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Comparison Geometry With
L

1-Norms of Ricci Curvature

Jong-Gug Yun

Abstract. We investigate the geometry of manifolds with bounded Ricci curvature in L1-sense. In

particular, we generalize the classical volume comparison theorem to our situation and obtain a gen-

eralized sphere theorem.

1 Introduction

We shall in this paper establish some geometrical results for manifolds with bounded

Ricci curvature in L1-sense.

Let us first introduce some necessary notations: (M, g) is an n-dimensional com-

plete Riemannain manifold with metric g. At each point x in this manifold, we denote

by Ric−(x) the lowest eigenvalue for the Ricci tensor at x. Let Sx ⊂ TxM denote the

space of unit tangent vectors at x and d(θ) be the distance from x to the cut point in

the direction θ ∈ Sx = Sn−1 ⊂ TxM.

Then we define ω(r, θ) by pulling back the volume form dvol of M to Ux =

{(r, θ) ∈ TxM : 0 < r < d(θ), θ ∈ Sx}, i.e.,

dvol = ω(r, θ)dtdθ,

where dθ is the standard volume form on Sx = Sn−1.

For convenience, we define ω(r, θ) to be zero for r > d(θ).

Let ωκ(r, θ) be the ω(r, θ) of the space form S
n
κ of dimension n with constant cur-

vature κ > 0. We then know that ω ′
= hω (resp., ω ′

κ = hκωκ), where h (resp., hκ) is

the mean curvature of the level sets of distant function on (M, g) (resp., S
n
κ).

In 1997, P. Petersen and G. Wei [PeW] generalized the classical volume compari-

son to a situation where the amount of Ricci curvature which lies below (n − 1)κ is

small in Lp-sense for p > n
2
.

Note that for some analytic reason, the condition p > n
2

(≥ 1) in the study of the

geometry of manifolds with bounded Ricci curvature in Lp-sense is essential and the

proof of the above result strongly relies on the condition of p > n
2

, where the case

p = 1 is excluded.

In 2000, however, some results on the geometry of manifolds with bounded Ricci

curvature in L1-sense were developed by C. Sprouse [S]. In fact, he managed to show

that if one assumes the manifold has Ric− ≥ −(n − 1)k(k > 0), then it suffices to
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assume that the amount of Ricci curvature which lies below (n − 1) in L1-norm in

order to get a diameter bound close to π. Motivated by this result, the author [Y1]

provided a corresponding volume structure theorem as follows.

Theorem 1.1 ([Y1]) For given R > π, ǫ > 0, k > 0, and an integer n, there exists

a δ = δ(ǫ, R, k, n) such that if M is a complete n-manifold with
∫

B(x,R)
((n − 1) −

Ric−)+ dvol < δ, Ric− ≥ −(n − 1)k (k > 0), then vol(B(x, R) − B(x, π)) < ǫ for all

x ∈ M.

Here, u+ = max(0, u) is the positive part of the function u.

By applying some results obtained while we proved Theorem 1.1, we can prove

the following volume comparison theorem.

Theorem 1.2 Let k > 0, n ∈ N, 0 < r < R be given. Then for every ǫ > 0, there

exists δ = δ(ǫ, n, k, r, R) > 0 such that if M is an n-dimensional Riemannian manifold

with Ric− ≥ −(n − 1)k and
∫

M
((n − 1) − Ric−)+ dvol < δ, then we have

vol B(x, R)

v(n, R)
<

vol B(x, s)

v(n, s)
+ ǫ

for all x ∈ M and s with r < s < R, where v(n, s) means the volume of metric s-ball

in Sn.

As an application of Theorem 1.2, we can obtain the following volume and curva-

ture pinching result.

Theorem 1.3 For given p > n, R > π, and C > 0, there exists a δ > 0 such that if M

is an n-dimensional Riemannian manifold with

∫

M

|Ric |p dvol ≤ C,

∫

M

((n − 1) − Ric−)+ dvol < δ, Ric− ≥ −(n − 1)k,

then M is diffeomorphic to Sn provided that vol B(x, R) ≥ (1 − δ) vol(Sn) for some

x ∈ M.

2 Proof of Theorem 1.2

Consider a sequence (Mi, gi, xi) of Riemannian n-manifolds with metrics gi and xi ∈
Mi such that

RicMi
≥ −(n − 1)k (k > 0),

∫

Mi

((n − 1) − Ric−)+ dvol < δi,

where limi→∞ δi = 0.

Then it suffices to show that for every ǫ > 0, there exists N = N(ǫ, n, k, r, R) ∈ N

such that
vol B(xi , R)

v(n, R)
− vol B(xi , s)

v(n, s)
< ǫ
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for all i ≥ N and s with r < s < R.

Recall that for every ǫ > 0, there exists an N ∈ N such that vol(B(xi , R) −
B(xi , π)) < ǫ for all i ≥ N by Theorem 1.1. So without loss of generality, we may

assume that R < π.

We use the same notation as in [P] and repeat it here.

For any δ > 0, let

vol(Ei
δ) := vol

{

x ∈ B(xi , R) :

∫

B(xi ,R)

((n − 1) − Ric−)+ dvol > δ
}

,

which converges to zero since

∫

Mi

((n − 1) − Ric−)+ dvol >

∫

Ei

δ

((n − 1) − Ric−)+ dvol

>

∫

Ei

δ

δ dvol = δ vol(Ei
δ).

We also let

S 4
√

ǫi ,δi
(θ) = inf{s : s > δi, θ ∈ (Φ 4

√
ǫi ,δi

)c, µ(γi
θ([δi , s]) ∩ Ei

δ) ≥ 4
√

ǫi},

where

Φ 4
√

ǫi ,δi
= {θ ∈ Sn−1 ⊂ Txi

Mi : µ(γi
θ([δi , min(R, di(θ))]) ∩ Ei

δ) < 4
√

ǫi}

and µ is the measure on γi
θ(t) = expxi

tθ.

We should recall that for any θ ∈ Φ 4
√

ǫi ,δi
we have that (hi(t, θ) − h1(t))+ can be

arbitrarily small on [ 3
√

τi, min(di(θ), R)] for sufficiently large i [Y1]. Here, τi is a

positive number with limi→∞ τi = 0.

Now, we first analyze vol B(xi , R) for any R > 0 as follows.

vol B(xi , R) =

∫

Sn−1

∫

B(xi ,δi )

ωi dtdθ +

∫

Φ 4
√

ǫi ,δi

∫ 3
√

τi

δi

ωi dtdθ

+

∫

Φ 4
√

ǫi ,δi

∫ R

3
√

τi

ωi dtdθ +

∫

(Φ 4
√

ǫi ,δi
)c

∫ R

δi

ωi dtdθ.

But it is easy to see that the first and the second term in the above sum converge

to zero as i → ∞. So we may express vol B(xi , R) as follows.

(2.1) vol B(xi , R) =

∫

Φ 4
√

ǫi ,δi

∫ R

3
√

τi

ωi dtdθ +

∫

(Φ 4
√

ǫi ,δi
)c

∫ R

3
√

τi

ωi dtdθ + ηi

for some ηi > 0 with limi→∞ ηi = 0.
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Now we recall that on Ψ := Ψ1 ∪ Ψ2, where

Ψ1 = {(t, θ) : θ ∈ Φ 4
√

ǫi ,δi
, 3
√

τi < t < R},

Ψ2 = {(t, θ) : θ ∈ (Φ 4
√

ǫi ,δi
)c, 3

√
τi < t < S 4

√
ǫi ,δi

(θ)},

we have

hi(t, θ) − h1(t) < µi

for some µi > 0 with µi → 0 [Y1].

Thus, from the above inequality, we have

(ln ωi(t, θ)) ′ − (ln ω1(t)) ′ < µi,

which gives (ln ωi (t,θ)

ω1(t)
) ′ < µi .

Thus for any (t1, θ), (t2, θ) ∈ Ψ with t1 < t2, we get

∫ t2

t1

(

ln
ωi(t, θ)

ω1(t)

) ′
dt < µi(t2 − t1),

which implies

ln
ωi(t2, θ)

ω1(t2)
− ln

ωi(t1, θ)

ω1(t1)
< µi(t2 − t1).

Consequently, we have

(2.2)
ωi(t2, θ)

ω1(t2)
< exp(νi)

ωi(t1, θ)

ω1(t1)

for some νi > 0 with limi→∞ νi = 0.

Now we consider the following lemma which is a slight modification of [Z, Lem-

ma 3.2].

Lemma 2.1 Let f , g be two positive continuous functions defined on [0,∞]. If f (b)

g(b)
≤

exp(ν) f (a)

g(a)
for some ν > 0 and for all a, b with 0 < a < b, then for any given R > 0,

r > 0 and a > 0 with R > r > a we have

∫ R

a
f (t) dt

∫ R

a
g(t) dt

≤
∫ s

a
f (t) dt

∫ s

a
g(t) dt

+ τ (ν)

for all s > 0 with R ≥ s ≥ r > a and for some τ (ν) > 0 satisfying limν→0 τ (ν) = 0.

Proof It suffices to show that the function

F(y) =

∫ y

a
f (t) dt

∫ y

a
g(t) dt
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is almost nonincreasing with respect to y ∈ [r, R]. Specifically, we first compute

F ′(y) =
1

(
∫ y

a
g(t) dt)2

{

f (y)

∫ y

a

g(t) dt − g(y)

∫ y

a

f (t) dt
}

=
g(y)

∫ y

a
g(t) dt

(
∫ y

a
g(t) dt)2

{

f (y)

g(y)
−

∫ y

a
f (t) dt

∫ y

a
g(t) dt

}

.

But
f (y)

g(y)
≤ exp(ν)

f (t)

g(t)

for a ≤ t ≤ y.

Thus
∫ y

a
f (t) dt ≥ exp(−ν) f (y)

g(y)

∫ y

a
g(t) dt, that is,

f (y)

g(y)
≤ exp(ν)

∫ y

a
f (t) dt

∫ y

a
g(t) dt

.

Consequently, we have

(2.3) F ′(y) ≤
g(y)

∫ y

a
g(t) dt

(
∫ y

a
g(t) dt)2

∫ y

a
f (t) dt

∫ y

a
g(t) dt

(exp(ν) − 1)

for all y with a < r ≤ y ≤ R.

Since the right-hand side of the above inequality tends to zero as ν → 0, we can

express F ′(y) ≤ µ(ν) for some µ(ν) > 0 satisfying limν→0 µ(ν) = 0. Then by

integrating this inequality from s to R, we get F(R) − F(s) ≤ (R − s)µ(ν).

So if we let τ (ν) := (R− s)µ(ν) < Rµ(ν), then we have F(R) ≤ F(s)+τ (ν), which

is our desired result.

We can now estimate the volume ratio for the case (t, θ) ∈ Ψ1 using (2.2) and the

above lemma.

For νi > 0 in (2.2), we define yi(> 3
√

τi) so that
∫ yi

3
√

τi

ω1dt =
√

νi .

Then from (2.3) in the proof of Lemma 2.1 and (2.2), it is easy to check

(

∫ y
3
√

τi

ωi dt
∫ y

3
√

τi

ω1dt

) ′∣
∣

∣

∣

yi≤y≤R

≤ exp(νi) − 1√
νi

C(k, n, R),

which converges to zero as i → ∞.

So we have
∫ R

3
√

τi

ωi dt
∫ R

3
√

τi

ω1 dt
≤

∫ s
3
√

τi

ωi dt
∫ s

3
√

τi

ω1 dt
+ τ (νi)

for some τ (νi) > 0 satisfying limi→∞ τ (νi) = 0 and for all s with yi ≤ s ≤ R.
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From the above inequality, we can easily obtain the following.

(2.4)

∫

Φ 4
√

ǫi ,δi

∫ R
3
√

τi

ωi dtdθ

∫

Sn−1

∫ R
3
√

τi

ω1 dtdθ
≤

∫

Φ 4
√

ǫi ,δi

∫ s
3
√

τi

ωi dtdθ
∫

Sn−1

∫ s
3
√

τi

ω1 dtdθ
+ τ (νi).

Here we used τ (νi) as a generic constant with the property limi→∞ τ (νi) = 0, and

we always use τ (νi) in such a way afterwards.

Next, we shall estimate the volume ratio for the case (t, θ) ∈ Ψ2 in the similar way.

Note first that (Φ 4
√

ǫi ,δi
)c can be divided into the following three subsets:

(Φ1
4
√

ǫi ,δi
)c

= {θ ∈ (Φ 4
√

ǫi ,δi
)c : S 4

√
ǫi ,δi

(θ) < yi < R},

(Φ2
4
√

ǫi ,δi
)c

= {θ ∈ (Φ 4
√

ǫi ,δi
)c : yi < S 4

√
ǫi ,δi

(θ) < R},

(Φ3
4
√

ǫi ,δi
)c

= {θ ∈ (Φ 4
√

ǫi ,δi
)c : yi < R < S 4

√
ǫi ,δi

(θ)}.

For the case (t, θ) ∈ Ψ2 and θ ∈ (Φ1
4
√

ǫi ,δi
)c, we get, for all s with yi ≤ s ≤ R,

(2.5)

∫

(Φ1

4
√

ǫi ,δi

)c

∫ S 4
√

ǫi ,δi
(θ)

δi
ωi dtdθ

∫

Sn−1

∫ R
3
√

τi

ω1 dtdθ
≤

∫

(Φ1

4
√

ǫi ,δi

)c

∫ s

δi

ωi dtdθ

∫

Sn−1

∫ s
3
√

τi

ω1 dtdθ
,

which is evident because
∫

Sn−1

∫ R
3
√

τi

ω1 dtdθ >
∫

Sn−1

∫ s
3
√

τi

ω1 dtdθ and S 4
√

ǫi ,δi
(θ) < s.

For the case (t, θ) ∈ Ψ2 and θ ∈ (Φ2
4
√

ǫi ,δi
)c, we use Lemma 2.1 and (2.2) to get

∫

(Φ2

4
√

ǫi ,δi

)c

∫ S 4
√

ǫi ,δi
(θ)

3
√

τi

ωi dtdθ

∫

Sn−1

∫ S 4
√

ǫi ,δi
(θ)

3
√

τi

ω1 dtdθ
≤

∫

(Φ2

4
√

ǫi ,δi

)c

∫ s
3
√

τi

ωi dtdθ

∫

Sn−1

∫ s
3
√

τi

ω1 dtdθ
+ τ (νi)

for all s with yi ≤ s ≤ S 4
√

ǫi ,δi
(θ).

But since S 4
√

ǫi ,δi
(θ) < R in this case, we can rewrite the above inequality as follows:

(2.6)

∫

(Φ2

4
√

ǫi ,δi

)c

∫ S 4
√

ǫi ,δi
(θ)

3
√

τi

ωi dtdθ

∫

Sn−1

∫ R
3
√

τi

ω1 dtdθ
≤

∫

(Φ2

4
√

ǫi ,δi

)c

∫ s
3
√

τi

ωi dtdθ

∫

Sn−1

∫ s
3
√

τi

ω1 dtdθ
+ τ (νi)

for all s with yi ≤ s ≤ S 4
√

ǫi ,δi
(θ).

Furthermore, in case S 4
√

ǫi ,δi
(θ) < s ≤ R we clearly have

∫

(Φ2

4
√

ǫi ,δi

)c

∫ S 4
√

ǫi ,δi
(θ)

3
√

τi

ωi dtdθ

∫

Sn−1

∫ R
3
√

τi

ω1 dtdθ
≤

∫

(Φ2

4
√

ǫi ,δi

)c

∫ s
3
√

τi

ωi dtdθ

∫

Sn−1

∫ s
3
√

τi

ω1 dtdθ
.

So we may say that (2.6) holds for any s with yi ≤ s ≤ R.
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Thirdly, we obtain the similar estimate for the case (t, θ) ∈ Ψ2 and θ ∈ (Φ3
4
√

ǫi ,δi
)c

using the same method as above.

(2.7)

∫

(Φ3

4
√

ǫi ,δi

)c

∫ R
3
√

τi

ωi dtdθ

∫

Sn−1

∫ R
3
√

τi

ω1 dtdθ
≤

∫

(Φ3

4
√

ǫi ,δi

)c

∫ s
3
√

τi

ωi dtdθ

∫

Sn−1

∫ s
3
√

τi

ω1 dtdθ
+ τ (νi).

for all s with yi ≤ s ≤ R.

Now we sum the above four inequalities (2.4)–(2.7) and use (2.1) together with

[Y1, Lemma.2.1] to show that, for every ǫ > 0, there exits N ∈ N such that

vol B(pi, R)

v(n, R)
<

vol B(pi , s)

v(n, s)
+ ǫ

for all i ≥ N and for all s with yi ≤ s ≤ R.

Since yi → 0, we complete the proof of Theorem 1.2.

3 Proof of Theorem 1.3

Let (Mi , gi, xi) be a sequence of manifolds such that

(3.1)

∫

Mi

|RicMi
|p dvol ≤ C,

∫

Mi

((n − 1) − Ric−)+ dvol < δi ,

RicMi
≥ −(n − 1)k, and vol B(xi , R) ≥ (1 − δi) vol(Sn),

where δi tends to zero as i goes to infinity.

We first show that

sup{d(xi , qi) : qi ∈ Mi} < 3R.

To obtain this, suppose that it were not true and find qi ∈ Mi such that d(xi , qi) = 3R

for each large i. Then we easily see that B(xi , R) ⊂ B(qi , 4R)−B(qi , π), which implies

vol(B(qi , 4R) − B(qi , π)) ≥ vol B(xi , R) ≥ (1 − δi) vol(Sn).

By letting i → ∞, the above inequality gives a contradiction by Theorem 1.1.

Consequently, we have

sup{d(xi , qi) : qi ∈ Mi} < 3R,

which means that B(xi , 3R) = Mi for all i. Now we show an analogue of [Y2, Lem-

ma 3.1].

Lemma 3.1 For sufficiently small δi , the class of all complete Riemannian manifolds

satisfying (3.1) is precompact in the C1+α topology (1 + α < 2 − n
p

).
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Proof The proof is similar to that of [Y2, Lemma 3.1] and the argument depends

on the proof of [Pe, Theorem 5.1].

To obtain the necessary volume growth condition, we first claim that for any given

η > 0, there exists a D ∈ (0, π) such that

vol(B(xi , D))

v(n, D)
≥ 1 − η

for all sufficiently large i. Indeed, if this were not true, we may choose Di < π with

Di → π such that
vol(B(xi , Di))

v(n, Di)
< 1 − η

for each i.

Then we have

η − δi = (1 − δi) − (1 − η)

<
vol B(xi , R)

vol(Sn)
− vol B(xi , Di)

v(n, Di)

=
v(n, Di) vol B(xi , R) − vol(Sn) vol B(xi , Di)

vol(Sn)v(n, Di)
.

By Theorem 1.1, we know that vol B(xi , R) − vol B(xi , Di) converges to zero. So the

last quantity in the above inequalities tends to zero as i goes to infinity. Consequently

η − δi tends to zero, which is a contradiction.

Next, by Theorem 1.2, for every ǫ > 0, there exists N ∈ N such that

vol(B(xi , R))

v(n, R)
− ǫ ≤ vol(B(xi , s))

v(n, s)

for all s with yi < s < R and i ≥ N. So if we choose η and ǫ so that η + ǫ = ηn, where

ηn is the universal constant appearing in [An, Lemma 3.1], then we obtain that

vol(B(xi , s))

v(n, s)
≥ 1 − ηn

for all s with yi < s < R.

Since yi → 0 as i → ∞, there is no problem in applying the same arguments as

in [Y2, Lemma 3.1] and we easily arrive at the desired result by the standard metric

rescaling argument.

By Lemma 3.1, we have a C1+α-manifold (N, g) and (Mi, gi) → (N, g) in the

C1+α topology. Since the same argument in [Y2, Lemma 3.2] can be used for our

situation, we can show that (N, g) is a C1+α-Wiedersehens manifold and we know

that it is isometric to Sn(See [Y2, Lemma 3.2] for details). Thus we have established

the theorem.
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