sample is still too

small to draw any solid conclusions at this stage; this will

have to await the discovery of more multi-planetary

systems with hot Jupiters.

6.5 The Role of Resonance Trapping in Forming

Discrete Planetary Orbits

Resonance mechanisms may play an important role in

explaining the quantized planetary orbits. Mean-motion

resonances, for instance, have already been used to

explain the sequence of planetary spacing in the empirical

Titius–Bode law (e.g. Patterson 1987). Additionally,

mean-motion resonances were shown to influence the

formation sites of protoplanets and were proposed as a

means to halt planetary migration (resonance trapping).

The migration of solid particles in a protoplanetary

disc causes their orbits to decay and both eccentricity

and inclination are damped with the loss of angular mo-

mentum. Under certain initial conditions, however, res-

onance between the planetesimals and an already formed

planet embryo can counteract this orbital decay and trap

the particles in a stable resonant orbit. There are strong

indications that this mechanism can also explain the

near-commensurabilities of the Solar System outer pla-

nets (Beauge et al. 1994; Malhotra 1995), as well as the

spacing of the terrestrial planets (Laskar 1997).

Furthermore, resonance trapping was shown to be at

work in more than 20 per cent of the 19 multiple

exoplanetary systems considered by Tinney et al.

(2006). Motivated by these observations, different studies

have shown that during migration the capture of giant

planets into resonances is a natural expectation (Nelson &

Papaloizou 2002). The planets subsequently migrate

maintaining this commensurability. Resonance was also

shown to play a key role in the formation of concentric

density rings in the hybrid gravitational instability model

of planet formation (Durisen et al. 2005). These resonant

disc structures act as traps for infalling protoplanetary

seeds and migrating planets and may provide a natural

explanation for planetary orbits of higher discrete ranking

(n. 1). Similarly, within the context of multiple planets

forming in a disc, migration of the innermost planet might

be stopped by either the magnetospheric gap at the

truncation radius (n¼ 0.5) or by the star’s tidal barrier

at the corotation radius (n¼ 1.0). The size of these inner

orbits is highly dependent on the stellar rotation rate. Now

a second protoplanet approaching the star would stop

when entering a low-order resonance with the innermost

planet. The second planet’s orbit would then be expected

to correlate with the star’s rotation rate as well. Therefore,

the various features of resonance mechanisms may also

provide a physical justification for the observed quantiza-

tion in planetary orbits and their dependence on the star’s

rotation period. The multi-planetary system of Gl876

provides evidence for this. The inner planet Gl876d

occupies the orbital rank of n¼ 0.6, which we suggest

may correspond to the disc magnetospheric truncation

radius. The remaining planets, Gl876 c, b, e, are locked in

a 1:2:4 Laplace resonance (with orbital ranks n¼ 1.58,

2.00, 2.54 respectively).

7 Conclusion and Prospects

We have shown that the orbital structure of planetary

systems exhibits quantized features that must have

evolved from the dynamical process of planetary

formation. Our results demonstrate that planetary orbital

periods and the parent star rotation period are correlated

by discrete integer or half-integer values. Of course, the

orbital period quantization also implies a quantization of

planetary angular momenta, semi-major axes, and mean

orbital velocities as well. This was confirmed for the Solar

System and statistically verified over a list of 443

exoplanets, using both present rotation periods and those

estimated at the fiducial formation age of 650Myr. The

statistical probability to obtain these results by pure

chance is p, 0.046. Future measurements for more

accurate values of stellar rotation are needed to reduce

uncertainties and support the conclusions presented here.

The quantization in planetary orbits is a function of

stellar rotation and, consequently, is not related to any

arbitrary universal constant (as in Nottale et al. 1996) but
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is specific to each exoplanetary system. Stellar rotation

and the transfer of angular momentum play a key role in

several planetary formation processes, such as tidal dissi-

pation, disc truncation, and resonance, all of which could

play a role in the resulting quantization reported here.

Further investigation is required to understand the role of

these physical processes.

The dependency on the central star’s rotation rate

corresponds to a strikingly similar relationship between

the atomic orbital quantization (in integer multiples of the

reduced Planck’s constant �h) and the central proton’s spin
(1/2�h) in Bohr’s model of the hydrogen atom. The

quantization dependency on central body rotation, from

atomic scales to large-scale gravitational systems, may be

at the heart of a more general natural law or self-organiz-

ing principle that guides the formation of all rotating

systems. Therefore, in addition to planetary systems,

future investigation into the applications of this quan-

tum-like model to other gravitational systems such as

planetary satellites and ring systems, binary stars, and

galactic centers, is intended to identify any discrete or

quantized features in their orbital structure, and to vali-

date the role and dependency of that quantization on the

central body rotation rate. In concluding, the quantization

of planetary orbits in half-integer multiples of the parent-

star rotation period is now a statistically significant fact

that should not be ignored in future models of planet

formation.
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Hébrard, G. et al., 2010a, A&A, 512, A46
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