Comparison Geometry With L^{1}-Norms of Ricci Curvature

Jong-Gug Yun

Abstract. We investigate the geometry of manifolds with bounded Ricci curvature in L^{1}-sense. In particular, we generalize the classical volume comparison theorem to our situation and obtain a generalized sphere theorem.

1

Introduction

We shall in this paper establish some geometrical results for manifolds with bounded Ricci curvature in L^{1}-sense.

Let us first introduce some necessary notations: (M, g) is an n-dimensional complete Riemannain manifold with metric g. At each point x in this manifold, we denote by Ric_(x) the lowest eigenvalue for the Ricci tensor at x. Let $\mathrm{S}_{x} \subset \mathrm{~T}_{x} M$ denote the space of unit tangent vectors at x and $d(\theta)$ be the distance from x to the cut point in the direction $\theta \in \mathrm{S}_{x}=\mathrm{S}^{n-1} \subset \mathrm{~T}_{x} M$.

Then we define $\omega(r, \theta)$ by pulling back the volume form dvol of M to $\mathrm{U}_{x}=$ $\left\{(r, \theta) \in \mathrm{T}_{x} M: 0<r<d(\theta), \theta \in \mathrm{S}_{x}\right\}$, i.e.,

$$
\mathrm{dvol}=\omega(r, \theta) d t d \theta
$$

where $d \theta$ is the standard volume form on $\mathrm{S}_{x}=\mathrm{S}^{n-1}$.
For convenience, we define $\omega(r, \theta)$ to be zero for $r>d(\theta)$.
Let $\omega_{\kappa}(r, \theta)$ be the $\omega(r, \theta)$ of the space form \mathbb{S}_{κ}^{n} of dimension n with constant curvature $\kappa>0$. We then know that $\omega^{\prime}=h \omega$ (resp., $\omega_{\kappa}^{\prime}=h_{\kappa} \omega_{\kappa}$), where h (resp., h_{κ}) is the mean curvature of the level sets of distant function on (M, g) (resp., $\left.\mathbb{S}_{\kappa}^{n}\right)$.

In 1997, P. Petersen and G. Wei [PeW] generalized the classical volume comparison to a situation where the amount of Ricci curvature which lies below $(n-1) \kappa$ is small in L^{p}-sense for $p>\frac{n}{2}$.

Note that for some analytic reason, the condition $p>\frac{n}{2}(\geq 1)$ in the study of the geometry of manifolds with bounded Ricci curvature in L^{p}-sense is essential and the proof of the above result strongly relies on the condition of $p>\frac{n}{2}$, where the case $p=1$ is excluded.

In 2000, however, some results on the geometry of manifolds with bounded Ricci curvature in L^{1}-sense were developed by C. Sprouse [S]. In fact, he managed to show that if one assumes the manifold has Ric ${ }_{-} \geq-(n-1) k(k>0)$, then it suffices to

[^0]assume that the amount of Ricci curvature which lies below $(n-1)$ in L^{1}-norm in order to get a diameter bound close to π. Motivated by this result, the author [Y1] provided a corresponding volume structure theorem as follows.

Theorem 1.1 ([Y1]) For given $R>\pi, \epsilon>0, k>0$, and an integer n, there exists a $\delta=\delta(\epsilon, R, k, n)$ such that if M is a complete n-manifold with $\int_{B(x, R)}((n-1)-$ Ric $)_{+}$dvol $<\delta$, Ric $_{-} \geq-(n-1) k(k>0)$, then $\operatorname{vol}(B(x, R)-B(x, \pi))<\epsilon$ for all $x \in M$.

Here, $u_{+}=\max (0, u)$ is the positive part of the function u.
By applying some results obtained while we proved Theorem 1.1, we can prove the following volume comparison theorem.

Theorem 1.2 Let $k>0, n \in \mathbb{N}, 0<r<R$ be given. Then for every $\epsilon>0$, there exists $\delta=\delta(\epsilon, n, k, r, R)>0$ such that if M is an n-dimensional Riemannian manifold with Ric $_{-} \geq-(n-1) k$ and $\int_{M}\left((n-1)-\text { Ric }_{-}\right)_{+} \mathrm{dvol}<\delta$, then we have

$$
\frac{\operatorname{vol} B(x, R)}{v(n, R)}<\frac{\operatorname{vol} B(x, s)}{v(n, s)}+\epsilon
$$

for all $x \in M$ and s with $r<s<R$, where $v(n, s)$ means the volume of metric s-ball in S^{n}.

As an application of Theorem 1.2, we can obtain the following volume and curvature pinching result.

Theorem 1.3 For given $p>n, R>\pi$, and $C>0$, there exists a $\delta>0$ such that if M is an n-dimensional Riemannian manifold with

$$
\int_{M}|\operatorname{Ric}|^{p} \mathrm{dvol} \leq C, \quad \int_{M}\left((n-1)-\mathrm{Ric}_{-}\right)_{+} \operatorname{dvol}<\delta, \quad \operatorname{Ric}_{-} \geq-(n-1) k
$$

then M is diffeomorphic to S^{n} provided that $\operatorname{vol} B(x, R) \geq(1-\delta) \operatorname{vol}\left(S^{n}\right)$ for some $x \in M$.

2 Proof of Theorem 1.2

Consider a sequence (M_{i}, g_{i}, x_{i}) of Riemannian n-manifolds with metrics g_{i} and $x_{i} \in$ M_{i} such that

$$
\operatorname{Ric}_{M_{i}} \geq-(n-1) k(k>0), \int_{M_{i}}\left((n-1)-\operatorname{Ric}_{-}\right)_{+} \operatorname{dvol}<\delta_{i}
$$

where $\lim _{i \rightarrow \infty} \delta_{i}=0$.
Then it suffices to show that for every $\epsilon>0$, there exists $N=N(\epsilon, n, k, r, R) \in \mathbb{N}$ such that

$$
\frac{\operatorname{vol} B\left(x_{i}, R\right)}{v(n, R)}-\frac{\operatorname{vol} B\left(x_{i}, s\right)}{v(n, s)}<\epsilon
$$

for all $i \geq N$ and s with $r<s<R$.
Recall that for every $\epsilon>0$, there exists an $N \in \mathbb{N}$ such that $\operatorname{vol}\left(B\left(x_{i}, R\right)-\right.$ $\left.B\left(x_{i}, \pi\right)\right)<\epsilon$ for all $i \geq N$ by Theorem 1.1. So without loss of generality, we may assume that $R<\pi$.

We use the same notation as in $[\mathrm{P}]$ and repeat it here.
For any $\delta>0$, let

$$
\operatorname{vol}\left(E_{\delta}^{i}\right):=\operatorname{vol}\left\{x \in B\left(x_{i}, R\right): \int_{B\left(x_{i}, R\right)}\left((n-1)-\mathrm{Ric}_{-}\right)_{+} \mathrm{dvol}>\delta\right\}
$$

which converges to zero since

$$
\begin{aligned}
\int_{M_{i}}\left((n-1)-\operatorname{Ric}_{-}\right)_{+} \mathrm{dvol} & >\int_{E_{\delta}^{i}}\left((n-1)-\mathrm{Ric}_{-}\right)_{+} \mathrm{dvol} \\
& >\int_{E_{\delta}^{i}} \delta \mathrm{dvol}=\delta \operatorname{vol}\left(E_{\delta}^{i}\right)
\end{aligned}
$$

We also let

$$
S_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}(\theta)=\inf \left\{s: s>\delta_{i}, \theta \in\left(\Phi_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}\right)^{c}, \mu\left(\gamma_{\theta}^{i}\left(\left[\delta_{i}, s\right]\right) \cap E_{\delta}^{i}\right) \geq \sqrt[4]{\epsilon_{i}}\right\}
$$

where

$$
\Phi_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}=\left\{\theta \in \mathrm{S}^{n-1} \subset T_{x_{i}} M_{i}: \mu\left(\gamma_{\theta}^{i}\left(\left[\delta_{i}, \min \left(R, d^{i}(\theta)\right)\right]\right) \cap E_{\delta}^{i}\right)<\sqrt[4]{\epsilon_{i}}\right\}
$$

and μ is the measure on $\gamma_{\theta}^{i}(t)=\exp _{x_{i}} t \theta$.
We should recall that for any $\theta \in \Phi \sqrt[4]{\epsilon_{i}}, \delta_{i}$ we have that $\left(h_{i}(t, \theta)-h_{1}(t)\right)_{+}$can be arbitrarily small on $\left[\sqrt[3]{\tau_{i}}, \min \left(d^{i}(\theta), R\right)\right]$ for sufficiently large i [Y1]. Here, τ_{i} is a positive number with $\lim _{i \rightarrow \infty} \tau_{i}=0$.

Now, we first analyze vol $B\left(x_{i}, R\right)$ for any $R>0$ as follows.

$$
\begin{aligned}
& \operatorname{vol} B\left(x_{i}, R\right)=\int_{S^{n-1}} \int_{B\left(x_{i}, \delta_{i}\right)} \omega_{i} d t d \theta+\int_{\Phi_{\sqrt[4]{\tau_{i}}, \delta_{i}}} \int_{\delta_{i}}^{\sqrt[3]{\tau_{i}}} \omega_{i} d t d \theta \\
&+\int_{\Phi_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}} \int_{\sqrt[3]{\tau_{i}}}^{R} \omega_{i} d t d \theta+\int_{\left(\Phi_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}\right)^{c}} \int_{\delta_{i}}^{R} \omega_{i} d t d \theta
\end{aligned}
$$

But it is easy to see that the first and the second term in the above sum converge to zero as $i \rightarrow \infty$. So we may express $\operatorname{vol} B\left(x_{i}, R\right)$ as follows.

$$
\begin{equation*}
\operatorname{vol} B\left(x_{i}, R\right)=\int_{\Phi_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}} \int_{\sqrt[3]{\tau_{i}}}^{R} \omega_{i} d t d \theta+\int_{\left(\Phi_{\sqrt[4]{]_{i}}, \delta_{i}}\right)^{c}} \int_{\sqrt[3]{T_{i}}}^{R} \omega_{i} d t d \theta+\eta_{i} \tag{2.1}
\end{equation*}
$$

for some $\eta_{i}>0$ with $\lim _{i \rightarrow \infty} \eta_{i}=0$.

Now we recall that on $\Psi:=\Psi_{1} \cup \Psi_{2}$, where

$$
\begin{gathered}
\Psi_{1}=\left\{(t, \theta): \theta \in \Phi_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}, \sqrt[3]{\tau_{i}}<t<R\right\} \\
\Psi_{2}=\left\{(t, \theta): \theta \in\left(\Phi_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}\right)^{c}, \sqrt[3]{\tau_{i}}<t<S_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}(\theta)\right\}
\end{gathered}
$$

we have

$$
h_{i}(t, \theta)-h_{1}(t)<\mu_{i}
$$

for some $\mu_{i}>0$ with $\mu_{i} \rightarrow 0$ [Y1].
Thus, from the above inequality, we have

$$
\left(\ln \omega_{i}(t, \theta)\right)^{\prime}-\left(\ln \omega_{1}(t)\right)^{\prime}<\mu_{i}
$$

which gives $\left(\ln \frac{\omega_{i}(t, \theta)}{\omega_{1}(t)}\right)^{\prime}<\mu_{i}$.
Thus for any $\left(t_{1}, \theta\right),\left(t_{2}, \theta\right) \in \Psi$ with $t_{1}<t_{2}$, we get

$$
\int_{t_{1}}^{t_{2}}\left(\ln \frac{\omega_{i}(t, \theta)}{\omega_{1}(t)}\right)^{\prime} d t<\mu_{i}\left(t_{2}-t_{1}\right)
$$

which implies

$$
\ln \frac{\omega_{i}\left(t_{2}, \theta\right)}{\omega_{1}\left(t_{2}\right)}-\ln \frac{\omega_{i}\left(t_{1}, \theta\right)}{\omega_{1}\left(t_{1}\right)}<\mu_{i}\left(t_{2}-t_{1}\right)
$$

Consequently, we have

$$
\begin{equation*}
\frac{\omega_{i}\left(t_{2}, \theta\right)}{\omega_{1}\left(t_{2}\right)}<\exp \left(\nu_{i}\right) \frac{\omega_{i}\left(t_{1}, \theta\right)}{\omega_{1}\left(t_{1}\right)} \tag{2.2}
\end{equation*}
$$

for some $\nu_{i}>0$ with $\lim _{i \rightarrow \infty} \nu_{i}=0$.
Now we consider the following lemma which is a slight modification of [Z, Lemma 3.2].

Lemma 2.1 Let f, g be two positive continuous functions defined on $[0, \infty]$. If $\frac{f(b)}{g(b)} \leq$ $\exp (\nu) \frac{f(a)}{g(a)}$ for some $\nu>0$ and for all a, b with $0<a<b$, then for any given $R>0$, $r>0$ and $a>0$ with $R>r>a$ we have

$$
\frac{\int_{a}^{R} f(t) d t}{\int_{a}^{R} g(t) d t} \leq \frac{\int_{a}^{s} f(t) d t}{\int_{a}^{s} g(t) d t}+\tau(\nu)
$$

for all $s>0$ with $R \geq s \geq r>a$ and for some $\tau(\nu)>0$ satisfying $\lim _{\nu \rightarrow 0} \tau(\nu)=0$.
Proof It suffices to show that the function

$$
F(y)=\frac{\int_{a}^{y} f(t) d t}{\int_{a}^{y} g(t) d t}
$$

is almost nonincreasing with respect to $y \in[r, R]$. Specifically, we first compute

$$
\begin{aligned}
F^{\prime}(y) & =\frac{1}{\left(\int_{a}^{y} g(t) d t\right)^{2}}\left\{f(y) \int_{a}^{y} g(t) d t-g(y) \int_{a}^{y} f(t) d t\right\} \\
& =\frac{g(y) \int_{a}^{y} g(t) d t}{\left(\int_{a}^{y} g(t) d t\right)^{2}}\left\{\frac{f(y)}{g(y)}-\frac{\int_{a}^{y} f(t) d t}{\int_{a}^{y} g(t) d t}\right\}
\end{aligned}
$$

But

$$
\frac{f(y)}{g(y)} \leq \exp (\nu) \frac{f(t)}{g(t)}
$$

for $a \leq t \leq y$.
Thus $\int_{a}^{y} f(t) d t \geq \exp (-\nu) \frac{f(y)}{g(y)} \int_{a}^{y} g(t) d t$, that is,

$$
\frac{f(y)}{g(y)} \leq \exp (\nu) \frac{\int_{a}^{y} f(t) d t}{\int_{a}^{y} g(t) d t}
$$

Consequently, we have

$$
\begin{equation*}
F^{\prime}(y) \leq \frac{g(y) \int_{a}^{y} g(t) d t}{\left(\int_{a}^{y} g(t) d t\right)^{2}} \frac{\int_{a}^{y} f(t) d t}{\int_{a}^{y} g(t) d t}(\exp (\nu)-1) \tag{2.3}
\end{equation*}
$$

for all y with $a<r \leq y \leq R$.
Since the right-hand side of the above inequality tends to zero as $\nu \rightarrow 0$, we can express $F^{\prime}(y) \leq \mu(\nu)$ for some $\mu(\nu)>0$ satisfying $\lim _{\nu \rightarrow 0} \mu(\nu)=0$. Then by integrating this inequality from s to R, we get $F(R)-F(s) \leq(R-s) \mu(\nu)$.

So if we let $\tau(\nu):=(R-s) \mu(\nu)<R \mu(\nu)$, then we have $F(R) \leq F(s)+\tau(\nu)$, which is our desired result.

We can now estimate the volume ratio for the case $(t, \theta) \in \Psi_{1}$ using (2.2) and the above lemma.

For $\nu_{i}>0$ in (2.2), we define $y_{i}\left(>\sqrt[3]{\tau_{i}}\right)$ so that $\int_{\sqrt[3]{\tau_{i}}}^{y_{i}} \omega_{1} d t=\sqrt{\nu_{i}}$.
Then from (2.3) in the proof of Lemma 2.1 and (2.2), it is easy to check

$$
\left.\left(\frac{\int_{\sqrt[3]{\tau_{i}}}^{y} \omega_{i} d t}{\int_{\sqrt[3]{\tau_{i}}}^{y} \omega_{1} d t}\right)^{\prime}\right|_{y_{i} \leq y \leq R} \leq \frac{\exp \left(\nu_{i}\right)-1}{\sqrt{\nu_{i}}} C(k, n, R)
$$

which converges to zero as $i \rightarrow \infty$.
So we have

$$
\frac{\int_{\sqrt[3]{\tau_{i}}}^{R} \omega_{i} d t}{\int_{\sqrt[3]{\tau_{i}}}^{R} \omega_{1} d t} \leq \frac{\int_{\sqrt[3]{\tau_{i}}}^{s} \omega_{i} d t}{\int_{\sqrt[3]{\tau_{i}}}^{s} \omega_{1} d t}+\tau\left(\nu_{i}\right)
$$

for some $\tau\left(\nu_{i}\right)>0$ satisfying $\lim _{i \rightarrow \infty} \tau\left(\nu_{i}\right)=0$ and for all s with $y_{i} \leq s \leq R$.

From the above inequality, we can easily obtain the following.

$$
\begin{equation*}
\frac{\int_{\Phi_{\sqrt[4]{\bar{\tau}_{i}, \delta_{i}}}} \int_{\sqrt[3]{\tau_{i}}}^{R} \omega_{i} d t d \theta}{\int_{S^{n-1}} \int_{\sqrt[3]{\tau_{i}}}^{R} \omega_{1} d t d \theta} \leq \frac{\int_{\Phi_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}} \int_{\sqrt[3]{\tau_{i}}}^{s} \omega_{i} d t d \theta}{\int_{S^{n-1}}^{s} \int_{\sqrt[3]{\tau_{i}}}^{s} \omega_{1} d t d \theta}+\tau\left(\nu_{i}\right) \tag{2.4}
\end{equation*}
$$

Here we used $\tau\left(\nu_{i}\right)$ as a generic constant with the property $\lim _{i \rightarrow \infty} \tau\left(\nu_{i}\right)=0$, and we always use $\tau\left(\nu_{i}\right)$ in such a way afterwards.

Next, we shall estimate the volume ratio for the case $(t, \theta) \in \Psi_{2}$ in the similar way.
Note first that $\left(\Phi_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}\right)^{c}$ can be divided into the following three subsets:

$$
\begin{aligned}
& \left(\Phi_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}^{1}\right)^{c}=\left\{\theta \in\left(\Phi_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}\right)^{c}: S_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}(\theta)<y_{i}<R\right\} \\
& \left(\Phi_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}^{2}\right)^{c}=\left\{\theta \in\left(\Phi_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}\right)^{c}: y_{i}<S_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}(\theta)<R\right\} \\
& \left(\Phi_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}^{3}\right)^{c}=\left\{\theta \in\left(\Phi_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}\right)^{c}: y_{i}<R<S_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}(\theta)\right\}
\end{aligned}
$$

For the case $(t, \theta) \in \Psi_{2}$ and $\theta \in\left(\Phi_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}^{1}\right)^{c}$, we get, for all s with $y_{i} \leq s \leq R$,

$$
\begin{equation*}
\frac{\int_{\left(\Phi_{\sqrt[4]{\tau_{i}}, \delta_{i}}\right)^{c}} \int_{\delta_{i}}^{S_{\sqrt[4]{\xi_{i}}, \delta_{i}}(\theta)} \omega_{i} d t d \theta}{\int_{S^{n-1}} \int_{\sqrt[3]{\tau_{i}}}^{R} \omega_{1} d t d \theta} \leq \frac{\int_{\left(\Phi^{1}\right.}}{\int_{S_{\sqrt{\tau_{i}}, \delta_{i}}} \int_{\sqrt[3]{T_{i}}}^{c} \int_{\delta_{i}}^{s} \omega_{i} d t d \theta} \tag{2.5}
\end{equation*}
$$

which is evident because $\int_{S^{n-1}} \int_{\sqrt[3]{\tau_{i}}}^{R} \omega_{1} d t d \theta>\int_{S^{n-1}} \int_{\sqrt[3]{\tau_{i}}}^{s} \omega_{1} d t d \theta$ and $S_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}(\theta)<s$. For the case $(t, \theta) \in \Psi_{2}$ and $\theta \in\left(\Phi_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}^{2}\right)^{c}$, we use Lemma 2.1 and (2.2) to get
for all s with $y_{i} \leq s \leq S_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}(\theta)$.
But since $S_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}(\theta)<R$ in this case, we can rewrite the above inequality as follows:
for all s with $y_{i} \leq s \leq S_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}(\theta)$.
Furthermore, in case $S_{\sqrt[4]{\epsilon_{i}}, \delta_{i}}(\theta)<s \leq R$ we clearly have

So we may say that (2.6) holds for any s with $y_{i} \leq s \leq R$.

Thirdly, we obtain the similar estimate for the case $(t, \theta) \in \Psi_{2}$ and $\theta \in\left(\Phi_{\sqrt[4]{\epsilon_{i}, \delta_{i}}}^{3}\right)^{c}$ using the same method as above.
for all s with $y_{i} \leq s \leq R$.
Now we sum the above four inequalities (2.4)-(2.7) and use (2.1) together with [Y1, Lemma.2.1] to show that, for every $\epsilon>0$, there exits $N \in \mathbb{N}$ such that

$$
\frac{\operatorname{vol} B\left(p_{i}, R\right)}{v(n, R)}<\frac{\operatorname{vol} B\left(p_{i}, s\right)}{v(n, s)}+\epsilon
$$

for all $i \geq N$ and for all s with $y_{i} \leq s \leq R$.
Since $y_{i} \rightarrow 0$, we complete the proof of Theorem 1.2.

3 Proof of Theorem 1.3

Let $\left(M_{i}, g_{i}, x_{i}\right)$ be a sequence of manifolds such that

$$
\begin{gather*}
\int_{M_{i}}\left|\operatorname{Ric}_{M_{i}}\right|^{p} \text { dvol } \leq C, \quad \int_{M_{i}}\left((n-1)-\operatorname{Ric}_{-}\right)_{+} \operatorname{dvol}<\delta_{i} \tag{3.1}\\
\operatorname{Ric}_{M_{i}} \geq-(n-1) k, \quad \text { and } \quad \operatorname{vol} B\left(x_{i}, R\right) \geq\left(1-\delta_{i}\right) \operatorname{vol}\left(S^{n}\right)
\end{gather*}
$$

where δ_{i} tends to zero as i goes to infinity.
We first show that

$$
\sup \left\{d\left(x_{i}, q_{i}\right): q_{i} \in M_{i}\right\}<3 R
$$

To obtain this, suppose that it were not true and find $q_{i} \in M_{i}$ such that $d\left(x_{i}, q_{i}\right)=3 R$ for each large i. Then we easily see that $B\left(x_{i}, R\right) \subset B\left(q_{i}, 4 R\right)-B\left(q_{i}, \pi\right)$, which implies $\operatorname{vol}\left(B\left(q_{i}, 4 R\right)-B\left(q_{i}, \pi\right)\right) \geq \operatorname{vol} B\left(x_{i}, R\right) \geq\left(1-\delta_{i}\right) \operatorname{vol}\left(S^{n}\right)$.

By letting $i \rightarrow \infty$, the above inequality gives a contradiction by Theorem 1.1. Consequently, we have

$$
\sup \left\{d\left(x_{i}, q_{i}\right): q_{i} \in M_{i}\right\}<3 R
$$

which means that $B\left(x_{i}, 3 R\right)=M_{i}$ for all i. Now we show an analogue of [Y2, Lemma 3.1].

Lemma 3.1 For sufficiently small δ_{i}, the class of all complete Riemannian manifolds satisfying (3.1) is precompact in the $C^{1+\alpha}$ topology $\left(1+\alpha<2-\frac{n}{p}\right)$.

Proof The proof is similar to that of [Y2, Lemma 3.1] and the argument depends on the proof of [Pe, Theorem 5.1].

To obtain the necessary volume growth condition, we first claim that for any given $\eta>0$, there exists a $D \in(0, \pi)$ such that

$$
\frac{\operatorname{vol}\left(B\left(x_{i}, D\right)\right)}{v(n, D)} \geq 1-\eta
$$

for all sufficiently large i. Indeed, if this were not true, we may choose $D_{i}<\pi$ with $D_{i} \rightarrow \pi$ such that

$$
\frac{\operatorname{vol}\left(B\left(x_{i}, D_{i}\right)\right)}{v\left(n, D_{i}\right)}<1-\eta
$$

for each i.
Then we have

$$
\begin{aligned}
\eta-\delta_{i} & =\left(1-\delta_{i}\right)-(1-\eta) \\
& <\frac{\operatorname{vol} B\left(x_{i}, R\right)}{\operatorname{vol}\left(\mathrm{S}^{n}\right)}-\frac{\operatorname{vol} B\left(x_{i}, D_{i}\right)}{v\left(n, D_{i}\right)} \\
& =\frac{v\left(n, D_{i}\right) \operatorname{vol} B\left(x_{i}, R\right)-\operatorname{vol}\left(\mathrm{S}^{n}\right) \operatorname{vol} B\left(x_{i}, D_{i}\right)}{\operatorname{vol}\left(\mathrm{S}^{n}\right) v\left(n, D_{i}\right)}
\end{aligned}
$$

By Theorem 1.1, we know that $\operatorname{vol} B\left(x_{i}, R\right)-\operatorname{vol} B\left(x_{i}, D_{i}\right)$ converges to zero. So the last quantity in the above inequalities tends to zero as i goes to infinity. Consequently $\eta-\delta_{i}$ tends to zero, which is a contradiction.

Next, by Theorem 1.2, for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\frac{\operatorname{vol}\left(B\left(x_{i}, R\right)\right)}{v(n, R)}-\epsilon \leq \frac{\operatorname{vol}\left(B\left(x_{i}, s\right)\right)}{v(n, s)}
$$

for all s with $y_{i}<s<R$ and $i \geq N$. So if we choose η and ϵ so that $\eta+\epsilon=\eta_{n}$, where η_{n} is the universal constant appearing in [An, Lemma 3.1], then we obtain that

$$
\frac{\operatorname{vol}\left(B\left(x_{i}, s\right)\right)}{v(n, s)} \geq 1-\eta_{n}
$$

for all s with $y_{i}<s<R$.
Since $y_{i} \rightarrow 0$ as $i \rightarrow \infty$, there is no problem in applying the same arguments as in [Y2, Lemma 3.1] and we easily arrive at the desired result by the standard metric rescaling argument.

By Lemma 3.1, we have a $C^{1+\alpha}$-manifold (N, g) and $\left(M_{i}, g_{i}\right) \rightarrow(N, g)$ in the $C^{1+\alpha}$ topology. Since the same argument in [Y2, Lemma 3.2] can be used for our situation, we can show that (N, g) is a $C^{1+\alpha}$-Wiedersehens manifold and we know that it is isometric to S^{n} (See [Y2, Lemma 3.2] for details). Thus we have established the theorem.

References

[An] M. T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102(1990), 429-445.
[P] S.-H. Paeng, A sphere theorem under a curvature perturbation. II. Kyushu J. Math. 52(1998), 439-454.
[Pe] P. Petersen, Convergence theorems in Riemannian geometry. In: Comparison Geometry, Math. Sci. Res. Inst. Publ. 30, Cambridge, Cambridge University Press, 1997, pp. 167-202.
[PeW] P. Petersen and G. Wei, Relative volume comparison with integral curvature bounds. Geom. Funct. Anal. 7(1997), 1031-1045.
[S] C. Sprouse, Integral curvature bounds and bounded diamter. Comm. Anal. Geom. 8(2000), 531-543.
[Y1] J.-G. Yun, Mean curvature comparison with L^{1}-norms of Ricci curvature. Canad. Math. Bull. 47(2004), 314-320.
[Y2] J.-G. Yun, A sphere theorem with integral curvature bounds. Kyushu J. Math. 56(2002), 225-234. [Z] S. Zhu, The comparison geometry of Ricci curvature. In: Comparison Geometry, Math. Sci. Res. Inst. Publ. 30, Cambridge, Cambridge University Press, 1997, pp. 221-262.

Department of Mathematics Education
Korea National University of Education
San 7 Darakri Gangnaemyeon
Cheongwongun, Chungbuk 363-791
Korea
e-mail: jgyun69@knue.ac.kr

[^0]: Received by the editors August 18, 2003; revised January 24, 2005.
 This work was supported by the Korea Research Foundation Grant(KRF-2005-214-C00136). AMS subject classification: 53C20.
 Keywords: Mean curvature, Ricci curvature.
 (C)Canadian Mathematical Society 2006.

