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1. Introduction

Certain optimization problems involving inequality constraints, known
as optimal control problems have been extensively studied during recent
years especially in relation to the calculation of optimal rocket thrusts and
trajectories. A summary of these works is given by Berkovitz [1] who also
establishes necessary conditions for the existence of solutions for a wide
class of such problems.

The analytical solution of such problems is in general quite intractable,
and recourse is made to approximation methods, which makes it desirable
to have some measure of the errors involved. In this paper a duality theorem
will be established for a class of optimal control programmes which permits
the calculation of upper and lower bounds for the solutions. A method of
calculating bounds for a related class of variational problems without
constraints has been given by Bellman [2].

2. The problem of optimal control

Let t, x, and u be elements of the sets T, X, and U contained in 1, n,
and m dimensional euclidean spaces respectively. The sets T and X will be
assumed to be bounded. The element x is called the state vector and u is
called the control vector. Let S = TxXxU.

Broadly our problem will be to select, under given conditions, a control
vector u, as a function of t, such that the state vector x, also a function of t,
is brought from some specified initial state x0 = x(t0) to some specified
final state xt = x^).

Notationally we shall not distinguish between row and column vectors
which if necessary can be identified from the context. Superscripts will
denote components of vectors. Subscripts x ox u will denote partial differen-
tiation with respect to the vector mentioned; for example, if Z{t, x, u) is a
vector valued appropriately differentiable function then Zx denotes the
matrix of partial derivatives [dZ'/dx']. A prime will signify differentiation
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with respect to t. Let f(t, x, u) be a scalar function convex on XxU and of
class C" onTxX; let G(t, x, u) be an w-dimensional vector linear in x and u,
that is, of the form

G{t, x, u) = Mx+Nu+P

where M, N, and P are nxn.nxtn, and « x l matrices respectively, whose
elements are functions of t; and let R(t, x, u) be an r-dimensional function
concave on XxU, of class C" on S and satisfying Berkovitz' constraint
conditions:

(i) If r > m then at each point of S at most m components of R can
vanish.

(ii) At each point of S the matrix [dR^Jdu^ where i ranges over those
indices such that R'{t, x, u) = 0, and / = 1 , . . . m, has maximum rank.

A set of admissible controls A is then defined as a subset of U such that
corresponding to each u e A the function u = u(t) is piecewise C" on the
closure [70, tx] of T and permits a continuous solution x(t) of the differential
equation

(1) *' = G(t, x, u)

such that z(t0) = x0 and x(tt) = xlt and such that the curve K thus defined
is interior to TxX and x(t) ^ xt for any t0 52 t ^ t^, further, along K, the
constraints

(2) )

are satisfied.
We shall also require that K is normal (Berkovitz Section VIII).

The problem is then to find an admissible control, if it exists, which minimises

(3)

Suppose M* is an optimal admissible control, and x*{t) the corresponding
function defining K*. Berkovitz has proved that there exists inter alia an
w-dimensionai Lagrange multiplier A(t) defined and continuous on T and an
r-dimensional Lagrange multiplier fi(t) ^ 0 defined and continuous on T
except at values of t corresponding to corners of K*, where it possesses
unique right and left hand limits, such that along K*:

(4) X=-{H.+MR.)

(5) HU+MRU = 0

(6) and pR = 0

where H is the Lagrangian function

(7) H(t, x, u, X) = f(t, x, u)+XG(t, x, u).
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We shall utilize these results in establishing a duality between Problems
I and II below. The term "duality" is used by analogy with the correspond-
ing duality theorems of mathematical programming. Although the symbols
used in Problem I are also used in Problem II, it is to be understood, of
course, that the two problems are quite distinct.

Problem I (Primal).

(8) Minimise J(u) = j^f{t, x, u)dt

(9) subject to x' = G(t, x, u)

(10) x(to)=x0,x(t1)=x1

(11) and R(t,x,u) ^ 0.

Problem II (Dual)

(12) Maximise I(u, I, /x) = j ' 1 {f(l, x, u)+/tt(t)R(t, x, u)}dt

(13) subject to x' = G(t, x, u)

(14) x(to)=xo,x(t1)=x1

(15) f.+iG.+pR. = -X

(16) fa+XGu+fiRu = 0

(17) /i < 0.

In the objective functional of Problem II, X is regarded as implicit.
It will be shown that the value of w that minimises the primal is the same

as the value of u that maximises the dual. Further the extreme values of
the objective functionals in both problems are identical. Thus any admissi-
ble solution of the primal is an upper bound to the optimal solution and any
admissible solution of the dual is a lower bound. In particular if (a;0, w°)
is some admissible solution of the primal, that is, is an upper bound for the
problem, and is sufficiently close to optimum, then a lower bound can easily
be established by putting the values x° and u° in the dual and solving the
resulting simple linear equations in X and ft. The validity of such a procedure
is shown by the following considerations: Since (x°, u°) satisfies the primal
constraints it also satisfies the dual constraints (13) and (14). It remains to
be seen whether values of X and fi :£ 0 can be found satisfying (15) and (16)
for the particular values x = x°, u = w°. Let Z be any matrix such that
fiRuZ = pRm. Then from (16) we have

(18) fttZ+XGuZ+fiRx = 0

which, on substitution in (15) gives

(19) (fm-fuZ)+X(Gx-GuZ) = -k'.
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Suppose (x*, u*) is an optimal solution of the primal. Then Berkovitz'
theorem ensures the existence of X* and p* ^ 0 satisfying (15) and (16),
and consequently (19), for the values x — x*, u = u*. It follows (see, for
example, [3]) that if (x°,u0) is sufficiently close to (x*,u*), there exist
X" and /J,0 ^ 0 arbitrarily close to X* and p* respectively, satisfying (19) for
the values z = x°,u — u°.

3. The duality theorem

THEOREM. If for problem I, u*(t) eA is an optimal control and x*(t)
is the corresponding optimal state defining the curve K* then there exists a
vector X* (t) defined and continuous on T and a vector (i* (t) <£ 0 defined and
continuous on T except perhaps at corners of K*, where it possesses unique
right and left hand limits, such that u*, x*, fi*, and X* are optimal in problem II
and the extreme values of the objective functions in both problems are equal.

PROOF. Since (a;*, u*) is an optimal solution of problem I then by
Berkovitz' theorem X* and p* exist and clearly satisfy the constraints of
problem II.

Let (x, u, X, /*) be any admissible solution of problem II.
Put

/•==/(*,»•,„•)
R* == R(t, x*. u*)

and G* s= G(t, x*. u*).

Then

= fc {(f*-f)+/*(R*-R)-nR*}dt by (6)

since / is convex and R is concave, and ft ^ 0,

by (15) and (16),

= £ {-X[(x*-x)Gx+(u*-u)Gu+x*-xt]-MR*}dt

— [(**—*)]£» by integrating by parts,
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= I"'1 {-A[(z* ~x)Gx+ (u*-u)Gu+G*-G]-fiR*}dt,
• " o

using (13) and the fact that x*(t0) = x(t0)

^ 0 by (17) and (11).

Hence (x*, u*, A*, /**) is the optimal solution of problem II. Further,

Max I(u, A, ft) = f'' {f*+fi* R*}dt

*dt by (6)

= min/(M).

The theorem is thus proved.
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