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Summary

FST, a measurement of the genetic differentiation among subpopulations, is a fundamental parameter in
population genetics, with many valuable applications in molecular biology, evolutionary biology, conservation
and forensics. One of its close relatives, GST, has been widely used to measure differentiation from highly
polymorphic markers such as microsatellites. However, because of the high mutation rate of such markers, GST

may underestimate the genomic differentiation due to demographic causes such as migration rate and
subpopulation size. A new statistic proposed recently, Jost’s D, was claimed to have better properties than GST

and was advocated to replace GST as a measure of differentiation. This paper shows that D is not a proper
measure of differentiation because it fails to meet some fundamental requirements as a differentiation statistic,
and is hardly estimable without bias in practice. D is highly dependent on the gene diversity of a marker and on
the unknown parameter of the number of subpopulations, is highly sensitive to how alleles and loci are defined
and how data are analysed, does not increase monotonically with either divergence time or drift, and does not
always have a maximal value of 1. The maximalD value can be zero or close to zero, depending on the number of
alleles at a locus relative to the number of subpopulations. I suggest continuing the use of GST, with caution in its
interpretation when highly polymorphic markers are used, before a better estimator of FST that explicitly
accounts for mutations is developed.

1. Introduction

Wright (1943) first proposed a statistic, FST, to
measure the extent of genetic differentiation among
demes or subpopulations of a population. It has
become a fundamental parameter in population
genetics, with numerous valuable applications in
molecular ecology, evolutionary biology and conser-
vation biology. It has been used to model the allele
frequency distribution (e.g. Weir, 2003) and genotype
frequency distribution (e.g. Anderson & Weir, 2007)
within and between subpopulations. Under certain
demographic models (e.g. island and stepping stone
models) without mutation and selection, FST is a
function of migration rate (m) and subpopulation size
(N), and can be used to estimate gene flow (mN). The
FST value between a subpopulation and the others
indicates its genetic uniqueness and thus can be used
to prioritize subpopulations for conservation.

Since Wright (1943), many more differentiation
statistics conceptually similar to FST have been pro-
posed to deal with highly polymorphic markers such
as microsatellites (e.g. GST and RST) and DNA se-
quences (e.g. WST and RST). The most widely applied
statistic is GST, proposed by Nei (1973) for measuring
differentiation from multiallelic markers. The devel-
opment and wide application of microsatellites have
made GST ever more popular, but also its weakness
more prominent. The high mutation rate and thus
high polymorphism of microsatellites lead to a high
within subpopulation heterozygosity (HS), and thus a
low GST because it is upper bounded by the average
within subpopulation homozygosity, 1xHS (Jin &
Chakraborty, 1995; Charlesworth, 1998; Nagylaki,
1998; Hedrick, 1999). This is not a problem as long as
the differentiation at the focal microsatellite loci is
concerned; GST provides an unbiased measurement
of the actual level of differentiation in allele frequency
at these particular loci due to all evolutionary forces,
including migration, drift, mutation and selection.
However, in almost all applications, we are interested
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in the differentiation at a random neutral locus in
the genome caused solely by the demographic history
of the population. For this general purpose, GST esti-
mated from microsatellites could provide a serious
underestimation of differentiation, and thus an over-
estimation of gene flow or connectivity among sub-
populations. This is confirmed by many empirical
studies (e.g. Balloux et al., 2000; Carreras-Carbonell
et al., 2006) which obtained unexpectedly low micro-
satellite-based GST values among highly differentiated
subspecies supported by morphological and other
information.

To overcome the limitations of GST, Jost (2008)
proposed a new differentiation statistic, D, based on
measuring genetic diversity by the effective number
of alleles and partitioning it multiplicatively into
within – and between – subpopulation components.
He claimed that GST does not measure differentiation,
while his D does and measures differentiation in-
dependently of the heterozygosity (HS) of markers.
He suggested that GST should be replaced by D as a
measure of differentiation. Tremendous controversies
now exist as to which statistic, GST or D, is a better
measure of differentiation, which has caused much
confusion among empirical biologists. Ryman &
Leimar (2009) andWhitlock (2011) criticizedD on the
ground that it depends heavily on the mutation rates
that are specific to the marker loci used in the esti-
mation, but is insensitive to the demographic factors
such as population size and migration rate that are
general to the whole genome. As a result, D estimated
from a given set of loci cannot be extrapolated to
other loci in the genome, and cannot be used to infer
population demography without information on mu-
tations. However, more researchers have advocated
the use of D, either as a complete replacement
(e.g. Gerlach et al., 2010) or a supplement of GST

(e.g. Heller & Siegismund, 2009; Leng & Zhang,
2011; Meirmans & Hedrick, 2011). Some editors
of peer-reviewed journals also support the use of D,
asking the authors to calculate D as a differentiation
measurement when microsatellites are used. The
development of the software for calculating D
(Crawford, 2010) facilitated the use of D by empirical
biologists. As a result, many papers adopting D to
measure differentiation have been published in pres-
tigious journals, such as Molecular Ecology, since
Jost’s (2008) work.

In this study, I show by simulations and model
analyses that D is not a proper measure of differen-
tiation, and is difficult or impossible to estimate
without bias from marker data in practice. I demon-
strate that, even under some simple demographic
models, D fails to meet the fundamental requirements
as a measure of differentiation. GST, although having
limitations when applied to highly polymorphic
markers, should continue to be used before a better

differentiation statistics, or a better FST estimator that
accounts for mutations, is developed.

2. Measurements of differentiation

Wright (1943, 1951, 1965) first proposed a set of
parameters (FST, FIT and FIS), called F statistics,
for describing the properties of a hierarchically sub-
divided population. These parameters were originally
defined either as inbreeding coefficients or in a
broader context as fixation indexes (Wright, 1951).
Inbreeding coefficient (Wright, 1921, 1922) was de-
fined as the correlation between, or equally the prob-
ability of identity by descent (PIBD; Malécot, 1948)
of, homologous genes of uniting gametes due to the
relationship of the parents (Wright, 1965, p. 396,
p. 399). As inbreeding coefficients, FIS, FST and FIT

describe the relative extent of inbreeding at the
individual (within a subpopulation), subpopulation
(within a population) and population levels, respect-
ively, with a relation (1xFIT)=(1xFIS)(1xFST)
(Wright, 1951). As an example, Wright (1951, Fig. 3;
1965, Fig. 6) calculated FIS, FST and FIT as relative
inbreeding coefficients of the cows of Bates’s Duchess
strain and of the Shorthorn breed using his path
analysis on the pedigrees. According to Wright, the
statistic FST measures the extent of inbreeding of a
subpopulation that would result if the subpopulation
were at random mating (random union of gametes;
Wright 1951, p. 327), and was used by Wright (1943,
1951, 1965, 1978) to measure differentiation among
subpopulations. It is caused by subdivision, and dis-
appears at once with random mating among sub-
populations. Formally, the inbreeding definition of
FST is

FST=
rSxrT
1xrT

, (1)

where rS and rT are the correlations between, or PIBD
of, two homologous genes drawn at random from
within a subpopulation and from the total popu-
lation, respectively. Thus, FST can be regarded as
the correlation due to common ancestry between
random gametes from the same subpopulation rela-
tive to random gametes from the total population.
Following Wright, FST was defined as ‘the probability
that two homologous genes, chosen at random from
the subpopulation, are both descended from a gene in
the subpopulation’ by Crow & Kimura (1970, p. 105),
and as ‘ the average inbreeding of the subpopulation
relative to the whole population’ by Falconer &
Mackay (1996, p. 96).

According to Wright’s definition of FST in terms of
relative inbreeding or fixation index, FST is a popu-
lation parameter dependent on the demographic his-
tory of the population only. It is not affected by
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mutations, because mutations do not alter inbreeding
and population genealogy. All neutral loci in the
genome are expected to have the same FST value, re-
gardless of their mutation rates and polymorphisms.
In other words, FST is a population property, not a
locus-specific property.

In addition to the above original and fundamental
definition of FST, Wright (1965) also offered several
alternative interpretations. In particular, FST can
be interpreted as the proportional decrease in
heterozygosity of subpopulations relative to that of
the total population, both being calculated assuming
Hardy–Weinberg equilibrium. It is also ‘ the ratio of
the actual variance of gene frequencies of subdivisions
to its limiting value, irrespective of their own struc-
tures ’ (Wright, 1943, 1965),

FST=
s2
p

p̄(1xp̄)
, (2)

where p̄ and sp
2 are the mean and variance of allele

frequencies in subpopulations. The denominator in
(2) is the total variance in allele frequency in the
population, including the within and between sub-
population components. It is equal to the maximal
(or limiting) variance of allele frequencies between
subpopulations (sp

2) when differentiation is complete,
i.e., when an allele is either fixed in or lost from a
subpopulation. Therefore, FST can also be interpreted
as the proportion of genetic variation found between
subpopulations at a locus.

Note the two alternative interpretations in terms of
allele frequency variance and heterozygosity are both
based on homologous genes that are identical in state
(IIS), not identical by descent (IBD) or relative in-
breeding (or correlation with regard to relationship).
When evolutionary forces (e.g. mutation) additional
to drift and migration also act on a locus, FST given by
(2) will no longer be equivalent to that by (1). Wright
recognized the difference between definitions (1) and
(2), stating (Wright 1965, p. 403) that ‘More generally
FST in the broad sense can always be obtained, at least
empirically, from the variance of distribution of gene
frequencies even in cases involving selection, … The
results, of course, apply only to the particular loci in
question’. Analogously, when mutations are import-
ant (compared with drift and migration) for a marker,
it can still be used to estimate FST as defined by (2).
The estimate is, however, applies to this locus only,
and may not represent the genome-wide differen-
tiation determined solely by the demography of the
population.

Even when selections and mutations are absent,
eqns (1) and (2) may also be different in some situ-
ations. For example, each subpopulation may have a
lot of relatives moving to distinctive subpopulations
(for whatever reason, such as avoiding inbreeding) so

that relatives are predominantly found between rather
than within subpopulations. In such a case, FST in
terms of relative inbreeding (or IBD) defined by (1) or
in terms of relative heterozygosity will be negative,
because the PIBD of homologous genes within sub-
populations (rS) is smaller than that within the total
population (rT). In contrast, FST in terms of allele
frequency variance defined by (2) will never be nega-
tive.

Despite the limitations, however, the IIS-based
heterozygosity or variance definitions of FST do allow
the estimation of FST conveniently from marker data
in natural populations in which pedigrees are usually
unavailable. In fact, the most widely applied FST es-
timator (Weir & Cockerham, 1984) and its relatives
(e.g. Nei’s GST, below) are based on either allele fre-
quency variance or heterozygosity, and have gained
high popularity thanks to the rapid development and
applications of various genetic markers. However, it
is important to remember the conceptual differences
between the IIS-based heterozygosity or variance de-
finitions on which most estimators are based, and the
inbreeding (or IBD, correlation) definitions which
were originally proposed by Wright. Hereafter in this
paper, FST refers to that defined by (1) in terms of
inbreeding except when explicitly stated.

Slatkin (1991, 1995) gave yet another definition of
FST in terms of coalescence times. His derivation was
based on (1), but rS and rT are the probabilities of
homologous genes within subpopulations and within
the total population that are IIS (not IBD). However,
when mutation rate u is very small as he finally as-
sumed, IIS and IBD are equivalent. Under the sym-
metric K alleles mutation model (the infinite allele
model (IAM) is a special case whereKp‘), he derived
rSB1x(1x1/K)utS and rTB1x(1x1/K)utT in the
limit of small values of u, where tS and tT are the
average coalescence times of two gene copies drawn at
random from the same subpopulation and from the
total population, respectively. Inserting rS and rT into
(1) yields

FST=
tTxtS
tT

: (3)

Thus, FST can also be interpreted as the increase in
coalescence time between genes in the total popu-
lation relative to genes in the same subpopulation. In
other words, FST measures the proportion of recent
evolutionary history that is shared by genes from the
same subpopulation (Whitlock, 2011).

Nei (1973) proposed his coefficient of gene differ-
entiation, GST, to measure genetic differentiation in
the case of multiallelic markers. GST is defined as

GST=
HTxHS

HT

, (4)
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where HT and HS are the heterozygosity of the total
population and the average heterozygosity of sub-
populations expected under Hardy–Weinberg equi-
librium. HT and HS are also known as gene diversity
(Nei, 1973), and apply to haploid and multiploid
species. Therefore, GST can be interpreted as the pro-
portional reduction in heterozygosity or gene diver-
sity due to subdivision, and is similar to Wright’s
alternative interpretation of FST in terms of hetero-
zygosity or gene frequency variance. In other words,
the heterozygosity at a locus is reduced by a factor
GST due to subdivision relative to what would be ex-
pected for a panmictic population with the same allele
frequencies. In the special case of a biallelic locus, Nei
(1973) showed that HT=2p̄(1xp̄) and HTxHS=2s2

p,
and thus GST in (4) is identical to FST in (2). For a
locus with k>2 alleles, GST is equal to the weighted
average of FST for all alleles (Nei, 1973),

GST=
1

k
g
k

i=1
FST(i)= g

k

i=1
s2
p(i)

� �
g
k

i=1
p̄i(1xp̄i)

� �
:

�
(5)

In the above, FST and GST are defined as a quantity of
a subpopulation (rS, tS,HS) relative to that of the total
population (rT, tT, HT). These definitions introduce
some difficulties in both interpretations and esti-
mations. As an example, consider (1) in the case of
a population subdivided into s subpopulations
of effective size Ni (i=1, 2, …, s). By definition,
rS=gs

i=1g
Ni

j=1g
Ni

k=1rij, ik=g
s

i=1N
2
i and rT=gs

i=1g
s

j=1

gNi

k=1g
Nj

l=1rik, jl=g
s

i=1g
s

j=1NiNj, where rik,jl is the PIBD
between gamete k in subpopulation i and gamete l in
subpopulation j. The first to notice is that rS is a
component of rT, which consists of PIBD of gametes
within and between subpopulations. As a result, FST

will be partially determined by the relative subpopu-
lation sizes due to their effects on both genetic drift
and weightings in rT. In the case of a large mainland
subpopulation and a small island subpopulation, FST

will always be small irrespective of the divergence time
and migration rate, because both rT and rS are pre-
dominantly determined by the PIBD between gametes
within the mainland subpopulation and thus always
similar in values. In practice, Ni is usually unknown
but assumed to be equal for all subpopulations
(e.g. Nei, 1973). This treatment effectively removes
the effect of different subpopulation sizes as weighting
factors on the measurement of differentiation. The
second to notice is that rT and thus FST depend on s,
the number of subpopulations. In reality, s is rarely
known which makes the estimation of FST from a
sample of subpopulations problematic.

Cockerham (1969, 1973) introduced an analogous
measure of differentiation, coancestry h, which does
not rely on s. It is defined by (1) with rT replaced by rB,
the PIBD or correlation between two gametes drawn
at random from different subpopulations. Without

knowing s, we can still estimate rB and thus h from
a sample of subpopulations, as exemplified by the
estimator of h developed by Weir & Cockerham
(1984). Although conceptually different, Cockerham’s
h andWright’s FST give very similar results in practice
except when s is very small, because the contribution
of rS to rT decreases rapidly with an increasing value
of s. Similarly, Nei (1986) redefined his GST and ob-
tained a differentiation statistic, Gk

ST, which is inde-
pendent of s.

Based on a multiplicative partition of the effective
number of alleles as a measure of genetic diversity,
Jost (2008) proposed a new differentiation statistic,

D=
HTxHS

1xHS

s

sx1
, (6)

where HT and HS are as defined in (4), and s is the
number of subpopulations. He claims that D is a
better measurement of differentiation than FST and
GST, especially for highly polymorphic markers that
could have a high within subpopulation hetero-
zygosity (HS).

3. General properties and comparisons of

differentiation statistics

(i) Wright’s FST is more general than GST and D

First, no matter is defined in terms of IBD, correlation
(1) or coalescence time (3), FST is independent of mu-
tations or gene diversities at a locus. In other words,
FST has the same expected value for a given population
at different neutral loci with varying mutational pat-
terns (models, e.g. the IAM and a stepwise model) and
rates, and thus with different levels of allelic or genetic
diversity. This is because mutations do not alter the
IBD status, coalescence times or the genealogy of
genes, although they do change allele states (IIS) and
thus obscure the genealogical history of genes. With
the help of certain information such as pedigrees, mu-
tations can be identified and thus the erased genea-
logical history recovered from genotype data (Wang,
2011). Furthermore, under certain mutation models in
which mutations do not erase completely the ancestry
of genes, the PIBD or coalescence time can still be in-
ferred from genotype data alone, allowing for un-
biased estimates of FST that reflect the demographic
history of the population. For example, a point mu-
tation just changes a single nucleotide in a DNA se-
quence and does not erase all evidence of ancestry
when the infinite sites model holds (i.e. when no mu-
tations hit the same site more than once during the
interested period). Therefore, two genes that differ by
more mutations are likely to have been evolving inde-
pendently for longer and share less evolutionary his-
tory. For microsatellites under the stepwise mutation
model, alleles of more similar sizes are more related in
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ancestry and have a more recent common ancestor.
Based on this idea, Slatkin (1995) derived an FST esti-
mator, RST, for DNA sequence and microsatellite
marker data. He showed that RST gives unbiased esti-
mates of differentiation due to demography (migration
and population size), irrespective of the mutation
rates. In fact, RST becomes more accurate with an in-
crease in mutation rate, because more mutations allow
a more accurate estimate of coalescent times.

In contrast, GST and D are defined in terms of IIS
(heterozygosity and gene diversity) which is affected
directly by mutations, and are thus variable among
loci with different mutation patterns and rates. For
the same population, differentiation calculated for
one set of markers (e.g. microsatellites) can be dra-
matically different from that calculated for another
set of markers (e.g. Single Nucleotide Polymorphism
[SNPs]) simply because the two sets of markers have
different mutational properties. When mutations are
important compared with demography in shaping the
genetic variation and its distribution in a population,
GST and D are better regarded as ‘marker differen-
tiation’ rather than ‘population differentiation’ mea-
sures because they apply only to the marker loci used
in the estimation, and do not purely reflect the
demographic history of populations. As GST and D
are marker dependent and different studies may use
different markers ; it is also difficult to compare these
statistics among studies.

Many of the misunderstandings and criticisms of
FST stem from the confusion between IBD and IIS,
between Wright’s original definition in terms of in-
breeding (1) and his alternative interpretations in
terms of heterozygosity or allele frequency variance
(2), and between FST and GST.

Second,FST can also be calculated fromnon-marker
data, such as pedigrees. In fact, Wright (1943, 1951,
1965) calculated his FST in a number of numerical
examples involving empirical (e.g. different cattle
breeds) and hypothetical pedigrees. Indeed, when
pedigree records are complete and reliable, they
provide much more accurate estimates of FST than
genotype data at a typical number of marker loci
published in the literature. This is because a marker
reflects just a single realization of the random genetic
process experienced by a population, and it may be
affected by mutations such that IIS does not truly
reflect IBD. Although FST estimated from a marker
should be unbiased under ideal conditions, it could
suffer from substantial sampling errors, depending on
the demographic history of the population (e.g. Ne

and m), the property of the marker (e.g. diversity) and
the sampling properties (e.g. sample size). The mean
FST calculated from several independent markers has
a reduced sampling variance, but is still less accurate
than that calculated from a pedigree and can still be
biased due to mutations.

In contrast,GST andD are defined in terms of popu-
lation and subpopulation heterozygosities and thus
rely solely on marker data for the estimation.

(ii) All differentiation statistics are defined
independent of the demographic model of
a subdivided population

In other words, these are descriptive statistics that
measure how much the subpopulations are differ-
entiated, but do not imply directly how and why the
subpopulations become differentiated. In principle,
therefore, they are applicable to any population re-
gardless of the underlying models and mechanisms
leading to the genetic structure of the population. Jost
(2009, p. 2088) stated that ‘The task of measuring
genetic differentiation answers a concrete question,
‘‘How different are the allele frequencies of the sub-
populations?’’ This is a purely descriptive task which
does not depend on the validity of a particular genetic
model, or on the achievement of any kind of equilib-
rium.’ I would argue that, although all differentiation
statistics are defined without any predefined demo-
graphic model and can thus be regarded as descrip-
tive, they are not purely descriptive in the senses that
their estimations, interpretations and applications re-
quire an explicit and valid genetic model.

First, all differentiation statistics require an explicit
genetic model under which a statistical estimator can
be developed. This is especially true for likelihood or
Bayesian estimators (see e.g. Holsinger &Weir, 2009).
Even simple moment estimators of GST and D may
have to assume a model in which all subpopulations
have the same and constant effective size. Coalescence
time-based FST estimators, such as Slatkin’s (1995)
RST, require specific mutation models (e.g. stepwise
model for microsatellites and infinite sites model for
DNA sequence).

Second, a demographic model of the population
and a genetic model of mutations for the cases of GST

and D are required to explain the differentiation
in terms of causal factors such as subpopulation
size, migration pattern and rate. Rarely anybody is
interested purely in the value of a differentiation
statistic. Instead, given the value of a differentiation
statistic, one asks what the value means biologically
and why that particular value occurs rather than any
value else. To interpret any differentiation measure-
ment, one must specify (assume) a genetic model.

Third, demographic and mutational models are
necessary for the applications of a differentiation
statistic. For example, the inferences of gene flow
from FST or GST are usually based on the island model
(Whitlock & McCauley, 1999). The detection of loci
under selection from the distribution of GST estimates
requires the use of gene diversity as a control, because
GST is expected to depend on gene diversity when
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mutations are important and unaccounted for in the
estimation (Beaumont & Nichols, 1996).

The simplest and most widely used demographic
model in studying population structures is Wright’s
(1931, 1943) island model. It assumes that a popu-
lation consists of an infinite number of subpopula-
tions of an equal and constant (effective) size N, and
in each subpopulation a proportion m of the total
gene pool is derived from immigrants that may be
considered a random sample of the total population.
In this model, genetic drift increases and migration
decreases differentiation. At equilibrium between the
two forces and irrespective of mutations, FST is
(Wright, 1951; Takahata & Nei, 1984)

FST=1 1+2N
1

(1xm)2
x1

� �� �
� 1

4Nm+1
:

�
(7)

When mutations occur at rate u under IAM, the
equilibrium GST is (Wright, 1943; Takahata & Nei,
1984)

GST=1

�
1+2N

1

(1xm)2(1xu)2
x1

� �� �

� 1

4N(m+u)+1:

(8)

In (7) and (8), the approximation applies when
m,u51. For a finite island model with s subpopu-
lations, (8) and (9) apply when N is replaced by
Ns/(sx1) (Takahata & Nei, 1984). The difference be-
tween (7) and (8) stems from IBD and IIS which are
used in defining FST and GST, respectively. Equation
(8) shows that, at mutation–drift–migration equilib-
rium, mutations in the IAM have exactly the same
effect on differentiation as migration in the island
model. Migration and mutations have a large impact
on harmonizing the population, and a migration or
mutation rate of 1/N per generation would constrain
GST to 0.2. When there are no mutations (u=0),
GST=FST, as shown by (7) and (8).

At the other extreme, Wright (1943) studied an
isolation by distance model of population structure in
which a population is distributed uniformly over a
large habitat, but the parents of any given individual
are drawn from a small surrounding region. As mat-
ings are restricted locally, individuals separated by a
larger geographic distance are less related genetically,
and any local population is differentiated from the
total population. An intermediate between the two
extreme models is the stepping stone model proposed
by Kimura & Weiss (1964). In this mode, populations
are discrete, like the island model, but migrations are
restricted between neighbouring areas (stones, or
subpopulations), like the isolation by distance model.

In reality, most populations may have much more
complicated structures that do not fit into any of the
three models. For example, subpopulations may have

effective sizes that are different and variable over time
with frequent local extinctions and recolonizations;
migration patterns and rates may also vary among
subpopulations and fluctuate over time. All these
complications do not, however, prevent the calcu-
lation of the differentiation statistics, which still
measure the extent of genetic differentiation. The es-
timation, interpretation and application of the stat-
istics are, however, difficult or impossible without an
appropriate demographic model.

(iii) All differentiation statistics have values in
the range [0, 1]

All statistics yield the same value of 0 in the case of no
differentiation. For FST, no differentiation means
homologous genes taken at random from the same
subpopulation have the same PIBD, correlation or
coalescence time as those taken at random from the
total population. For other statistics, no differen-
tiation means all subpopulations have identical allele
frequencies at a locus. At the other extreme, FST=1
when all alleles within a subpopulation are IBD and
GST=1 when each subpopulation is fixed with one
allele at a locus (HS=0). At GST=1, some but not all
subpopulations may have fixed the same allele. So
long as the heterozygosity within all subpopulations is
zero and the locus is polymorphic for the total popu-
lation (HT>0), GST=1. However, D is different from
the other statistics in that its maximal value of 1 is
realized whenever subpopulations have no alleles in
common (a proof is available upon request). In other
words, no matter how many alleles are segregating in
each subpopulation or no matter how large the gene
diversity within subpopulations is, D=1 if no alleles
are shared between any two or more subpopulations.

The magnitude of the statistics quantifies the gen-
etic differentiation among subpopulations. As stated
by Wright (1978, p. 85, where F refers to FST), ‘We
will take F=0.25 as an arbitrary value above which
there is very great differentiation, the range 0.15–0.25
as indicating moderately great differentiation.
Differentiation is, however, by no means negligible if
F is as small as 0.05 or even less …’. When differen-
tiation is mainly determined by demography rather
than locus specifics such as mutation and selection,
then FST and GST are expected to have the same value
across the genome and can be compared among stu-
dies. However,D values can still be marker dependent
(see below) and are thus incomparable among studies
even in the absence of mutations.

(iv) Differentiation statistics could be affected
by locus-specific selection and mutations

All statistics are affected by direct or indirect selection
acting on the markers used in estimation. The extent

J. Wang 280

https://doi.org/10.1017/S0016672312000481 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672312000481


of differentiation at marker loci under balancing sel-
ection (e.g. heterozygote advantage or allele fre-
quency dependent selection) and directional selection
will be decreased and increased, respectively, com-
pared with that at neutral marker loci. By definitions
of (1) and (3), FST is not affected by the mutation
patterns and rates of markers. So long as selection is
absent, all loci in the genome have the same expected
value of FST, determined by the demographic history
of the population only. However, both GST and D as
well as FST defined in terms of IIS (2) are dependent
on the mutation patterns and rates of markers.
Consider the finite island model under IAM as an
example. The equilibrium value of GST is given by (8),
and that of D (Jost, 2008) is

D=1={1+(1xg)=[sg(2uxu2)]} � u(sx1)=m, (9)

where g=[1xms/(sx1)]2. The approximation of (9)
applies to the case of low migration (m51) and
mutation (su5m) rates. Striking differences emerge
from the comparison between (8) and (9). First, mu-
tations act to reduce GST but to increase D. Second,
genetic drift acts to increase GST but has no effect
on D. This property of D is peculiar, because, other
things being equal, larger subpopulations are ex-
pected to experience weaker genetic drift and thus to
differentiate less. Although no equilibrium D values
are derived for other demographic models (e.g. step-
ping stone and isolation by distance), it is suspected
that these striking differences between D and GST will
persist.

Jost (2008) argues that ‘GST and its relatives do not
measure differentiation’, while his D does. I would
argue that the opposite is true (see also below), and
believe that GST measures genetic differentiation cor-
rectly in all situations. When locus-specific effects
(selection and mutations) are absent or negligible, GST

measures the population differentiation due to
demographic factors (migration and drift) and has the
same expected value for any locus in the whole gen-
ome. In such a situation, GST is an unbiased estimator
of FST. When locus-specific effects are present and
stronger than migration and drift effects (e.g. u>m
and u>1/N), GST still faithfully measures marker
differentiation. In this case, however, the differen-
tiation as measured by GST reflects both the locus-
specific effects and the general demographic effects.
The value therefore applies only to the marker loci
used in the estimation, and is no longer an unbiased
estimate of FST. It thus has little relevance to the dif-
ferentiation at other loci in the genome, and cannot be
regarded as population differentiation that is inter-
pretable in terms of the demography of the popu-
lation (i.e. migration rate and subpopulation size). It
is true that GST estimated from a locus with a higher
mutation rate and thus higher heterozygosity within

subpopulations is generally lower. This, however, is
the truth, reflecting the fact that mutations have re-
duced the differentiation at the locus. Realizing and
utilizing these locus-specific mutation and selection
effects on GST, we can actually infer mutations and
selection from estimates of GST (e.g. Beaumont &
Nichols, 1996).

4. D does not measure differentiation

Contrary to the view of Jost (2008), I argue that D
does not measure differentiation but GST and relatives
do. The following analyses show that D fails to
measure differentiation correctly even in some simple
situations.

(i) D is highly dependent on initial genetic diversity

For analytical tractability, I assume Wright’s
(1943) island model of migration among s sub-
populations of effective size N, and an IAM for mu-
tations. For a neutral locus, the probabilities that
two genes drawn at random from the same sub-
population and from different subpopulations are IIS
are denoted by f and g, respectively. The hetero-
zygosity expected at Hardy–Weinberg equilibrium is
HS=1xf and HT=(1xf)/s+(1xg)(sx1)/s for a
subpopulation and the total population, respectively.
Starting from the initial generation (0) when all sub-
populations are identical at the locus (i.e. no differ-
entiation), f and g change over generations due to
genetic drift, mutation, and migration at rates d=1/
(2N), u and m, respectively. The recurrence equations
are (Li, 1976)

f(t+1)=c[a(d+(1xd)f(t))+(1xa)g(t)],

g(t+1)=c[b(d+(1xd)f(t))+(1xb)g(t)],
(10)

where c=(1xu)2 is the probability that neither of
two randomly drawn genes mutates in one gen-
eration, a=(1xm)2+m(2xm)/s and b=m(2xm)/s
are the probabilities that two distinct genes, drawn
at random from the same subpopulation and from
different subpopulations, respectively, came from
the same subpopulation in the previous generation.
The initial probabilities of genes that are IIS are
f(0)=g(0)=1xH0, where H0 is the initial gene diver-
sity at the locus.

Using (10) and the initial conditions, I can calculate
the probabilities of IIS, f(t) and g(t), and thus the gene
diversities for a subpopulation and the total popu-
lation, HS(t)=1–f(t) and HT(t)=1–g(t), at any gener-
ation t. In the case of an infinite number of
subpopulations (sp‘), a closed form solution of f(t)
and g(t) can be obtained from the recurrence equa-
tions, which leads to the expected values of GST andD
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at generation t

GST(t)=
acd(1xe)(1xctet)xactd(1xH0)(1xce)(1xet)

(1xe)(1xce)(1xct(1xH0))
,

D(t)=1x
1

1xGST(t)(1xcxt(1xH0)
x1)

,

(11)

where e=a(1xd). Equation (11) shows that D is a
function of GST, corrected for initial gene diversity
(H0) and mutations (c=(1xu)2). Some insights can be
gained from (11) by further assuming that mutations
are negligible because other forces (migration and
drift) are much more important in determining dif-
ferentiation. In such a case, (11) reduces to

GST(t)=
ad(1xat(1xd)t)

1xa(1xd)
,

D(t)=
1

1+
1xH0

H0GST(t)

(12)

It is clear that, at any generation t, GST is independent
of H0 (the initial gene diversity of a marker), while D
increases monotonically with H0. D is always close to
its maximal value of 1 and minimal value of 0 when
H0 is close to 1 and 0, respectively, regardless of values
of m, N and t. In other words, GST calculated from
markers with different initial gene diversities would be
expected to be the same at any time, if mutations are
negligible (i.e. u5m or u51/N). In contrast, D is
highly dependent on the initial gene diversity of a
marker. The value of D reflects the gene diversity
more than the differentiation at a locus, let alone the
differentiation at other loci of the genome. A given D
value, say 0.01 or 0.99, can indicate low, moderate or
high differentiation, depending on the gene diversity
of the markers. Similarly, a population with a given
level of differentiation, say FST=0.25, may have dif-
ferent D values in the entire range of [0, 1], depending
on the gene diversity of the markers. We always have
Dp1 and Dp0 when H0p1 and H0p0, respectively,
regardless of migration rate (m), subpopulation size
(N) and divergence time (t). At any generation t, D is
smaller than, equal to and larger than GST when
the gene diversity of the marker (H0) used in the
calculation is smaller than, equal to and larger than
1/(2xGST(t)), respectively.

In the absence of mutations, both GST and D will
increase with t until an equilibrium and maximal
value is reached. Their maximal values are GST(M)=

ad
1xa(1xd)

and D(M)= adH0

1xH0xa(1xdxH0)
, respectively, when

tp‘ as can be obtained from (12). In the special case
of m=0 and thus a=1, the GST(M) value for any locus
with any initial gene diversity is always 1, achieved
when the locus becomes fixed in all subpopulations
and thus within subpopulation gene diversity drops

to 0. In contrast, however, the expected maximal D
value achievable for a locus is equal to its initial gene
diversity H0. In other words, the maximal D value
expected at a locus has an upper bound of H0, the
initial gene diversity of the locus. Therefore, D values
will be higher and lower when calculated from loci
with higher (e.g. microsatellites) and lower (e.g. SNPs)
gene diversity, respectively, for the same population.
Although the above analysis and conclusions are
based on the assumption of no mutations, they are
good approximations when mutations are negligible
compared with drift (1/(2Ne)4u, see numerical ex-
ample below).

To further understand the behaviours of GST

and D, let us consider a numerical example. Figure 1
plots GST(t) and D(t) for t=1, 10, 100 and 1000 as a
function of H0, with N=100 (d=0.005). The results
for the infinite island model (s=‘) were obtained
from (11), while those for the finite island model
(s=10) were obtained from recurrence eqn (10).
Some parameter combinations involving a high gen-
etic diversity (H0) but null or low mutation rate, as
in this and some other examples of this study, seem to
be paradoxical. However, they are realistic because
we are dealing with non-equilibrium situations. For
example, a large random mating population may be
suddenly subdivided (due to habitat fragmentation
or other causes) into small subpopulations in
nature, or a number of inbred lines are established
from a large outbred source population and are
maintained in the laboratory. In both cases, H0 can
be high because of the large ancestral population
size, but mutations can be small and even negligible
compared with drift and migration in the short time
scale.

As can be seen, at early generations (t<10) when
differentiation is low,D increases slowly withH0 when
it is small but increases rapidly when it becomes large.
At later generations (t>100) when differentiation
is close to complete, D increases almost linearly with
H0. This is clear from an inspection of (12), which
reduces toD(t)=H0 when tp‘ andm=0. In contrast,
H0 has no effect on GST when u=0. At intermediate
differentiation (t=100), GST increases slightly with an
increase in H0 when u>0. However, it should be
pointed out that this slow change of GST with H0 is
not a proof that GST depends onH0 per se, as believed
by some researchers in their simulation studies (Leng
& Zhang, 2011), but is the result of new mutations.
Without mutations (u=0), GST is always independent
of H0. With an increase in mutation rate (see Figs 1(c)
and (d)), GST decreases while D increases. The under-
estimation of differentiation (due to demographic
factors only) by GST when mutations are important
compared with drift and migration can be substantial,
especially when t is large and the population is close to
equilibrium.
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(ii) D does not increase monotonically
with differentiation

For a population subdivided into s subpopulations
in the island model, everyone would agree that dif-
ferentiation should increase monotonically with time,
from no differentiation initially at the time of sub-
division to an asymptotic maximum at equilibrium
determined by parameters m, s, N and u. This is true
when differentiation is measured by GST, but not
always true when differentiation is measured by
D. Figure 2(a) plots the changes in D and GST as
a function of generations of differentiation for a
population subdivided into s=2 equal-sized (N=100)
subpopulations. Other parameters are m=0.01,
u=0.001 and an initial frequency of 0.1 for each of 10
alleles at a locus in each subpopulation. The results
for D and GST are obtained from both recurrence
eqns (10) and simulations. While GST increases

monotonically with t, D increases initially and
then decreases with t to reach its asymptotic equilib-
rium value. Such results were also obtained when the
initial allele frequencies were drawn from a uniform
Dirichlet distribution. This peculiar behaviour of D is
often true when m4u, s is small and initial gene di-
versity is high.

For a given set of parameters of m, s, t and u, D
also does not decrease monotonically with an
increasing subpopulation size N (Fig. 2(b)). Drift
has been regarded as a force differentiating sub-
populations at all loci in the genome. With an
increasing subpopulation size, drift becomes
weaker and as a result differentiation between sub-
populations at any given time should become
smaller. This is true, however, only when GST is used
as the differentiation measurement (Fig. 2(b)), not
D for some parameter combinations of m, N, s, u
and H0.
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Fig. 1. Values of GST and D at generation t as a function of initial gene diversity H0. The parameters are s=‘ and
u=m=0 for panel (a), s=‘ and u=m=0.001 for panel (b), s=10 and u=m=0.001 for panel (c) and s=10, u=0.01 and
m=0.001 for panel (d). In all four cases, the subpopulation size is N=100.
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(iii) D=1 does not necessarily mean complete
differentiation

Jost’s (2008) criticisms of GST were almost exclusively
based on a few numerical examples. His Figure 1
showed that, when two subpopulations are ‘com-
pletely differentiated’ because they have no shared
alleles, D is always 1 while GST decreases with an
increasing within-subpopulation heterozygosity.
His Figure 2 plotted the changes in differentiation
measured byGST andD between two initially identical
subpopulations (sharing four equally common alleles)
as unique alleles were added successively to each
subpopulation. While D increases monotonically, GST

first increases and then decreases with a successive
addition of unique alleles to each subpopulation. In
his Table 1, the two subpopulations for species B have
allele frequencies {0.2, 0.8} and {0.8, 0.2}, respect-
ively, at a biallelic locus, resulting in GST=0.36 and
D=0.53. The two subpopulations for species C have
allele frequencies {0.095, 0.08, 0.11, 0.08, 0.095, 0.06,
0.07, 0.096, 0.094, 0.08, 0.03, 0.06, 0.05, 0, 0, 0, 0, 0, 0,
0} and {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.15, 0.16, 0.12,
0.13, 0.17, 0.14, 0.13}, respectively, at a 20-allele

locus, with GST=0.06 and D=1. He concluded from
the three examples that GST cannot be interpreted as
a measure of differentiation, but his D can. I show
below that his conclusion is incorrect because it
is based on the misperceptions that subpopulations
with no shared alleles should be 100% differentiated,
and that the more unique (or private) alleles the
subpopulations have, the more differentiated they
will be.

First, subpopulations sharing no alleles among
them are not necessarily completely differentiated.
It can be shown (proof available upon request) that
D=1 when no alleles are shared between any two
subpopulations, irrespective of the number and fre-
quencies of segregating alleles (or the gene diversity)
in each subpopulation and the number of subpopu-
lations. It can also be shown that GST=1 only when
HS=0 and HT>0, and GST<1 otherwise. The con-
dition for GST=1, HS=0 and HT>0, occurs when
each of the s subpopulations has one allele fixed (i.e.
frequency=1) in and the others are lost (i.e. fre-
quency=0) from the subpopulation, no matter whe-
ther the fixed alleles are shared (except for the case that
a single allele is fixed for all subpopulations such that
HT=0) or not among subpopulations. In contrast, the
gene diversities within subpopulations vary freely in
the range (0, 1) whenD=1. I argue thatGST=1 means
differentiation is complete, whileD=1 does not. Let us
consider a simple example of a population subdivided
into subpopulations of A and B, with each sub-
population having k private alleles and each allele
having an equal frequency of 1/k in the subpopulation
it occurs. Because A and B share no alleles, we always
have D=1, but the frequency difference for any allele
between A and B can be very small if k becomes
large. This property of D is thus in conflict with the
statement of Jost (2009) that ‘The task of measuring
genetic differentiation answers a concrete question,
‘‘How different are the allele frequencies of the sub-
populations? ’’ ’ At D=1, allele frequency difference
among subpopulations can be very small for a highly
polymorphic locus with many alleles.

Second, subpopulations that are completely differ-
entiated do not necessarily have D=1. Consider a
locus with two initially equifrequent alleles A and B
(k=2) in a population subdivided into s=3 sub-
populations under the pure drift model. When the
genetic composition is no longer changeable (HS=0,
and thus GST=1), either one allele (A or B) is fixed in
all three subpopulations, or both alleles A and B are
fixed in the three subpopulations (say, A and B are
fixed in two and one subpopulations, respectively).
The first and second events occur at a probability of
1/4 and 3/4, leading to HS=HT=0, and HS=0 and
HT=4/9, respectively. The two events lead to a D
value of 0 and 2/3, respectively, and a GST value that is
undefined (see below) and 1, respectively.
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Fig. 2. Simulated and theoretical D and GST values as a
function of generations (a) and subpopulation size (b).
The parameters used in generating the graphs are m=0.01,
u=0.001, s=2, N=100 (a only), t=200 (b only), and
initially 10 alleles of an equal frequency for both
subpopulations. Simulated values were obtained from
10 000 replicates, and theoretical values were obtained
from recurrence eqn (10).
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In general, whenever k<s, the maximal value of D
must be smaller than 1, because some of the s sub-
populations must share at least one allele no matter
how long the subpopulations are separated and
how strongly the drift occurs in each subpopulation.
This conclusion contrasts with the claim that D
always has a maximal value of 1 because it is not
constrained by HS (e.g. Jost, 2008; Ryman & Leimar,
2009).

When the effect of mutations is negligibly small
compared with that of drift, a completely differ-
entiated population (HS=0) will invariably have a
GST value of 1, regardless of the parameters such as s
and N. In contrast, a completely differentiated popu-
lation will have an expected D value that is variable
with the initial gene diversity (H0) at a locus, as shown
above. Furthermore, the maximal D value for a
population of s completely differentiated subpopula-
tions follows a distribution, depending on the initial
number and frequency distribution of alleles at a lo-
cus as well as s. For a locus with k alleles of an equal
initial frequency of 1/k, the minimum D value in this
distribution is always 0, which occurs when all sub-
populations are fixed for the same allele (HS=HT=0)
with a probability 1/ksx1. The maximum D value in
this distribution is variable. It is 1 with probabilityQsx1

i=0 (kxi)=k when k os, and is (s2xq2kxr(1+2q))/
(s(sx1)) which is less than 1 when k<s, where q and r
are the quotient and remainder of s divided by k.
It should be noted that there could be many possible
D values between the minimum (0) and maximum
values of the distribution under complete differen-
tiation. Even when kos, the D value at complete dif-
ferentiation may still be smaller than 1. Figure 3
shows the distributions of D values at complete
differentiation for k=2, 5, 10 and s=10, generated

by simulations. In summary, the above results show
that, at complete differentiation (HS=0) when genetic
variation within and between subpopulations are
fixed, the D value varies depending on the number (k)
and initial frequencies of alleles at a locus and the
number of subpopulations (s). Even for a given com-
bination of these parameters, theD value varies wildly
between a lower limit of 0 and a higher limit variable
depending on the parameters. These results are gen-
eral and independent of the demographic models, the
only assumption is that mutations are negligible
compared with drift. This could happen, for example,
when a large outbred population is subdivided into
many isolated small populations, as in establishing
inbred lines in plant and animal breeding and in some
laboratory situations.

In contrast, the maximal value of GST is invariably
1 when differentiation is complete (HS=0), irrespec-
tive of k, the initial alleles frequencies at a locus
and s. When each subpopulation is fixed for one allele,
HS=0 and GST=1, no matter how the fixed alleles are
shared (or unshared) among subpopulations. The
particular case of all subpopulations are fixed with a
single allele, HT=HS=0, needs some special atten-
tion. In this case, GST becomes undefined because
both the denominator and the numerator of the ratio
(HTxHS)/HT are zero. This makes sense because in
such a case the marker locus is monomorphic and
thus uninformative, if considered in isolation of any
other information, about differentiation. There are
two possible explanations forHT=HS=0. One is that
the locus is monomorphic before the population is
subdivided, and the other is that the locus is initially
polymorphic when the population is subdivided but
the same allele becomes fixed in all subpopulations
due to drift. The marker is indeed uninformative
about differentiation in the first scenario, but indi-
cates complete differentiation in the second scenario.
In contrast, Dw0 for a monomorphic locus.
Therefore, differentiation measured by D would be
close to zero even between different species (e.g. hu-
mans and chimpanzees) if a random set of marker loci
are assayed and used in the estimation, because most
loci would be monomorphic even between species. If
one chooses to use only polymorphic loci, D will be
overestimated for the genome because the selected set
of loci is not representative.

In the situation where one allele is fixed in a single
subpopulation and another allele is fixed in all of the
sx1 subpopulations, we have D=2/s and GST=1
from definitions (6) and (4), respectively. When s is
large, the small D value seems to be plausible and
GST=1 seems to be counterintuitive, as allele fre-
quencies are the same across the vast majority of
subpopulations. However, the opposite is true when
one considers the possible genetic process (mechan-
ism) leading to the observed pattern of genetic
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Fig. 3. Distributions of D values at complete
differentiation (HS=0) of a population subdivided into
s=10 subpopulations under the pure drift model (no
mutation, no migration and no selection). The distribution
is obtained from 100 000 replicate simulations for a locus
with k=2, 5 and 10 alleles of an equal frequency initially.
For all three cases, GST=1 with frequency 1.
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variation. The absence of variation within any sub-
population but the presence of variation in the total
population implies both high genetic drift in and no
migration among subpopulations, a condition that
should lead to high differentiation. Otherwise, a low
level of differentiation due to either weak drift or high
migration will not in general lead to the observed
pattern of genetic variation. In terms of allele fre-
quency variance, although s2

p=1=s (1x1/s) is small
(indicating the high similarity in allele frequency
among subpopulations) in (2) for a large s, it is equal
to the maximal limiting value p̄(1xp̄) where p̄=1=s
(or p̄=1x1=s depending on the focal allele). As a re-
sult, FST=1, in agreement with GST. In other words,
FST or GST measures differentiation by putting allele
frequency difference between subpopulations in con-
text, relative to the total population. Although in the
above situation the variance in allele frequencies
across subpopulations is very small, it is also very
small for the total population.

Let us now consider a practical example of a sub-
divided population. Suppose a number of s replicate
inbred lines are established from the same large and
outbred source population, and are maintained in the
lab without crossing or immigration for many gen-
erations until they become pure inbred lines. If one
assays a set of markers chosen at random, and uses
the marker data in estimating differentiation, he/she
would obtain very different results of D and GST.
D values calculated for each of the loci will be
highly variable between 0 and 1, depending on the
initial number of alleles (k) of the marker relative to s.
For a highly polymorphic microsatellite with kos,
D=1 may be possible when each line is fixed for a
distinctive allele. More generally, a whole distribution
of D values between 0 and 1 is possible. For SNPs
(k=2), however, D is either 0 or 2/s, and will never
reach a value of 1 except when s=2. In contrast, GST

is either undefined when a marker has a single allele
fixed in all lines, or GST=1 otherwise, irrespective
of the initial polymorphisms of the markers in the
source population. The results of GST obviously make
sense.

Now let us consider the numerical examples in
Jost’s (2008) Table 1, outlined above. Although the
two subpopulations of species B share both alleles,
their allele frequencies are highly different (differ-
entiated), with a frequency difference of 0.6. In con-
trast, although the two subpopulations of species C
share none of the 20 alleles, they have very similar
frequencies of each allele (not differentiated much)
with a maximal difference of 0.17. I would argue that
a measurement of differentiation based on allele fre-
quency difference among subpopulations is more
plausible and robust than that based on the number
of unshared alleles among subpopulations. The be-
haviours ofD and GST in Jost’s (2008) Figures 1 and 2

and Jost’s (2009) Figure 1 can be explained similarly,
as adding more unique alleles to subpopulations ef-
fectively reduces frequency differences for each allele
between subpopulations and thus reduces GST.

(iv) D is highly sensitive to how alleles and loci are
defined and how data are analysed

For several types of markers, alleles are really arbi-
trary identities, depending on the technology used
in differentiating and detecting them. For example, at
the gene locus for the ABO blood-type carbohydrate
antigens in humans, classical genetics recognizes three
alleles, A, B and O that determine compatibility of
blood transfusions. It is now known that each of the
A, B and O alleles is actually a class of multiple alleles
with different DNA sequences that produce proteins
with identical properties. In total more than 70 alleles
are now known at the ABO locus (Yip, 2002).

On the other hand, the same marker data can be
and have been analysed differently for differentiation
among populations. Suppose, for example, a segment
of genomic or non-genomic DNA is sequenced for
each of several individuals sampled from each of sev-
eral subpopulations. The sequence data can be used to
assess differentiation in two approaches. One ap-
proach treats each polymorphic site as a separate lo-
cus (i.e. as an SNP) and then estimates differentiation
from the frequencies of alleles at each locus (e.g.
Takahata & Palumbi, 1985; Lynch & Crease, 1990).
The other approach treats the segment as a single
locus, and then estimates differentiation from the
haplotype frequencies (e.g. WST in analysis of mol-
ecular variance introduced by Excoffier et al., 1992) or
from the gene trees reconstructed from the sequences
(e.g. Slatkin & Maddison, 1989; Hudson et al., 1992).
Therefore, the same DNA sequence data have oper-
ationally either many biallelic loci (SNPs) or a single
highly polymorphic, many-allele locus.

In the above two situations, no matter how alleles
and loci are pooled or split due to technological rea-
sons or statistical treatments, differentiation would be
expected to be the same if it is measured by FST, or
GST when mutations are weak compared with drift
and migration. GST is based on allele frequency dif-
ference and is thus robust to the changes in recogniz-
able or operational alleles and loci, because each allele
and each locus are expected to have the same GST

value (Nei, 1973). Pooling several alleles (loci) to form
a ‘super allele ’ (‘super locus ’) or splitting an allele
(a locus) into two or more alleles (loci) has little effect
on GST, when mutations are unimportant (e.g. when
differentiation is dominated by drift because of a se-
vere bottleneck in population size in the recent past).
In contrast, D is highly sensitive to allele (locus)
pooling or splitting, because it depends strongly
on HS which is always increased by allele splitting
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(locus pooling) and decreased by allele pooling (locus
splitting).

Some simulations were conducted to check the ef-
fects of allele pooling on GST andD (the effect of allele
splitting is just the opposite). Figure 4 shows the re-
sults from simulations assuming a population sub-
divided into s=10 subpopulations at a locus with
initially 10 equifrequent alleles in each subpopulation.
Other parameters are m=0.01, u=0.001 and N=100.
Obviously, at any generation of differentiation, D is
reduced substantially by pooling alleles. The more
alleles are pooled, the smaller the D value becomes. In
contrast, pooling (or splitting) of alleles does not bias
GST estimates, it only reduces (increases) the esti-
mation precision. This property of GST is true for
other parameter combinations as long as drift or/
and migration are the dominating (over mutations)
forces in determining differentiation. Given the fact
that alleles and loci are more or less arbitrary due
to technological or operational reasons in many
practical situations, D is also arbitrary and is hardly
qualified as an objective measurement of differen-
tiation.

(v) D is highly dependent on the number of
subpopulations

For mathematical tractability, consider the finite is-
land model where the exact equilibrium values of FST,
GST and D are given by (7)–(9). The equilibrium FST,
GST and D as a function of the number of sub-
populations are depicted in Fig. 5(a), assuming
N=100, m=0.01 and u=0.001. As is clear, D is much
more dependent on s than GST and FST. While GST

and FST become virtually constant when s reaches 5,
D increases steadily with an increasing value of s with
no sign of reaching an asymptotic value when s is 100.
In fact, for this parameter combination, D does not

asymptotes with an increasing s until it is close to 1.
Its values are 0.088, 0.469, 0.907, 0.990 and 0.999
when s=2, 10, 100, 1000 and 10 000, respectively. This
much higher dependency of D on s than GST and FST

is true when m>u, which is realistic even for markers
with a high mutation rate (e.g. microsatellites).
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D
, G
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Fig. 4. Effects of pooling alleles on D and GST values as a function of generations, since a population becomes subdivided.
The simulations (10 000 replicates) assumed a population subdivided at t=0 into s=10 subpopulations, with m=0.01,
u=0.001, N=100 and initially 10 equifrequent alleles at a locus.
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Fig. 5. Effects of the number of subpopulations on D,
GST and FST values. The results are obtained assuming a
population subdivided into s subpopulations, with
m=0.01, u=0.001, N=100 in the island model and IAM.
(a) Shows the equilibrium D, GST and FST values, and
(b) shows the D and GST values at generations 10, 100 and
1000 since the subdivision.
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D can also be highly dependent on s in non-
equilibrium conditions. Figure 5(b) shows the values
ofGST andD as a function of s at different generations
(t=10, 100 and 1000) since the subdivision, obtained
from recurrence eqn (10) with parameters N=100,
m=0.01 and u=0.001. Starting from initial IIS
probabilities of f(0)=g(0)=1xH0, where the initial
gene diversity is H0=0.8, I calculated the IIS prob-
abilities and GST and D values at each successive
generation from (10). As is clear from Fig. 5(b), D is
sensitive to s at different stages in the process towards
the equilibrium differentiation. While D decreases
with s at early stages, it increases with s at later stages
or at equilibrium. In contrast, at all stages, GST

changes little with s.
The high dependence of D on s means that it is

impossible to estimate D reliably when the number
of subpopulations s is unknown. Unfortunately, s is
frequently unknown in practice. With frequent local
extinctions and recolonizations in natural popu-
lations in the evolution scale relevant for measuring
differentiation, it is actually difficult to define what s
means. Is it the current, previous or average number
of subpopulations? Obviously, the number of sampled
subpopulations is an underestimate of s and could
lead to serious under- or over-estimation of D if it is
used in place of s in estimating D (Fig. 5(b)). This
property of D makes it impossible to study the dif-
ferentiation of a population by sampling a small
number of subpopulations.

5. Conclusions

Wright’s FST, no matter whether defined in terms of
inbreeding (PIBD, correlation) or coalescence time, is
a general measurement of population differentiation,
independent of the type (e.g. SNPs and micro-
satellites) and properties (e.g. mutation rate) of the
markers used in estimating it. It truly measures
the differentiation due to demographic factors only
(migration and subpopulation size), and can be inter-
preted as such and compared across studies. However,
it is difficult to calculate from marker data when
mutations are important. Better estimators of FST

that can account for mutations (i.e. by distinguishing
IBD and IIS) need to be developed. FST, when inter-
preted in terms of heterozygosity or variance of allele
frequencies, becomes similar to GST as both are de-
fined on IIS and are affected by mutations.

Nei’s GST measures the differentiation at a locus
due to all evolutionary forces, including genetic drift,
migration, selection and mutation. As a result, GST

should be interpreted in terms of demographic factors
only when mutation and selection are unimportant.
In situations where mutations are important in com-
parison with drift and migration, GST calculated from
loci with high gene diversity is smaller than that

calculated from loci with low gene diversity, and thus
it measures marker differentiation rather than popu-
lation differentiation. Although I suggest the con-
tinued use of GST in practice, caution should be
exercised in its interpretation, especially for highly
polymorphic markers. Mean within subpopulation
diversity, HS, should be reported together with GST to
aid the interpretation.

Jost’s D is not a proper measure of genetic differ-
entiation. It is highly dependent on the initial gene
diversity of the marker loci, is highly sensitive to how
alleles and loci are defined and how data are analysed,
does not always increase monotonically with diver-
gence time and with drift, is highly dependent on the
unknown parameter of the number of subpopulations
and does not always have a maximal value of 1.
The maximalD value when differentiation is complete
can be zero, or close to zero, depending on the num-
ber of alleles at a locus relative to the number of
subpopulations. Subpopulations that share no alleles
at a locus are not completely differentiated. Rather,
the extent of differentiation depends on the magnitude
of difference in allele frequency, which is measured by
FST and GST but not D.
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