ON ASYMPTOTIC BEHAVIOURS OF TRIGONOMETRIC
SERIES WITH 3-QUASI-MONOTONE COEFFICIENTS

by MING-CHIT LIU
(Received 30th September 1968)

1, Let

a, cos kx,
1

fx) = .

g '[V8

g(x)= Y asin kx.
k=1

The asymptotic behaviours of f(x) and g(x), as x— +0, were first given by
G. H. Hardy in (4), (5). In his papers {a,} is a monotone decreasing sequence.
Further results on the asymptotic behaviours of f(x) and g(x), as x—+0, for
monotone coefficients have been given in (9) and (1). Recently, the results have
been generalized to quasi-monotone coefficients.

This paper is concerned with asymptotic behaviours of f(x) and g(x) for
d-quasi-monotone coefficients.

In what follows, we shall denote by L(x) a slowly varying function in the
sense of Karamata (6), i.e.,

(a) L(x) is positive and continuous for all x>0;

(b) L(tx)/L(x)—1, as x— o0 with every fixed ¢>0.
A sequence {a,} is called -quasi-monotonic (3), if

(a) a,>0 ultimately;

) a,-0, as n—w0;

(¢) Aa, = a,—a,,, = —3, for some positive sequence {J,}.
A sequence {a,} of positive numbers is called quasi-monotonic if

A, —ay4, = Aa, = —on"'a,

for some a>0. We see that a quasi-monotonic sequence with a,—0 is a §-quasi-
monotonic sequence when J, = an™'a,.

By ““ A(x) =~ B(x), as x—»a” we mean that 4(x) = B(x){1+0(1)}, as x—a.
We shall make use of K to denote some positive constants which need not be

the same from one occurrence to another. K’s can depend on S.
The following theorems will be established in this paper.

Theorem 1. Let 0<f<1 and let {a,} be a 6-quasi-monotonic sequence with
S= Y 6&k*<oo (B<a). Then{a,} is of bounded variation and
k=
S (x) = 3nx® 1 L(x~Y)/{T(B) cos $pn},

E.M.S.—T
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as x— +0, if and only if a, ~ n"PL(n), as n-> oo, where L(n) is a slowly varying
Sfunction in the sense of Karamata.

Theorem 2. Let 0<p<]1 and let {a,} be a 6-quasi-monotonic sequence with

Z Sk* <0 (B<a). Then {a,} is of bounded variation and
g(x) = 3rx 'L(x~1)/{T'(B) sin 3},

as x— +0, if and only if a, ~ n"PL(n), as n— oo, where L(n) is a slowly varying
Jfunction in the sense of Karamata.

2. Preliminary Lemmas.
Lemma 1. For any b>0, we have

(a) x®L(x)> o0 and x~°L(x)-0, as x>}

(b) max {E°L(&)} =~ x°L(x),
ses=x

max {E7°L(£)} ~ x~PL(x), as x— 0.

xS ¢<w

Lemma 1 is due to Karamata (8).

Lemma 2. Let {a,} be d-quasi-monotonic with Y &kP<oo (b>0). If
1

o0
ak®™! converges, then Y | Aay | k® converges.
k=1

18

1
Lemma 2 is due to Boas (3).

Lemma 3. Let O0<f<1 and B<a. Let {a,} be 6-quasi-monotonic with

Z k*<oo. If a, ~ n~BL(n), as n»o, then
k=1

(a) {a,} is of bounded variation,

(®) Y |Aa.| <Kn~fL(n), as n>co.
k=n

Proof. Leta, = n~#L(n)a,. We see thatd,—1 as n— oo and a, is bounded.
Then we have

T akT = 3 kL0,

k=1

< max {a,‘} max {e~¥L(&)} E k~1-¥ <K,

1 Sk<w

0
By Lemma 2 we have ) |Aa;| <oo, i.e. {a,} is of bounded variation.
k=1

Next, putting (Aaq))” = max {0, —Aa,}, we have

Z | Aa k| = {Z Aay+2 Z (Aay)~ }=S1+S23

L(n)
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where
—_— i -——nf——a,,<K as n— oo,
L = L(n)
S, =2— 3 Aa,)” " 4, = 3 S kD<K, as n—0o0.
2 L()»‘;.( WS L(n)kzn = kg.. *

Then we have
Y | Aa,| <Kn"tL(n), as n—0.
k=n

This completes the proof of Lemma 3.
Lemma 4. Let 0<B<1 and B<a. Let {a,} be d-quasi-monotonic with
OZO: &k*<oo. If i a, ~ An'"fL(n), as n—»oo, then a, ~ An"PL(n){1-B},
:1.5‘: ri—» oo, where A ;s=s<;me positive constant.

Proof. Let m = n+4+nn—0, where m and n are positive integers, 0 < 6<1
and n = n(n)>0. When n— o0 we have the asymptotic expression:
Qpiy+8pyrt...+a, = Am* “PL(m)— An' ~PL(n)+o(n' ~PL(n))
= An* PL){(1+n) ~f—1+0(1)}.
On the other hand, considering Aa, = a,~a,,, = —§,, we have

00

k-1
a,sa,+ Y 86,Sa,+n"% Yy 8y°La,+n""S;

7=an Y=n
m—1 0

a, = a,— Zkéy_z_am—n"“ > 8y =z a,—n"°S,
y= y=n

o0
where n+1 S k<mand S= ) &y°<oo.
y=1

Then
Quyy+ayyq+...+a, < (m—n){a,+n"°S} < n{na,+n'"*S};
Qpiy+uiy+ ...+, = (m—n){a,—n"S} = n(1—6/pm){na,—n'~*S}.
Put 7 = n(n) = n~*. 1t follows that

- Sn~e*f
r1na,,gAn“”L(n){(1+11)1 F_1+o0(1)—~n AL )}
n

= An* PL(n){(1+m)' ?~1+0(1)};

—a+p
(1——%)”&1 < Ant- #L(n){(1+”)l g__ 1+D(1)+”(1——Q>S,;1L(n)}

= An' "’ L(m){(1 +n)* P —1+0o(D)}.
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Then we have

= Ant{(l+n~HtP—1}
= An*{1+ (1= P)n~t+0(n" 1)1} = A(1—-B);

lim inf
n-o N ﬂL )

{A+n™H P -1j1+n7H ~ 4(1-p),

lim sup O = An
meo m fL(m) = (1-0n"%)

as n—o0. Thus a, ~ An~PL(n)(1—p) as n—oco.
This completes the proof of Lemma 4.

Lemma 5. Let ¢, c,>0. Iff y |f(y) | dy<oo for —¢; <k<c,, then

|7 s () = () [ o0
asr—1-—0. o

Lemma 5 is due to Aljantié, Bojanié and Tomié (2).
Lemma 6. For O0<a, —1<b<], we have
[ oy (L) o)
o As(r,x)

as r—1—0, where Ay(r, x) = (1-r)*+x? and C(b) = 4n/sin {3(b+ )n}.

Proof. Let f(3) = y~2/(1+y%) (y>0),

¢ = min {1-5, 1+5b}.

We see that —1<k+b<1 where | k|<c. We have

—(b+K)

y Y dy = r S 5 4y = 3nfsin {3(b+k -+ D)n}.

+o 1+

-]

Jv +0

By Lemma 5 we have

f(y)L< )dy~ ( 1 ) J ° f(»)dy, as r-1-0. Q.1
J 1-r/J+o

On the other hand,

| o (2 )dy| < a-nx o (2 ){IL}*
+0 +0

<U-rF max  {LOE) f O sty = o( (L))
0s¢s1/a +0 1—-

r

2.2)

as r—»1-0.
From (2.1) and (2.2) we obtain
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Jw f(y)L(1 )dy~ (1 )Iw fO)dy, as r>1-0.  (2.3)
(1-r)/a - 1—-r/J)+0

Using (2.3) and putting x = (1—r)/y, we have
a b -1 -5
f"“"z)"" (- ,,,lf y L(_y_)dy
o (1-r)%+x? (a-nal+y? \1-
- 1 ® .
~(1-r)*"'L (:7)[ {y7 1 +y*}dy

=1-rt" ‘L( ) C(b), as r—»1—0.
This proves Lemma 6.
Lemma 7. Let b,>0 for all positive integers k and let 0<fi<1. If

i byr* ~ I(1— ,B)L( )(1-r)ﬂ 1

as r—>1-0, then i by =~ n*~EL(n)/(1—B), as n—co0.
Lemma 7 is dkuz io Karamata (7).
Lemma 8. For O0<x £ nandi £ r<1, let
A = A(r,x) = 1+r?=2rcos x,
A, = Ay(r, x) = (1—r)>+x2,
K (r,x) = 1/A,—1/A,,
Ky(r, x) = 4sin? 3x/A; —x%/A,,

K5(r, x) = sin x/A; —x/A,.
We have

(@) | Ky(r, x) | £ K(1—r+x*)/A,,
(®) | Kx(r,x) | £ K,

(©) [ Ks(r, x) | £ K{(1—-r)x+x*}/A,.
Proof. Since

|4sin?4x—x2 ]| =2]|cosx—1+3x?| =4 || (x—0)3cos tdt| £ &x°,
0
and similarly | sin x~x | £ 3x*, we have
2 A cin2 a2 24 cin2
| Ky(r, %) | = | x*—4r sin® §x | _ | A=rx*+r(x*~45sin 3x) |
AA, A4,

S K(l—r+{5rx?)/A, £ KA —r+x?)/A,,
| Ks(r, x) | = | sin xK,(r, X)+(in x—x)/A, | £ x| Ky(r, x) | +3x%/A,.
And | K5(r, x) | £ K is trivial. This completes the proof of Lemma 8.
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3. Proof of Theorem 1.

We first prove the ‘“ only if > part, i.e. we assume that {a,} is of bounded
variation and f (x) ~ 3nx?~1L(x~1)/{T(B) cos 4Br} as x— +0. Since {a,} is of
bounded variation, we have that 3 g, cos kx converges uniformly outside

k=1
any arbitrarily small neighbourhood of 0. Furthermore, by hypothesis

f(x) = x*7L(x"HY{AB) +o(1)},
as x— +0, where A(B) = 4n/{I'(B) cos $n}, whence we see that

W

fx)= Y a,coskx
k=1

[
is integrable over (0, 7). Thus, the trigonometric series Y. a, cos kx converges
k=1
to the integrable function f (x) in (0, 7). It follows that the a,’s are the Fourier

cosine coefficients of f(x) ((9), p. 326).
i.e.
2 n
a, == f Sf(x) cos nxdx.

n
Using the Poisson kernel °

P(r,x)=%+ Y rfcoskx (0<r<1),
. k=1
i.e.

1

Y r*cos kx = {r(1-r)—2r sin® 1x}/A(r, x),
14r%—2r cos x, we have

k
where A,(r, x) =

i Pa, = 2r(1=r) (* fx)dx _ r I 4 sin? $xf(x)dx
k=1 T 0 Ai(r,x) =), Ay(r, x)
= Jl(r’ x)_JZ(r’ X), SaY'
Let f(x) = x*"1L(x"Y)A(x). Then h(x)—A(B), as x—+0. Hence h(x) is
bounded in (0, ), say A(x) £ M.

- 1 1
Writin K (r,x) = - ,
’ = e A
02 2
Ky, x) = 4sin"ix  x

Al(r9 X) AZ(r’ X),
where A,(r, x) = (1 -r)®+x2, we have

_2r [ xPTIL(x T Dh(x)dx
Ji(r, x) = . (1-r) L A )

+ r (1-7r Jn xP 1L Yh(x)K (7, x)dx
n o

= Jll(r: x)+J12(r, X),
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Jor, x) = ij‘" XL DhGrdx + Lfﬂ 7L~ HR(x)K (r, x)dx
T ale A w 7 Jo =

= JZ l(ra x)+J22(rs X), say.

Let us consider J,,, J,y, J55, J1; in greater detail.
From Lemma 8(a) we obtain

V12| =

-7 ju xP~L(x~ Hh(x)K (r, x)dx
0

_ * petype—1y JA=1)+X?
=(1-nNKM L xP1L(x ){_—Az(r, > }dx

= (1-r)KM(I, +1,), say,
where, by Lemma 6 witha = n, b = f—1,

I =(- r)j FULTNAX | g g (_1_)
Ay(r, x) 1—r

and by Lemma 6 witha = =, b = §,

n B -1
Iz_s_nj FLOTDAx | g —rp-in (L),
0 Az(r, x) 1—r

Then J,, =0 ((l—r)”"L (1—1—)>, as r—»1-0.
—-r
By Lemma 6 with a = =, b = 3(1+f), we have

r | ®xPHIL(x~ Yh(x)dx
| V21| = | =
TJo AZ(rs x)
< I Mpta+m J" x}DOL(x~Ndx
n 0 AZ(r’ X)
< KM(1—r)*a-9 {(1 —rPiL (1—1——>} ©0<B<1)
—-r
- B-1 1
=0 ((l —ry¥ 1L (1——-)),
as r—-1-0.

1t follows from Lemma 8(b) that

1J2a| = iJ: xP7 L(x~Dh(x)K (7, x)dx

< KMJ xP71L(x~ Vdx
o

< KM max {ELE1) J - 1dx < KM.
[}

0<¢sn
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Jos = o((l—r)""L <—1—1—-)), as r-»1-0.

We come now to estimate Jy;. Since h(x)—>A(f) when x— +0, for any
arbitrary given £>0, there exists >0, such that | 2(x)— A(p) | <e for 0<x<4.
It follows that

Hence

, Jii—2r 1-r f" x~1L(x~ V) A(B)dx
T Az(": x)
<Zaon U" xE L™ | h(x)—A(B) | dx + f (x| h(x) | dx}
T 0 Ay (7, x) s Ay(r, x) (3.1
<¥a-n {g f STILG x| f "_x.”“ux-l)dx} |
T 0 Ay(r, x) s Ay(r, x)
= 2— (1—r){el3+MI,}, say, J

where, by Lemma 6 witha = 6, b = f—1

_ "x"'lL(x'l)de _ ez 1
I = L————Az(r,x) ~ C(B—1)(1-7) L(l

f-1 1 T
x_______L(); )dx < f xP73L(x~Ydx
s Q=1*+x* s .

< K(9) max {é*”L(é N} = K(e),

), as r—»1-0,

4=

where K(s) is a constant which depends on ¢ and is independent of r. Since
B—2<0 we see that

I~ CB-1)L (1—1~) (1= P20, as ro1—0.
—_r

Then for ¢>0 we have

s L f—-1 -1
eI, +MI, < {s+ A—J—K(i)} I, = {e+o(1)} f XTEGT)dx (3
I ) Ay(r, x)
asr—-»1-0,
From (3.1) and (3.2) for arbitrarily small £¢>0, we have

T £ Z A=D{AB)+e+0()) f XL )
n 0

b

Ay(r, x)
T 2 T A =D{AB) —e+oC1)} J‘J’M;’)d_x,
T o Ayr,x)

https://doi.org/10.1017/50013091500012979 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500012979

ASYMPTOTIC BEHAVIOURS OF TRIGONOMETRIC SERIES 313

as r—»1—0. It follows from Lemma 6 that

I = 2 A@O@E-DA-rPiL (li)

=TQ-pA~r)f"'L (—1—>, as r—»1-0.
1—r

We therefore have

k;l. rray=Jy+J13=J21=J5 = {T1=B)+o(}1—-ry¥~'L (1_1*),
asr—1—0. By Lemma 7 and Lemma 4 it follows that a, ~ n~?L(n), as n— 0.
We come now to prove the ** if >’ part, i.e. we assume that a, ~ n~fL(n) as
n—co. By Lemma 3, we see that {a,} is of bounded variation.
Next, we set 0<w<1<Q< o0, and [w/x] = p, [1/x] = ¢, [Q/x] = ¢, where
« and Q are some constants which will be defined later. Then we have

p 0 t
fx)= Y a.coskx+ Y acoskx+ Y {a,—k PL(k)}coskx
k=1 k E=p+1

=t+1

(L) — L(@)}k™? cos kx—L(q) 3 k™ cos kx
k 1

t
+ X
k=p

—L(q) . Y k™*cos kx+L(q) k;1 k™ cos kx

=T1+1

+

-

7
= Z S,', say.

i=1

Here we have S, ~ A(B)L(x~)x*~1, as x— +0, where
A(B) = n/{T(B) cos 1pn}

((9), p. 187). We shall now show that S; = o(x*"*L(x~ 1)), as x— +0, for
i=12,..,6.

With a notation similar to that used in the proof of Lemma 3, we write
a, = n~?L(n)a,. Then by Lemma 1 we have

p L2 2
1Si]=1 Y avcoske| SK ¥ |a| =K ¥ kLK) | a|

<K max {#OPLE) Y kT < KpHoOL(p) f g pgy
1<¢sp k=1 . L

< Kp'PL(p) £ Koo' PL(x"H)xP~!, as x— +0.

We are now in a position to define w. For any arbitrarily small §>0, let
0<w = w(8)<1 so that Kw' ~#/A(f) <.
Write

o0 0
S; = Z a; Cos kx = Z AaiD(x)~ay4 1 Dy 4 1(%),
k=1+1 k=1+1
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where n
D, (x)= Y cos kx =sin {nx cos 3(n+1)x/sin }x.
k=1

Then it follows from Lemma 3 that

I5,| < { S | Aag| + | e |}/sin $x < Kx~H{(t+ D)PL(t+ 1)}
k=1+1
S KQ?L(x~Yxf~1, as x— +0.
Here, for 6 >0 we define Q to be a number 1<Q = Q(§)< o so that
KQ /Ay <.

Since a,—1 when n— o0, for any arbitrary given ¢>0, there exists p such

that |a,—1]<e for all n>p. Then by Lemma 1 we see that
t

<e max {ETHYLE)) Y kT

p<gst k 1

=p+

|S;] = ’ Zt: (dy—Dk~PL(k) cos kx
k +1

=p

< 8KL(p)p_'”{t1 -&B_pl—i-ﬂ} < eKL(x~ l)xﬁ- 101-48,,-1p
as x— +0. For w and Q defined above let ¢ = &() be small enough so that
eKQ 1~ ¥ey= 48 4(B) < 4.
It remains to consider S,, S5, S¢. Since these trigonometric sums are

independent of {a,}, we may follow the same arguments as shown in ((1), p. 112)

to obtain
Sy, S5, Sg = o(x*"1L(x~ 1)), as x— +0.

f () = nx® ~'L(x"Y{T(B) cos 3B},

as x— +0. This completes the proof of Theorem 1.

Hence

4. Proof of Theorem 2.

We first prove the ““ only if * part, i.e. we assume that {a,} is of bounded
variation and g(x) ~ $nx®~1L(x~")/{T'(B) sin $Bn} as x—+0. Following the
same argument as in §3, we see that the a,’s are the Fourier sine coefficients of
g(x), i.e.

a,= gf g(x) sin nxdx.
TJo

Next, let g(x) = x1L(x"")A(x). Here h(x) should not be confused with
that in §3. We see that h(x)— B(f) as x— +0, where B() = 3=/{T'(B) sin 4fn}
and k(x) is bounded. Using the Poisson conjugate kernel

Y. r*sin kx = rsin x/A,(r, x) (0<r<1),

k=1

we have

] n B -1 n
Y rray= gfj XTL(x™ )h(x)dx + ECJ xB=1L(x~ YK 5(r, x)h(x)dx
=1 7 Jo Ay(r, x) T Jo

= J3(r, x)+J4(r, X), say,
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where
Kyrx)= =X _ %
Al(", x) Az(r, x)
From Lemma 8(c) and Lemma 6 (cf. the discussion of J,, in §3) we obtain
LY -1 n B+2 -1
| Jo(r, ) | £ KM {(1_r)f xPL(x™ Ddx +J xP*2L(x )dx}
o Ay, x) o Axr,x)

< KML (1 ! > {(1=rP+atC*H(1 — )=V} as r»1-0.
Then we have

Jur,x)=o0 ((1 —-rf-1L (—l—>>, as r»1-0.
1-r

Since h(x)— B(B) as x— +0, given £>0 we can find 6 >0 such that

| A(x)— B(B) | <& for 0<x <.
We therefore have

Iy %) f HL BB ’
T Jo Ay(r, x)
2r r x? L(x~){h(x)— B(B)}dx i J **L(x~ Yh(x)dx
T Jo Ay(r, x) nJs Ay(r, x) L(41)
. 2{8 r P L(x~V)dx +Mr xB_.zL(x—l)dx}
n o Ayr, x) ]
< T a1+ K@), J

n

where
_ P XPLxTh
ST o (=) +x?
By Lemma 6,
~(1-rp L (1 ) C(B) as r—»1—0.
By arguments similar to that used in obtaining (3.2), we have
{els+MIg} < {8+0(1)}‘[ ﬂ%, as r—»1-0.
From (4.1), (4.2) and Lemma 6 we obtain
I3, = 2 {BB)+o(1)} f "L
n o Ar, x)
2 cpmpa-nL (1 ! ) as 10,
r
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Then we have

k§:1 rra, = J3(r, x)+J4(r, x) = {T(1- P+ o(D}(1-r)f~'L (%)

—-r
as r—»1-0. By Lemma 7 and Lemma 4 we have
a, ~ n"?L(n), as n— 0.
The *““if ” part of Theorem 2 follows by the same arguments as that of
Theorem 1.
Finally it should be remarked that the range of # in Theorem 2 is 0<f<1.

I have been unable to establish the theorem for 0 <8 <2 which is true for mono-
tone and quasi-monotone coefficients. The main difficulty here is that the

hypothesis in Lemma 4, “ Y a, >~ An'"#L(n), as n—00,” cannot be replaced
k=1

n

by “ Y ka, =~ An*"PL(n), as n—>c0.”

k=1

The author wishes to express his indebtedness to the referee, not only for
pointing out some slips, but also for valuable suggestions which brought
improvements in the proof of Lemma 8.
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