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The ability of microswimmers to deploy optimal propulsion strategies is of paramount
importance for their locomotory performance and survival at low Reynolds numbers.
Although for perfectly spherical swimmers minimum dissipation requires a neutral-type
swimming, any departure from the spherical shape may lead the swimmer to adopt a new
propulsion strategy, namely those of puller- or pusher-type swimming. In this study, by
using the minimum dissipation theorem for microswimmers, we determine the flow field of
an optimal nearly spherical swimmer, and show that indeed depending on the shape profile,
the optimal swimmer can be a puller, pusher or neutral. Using an asymptotic approach, we
find that amongst all the modes of the shape function, only the third mode determines, to
leading order, the swimming type of the optimal swimmer.

Key words: propulsion

1. Introduction

An active particle (or microswimmer), be it a living cell or a synthetic swimmer, converts
the internal or ambient free energy into work as it moves through a viscous fluid (Lauga
& Powers 2009; Bechinger et al. 2016; Gompper et al. 2020). From a broad hydrodynamic
perspective, the physics behind the propulsion of an active swimmer can be divided into
two parts: the inner problem, which concerns the generation of the propulsive thrust,
and the outer problem, which focuses on how swimmers interact with their neighbouring
environment through altering their surrounding fluid. While in the former accounting for
the details of the mechanism behind the impetus of each specific swimmer is essential
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(for example through cilia (Blake & Sleigh 1974) or a phoretic mechanism (Golestanian,
Liverpool & Ajdari 2005; Nasouri & Golestanian 2020)), in the latter, one can use a
generic approach to describe the flow field induced by the swimmer (Kim & Karrila
1991; Lauga & Michelin 2016; Nasouri & Elfring 2018). Specifically for self-propelling
axisymmetric swimmers, this generic approach classifies the swimmers into three groups
of pushers, pullers and neutrals, often referred to as the microswimming types (Underhill,
Hernandez-Ortiz & Graham 2008; Lauga & Powers 2009). This categorization, which
stems from the far-field description of the motion of a particle in a viscous fluid, relies
on the fact that self-propulsion is force- and torque-free, and so the leading-order flow
field induced by an active swimmer can be solely described by a symmetric force dipole,
i.e. stresslet (Batchelor 1970). Based on the strength of this force dipole, a swimmer
is a puller when it generates the impetus from its front end, a pusher when the thrust
originates from the rear end and is neutral when this strength is zero. Examples of
pusher-type microswimmers include Escherichia coli bacteria that use bundles of rotating
helical filaments in their rear (Berke et al. 2008), or sperm cells that propel themselves by
propagating a wave along a flexible flagellum. An example of puller-type microswimmers
is Chlamydomonas reinhardtii that pulls in the fluid in front of it with a pair of flagella
beating in a breaststroke-like fashion (Kantsler et al. 2013). Volvox, a multicellular colony
of green algae, is a neutral swimmer (Drescher et al. 2009; Pedley, Brumley & Goldstein
2016), whereas Paramecium is a weak pusher (Zhang et al. 2015).

Swimmers of different type behave differently when interacting with their surroundings.
For instance, unlike puller-like swimmers, pushers can be hydrodynamically trapped by
nearby obstacles or other pusher swimmers (Berke et al. 2008; Spagnolie et al. 2015;
Daddi-Moussa-Ider et al. 2018; Sprenger et al. 2020). The stresslet further determines
the intensity of fluid stirring in suspensions of swimmers (Lin, Thiffeault & Childress
2011). Although the effect of swimming type on the interaction of each swimmer with
other swimmers/boundaries has been well explored, their energetic implications are yet
to be fully understood. For surface-driven spherical swimmers, it has been shown that
the viscous dissipation of neutral swimmers is minimal compared with that of pushers
and pullers, and so neutral swimmers are often considered as the optimal type (Michelin
& Lauga 2010). However, the innate question of whether this statement holds when the
swimmer does not possess a perfect spherical shape remains largely unanswered. This is
the question we address in this study.

The question of energetic efficiency and optimal propulsion, i.e. minimizing the
dissipation while maintaining the swimming speed or equivalently maximizing the
swimming speed while maintaining the dissipation, is a long-standing problem. Earlier
theoretical works focused on the optimal locomotion of flagellated micro-organisms
(Pironneau & Katz 1974; Lighthill 1975). In particular, the optimal shape of a
periodically actuated planar flagellum deforming via a travelling wave has been
derived computationally (Lauga & Eloy 2013), and shown to agree well with the
waveform assumed by sperm cells of marine organisms. The optimal swimming strokes
and self-propulsion efficiencies of spherical and cylindrical bodies undergoing small
deformation with respect to a reference shape has also been investigated (Shapere &
Wilczek 1987, 1989). Further studies considered the full optimization problem for simple
mechanically actuated model microswimmers (Alouges, DeSimone & Lefebvre 2007;
Nasouri, Vilfan & Golestanian 2019).

Generally, the quest for the optimal propulsion strategy requires both the solution of
the inner and the outer problems. Swimming efficiency of ciliated microswimmers can
be directly determined numerically (Ito, Omori & Ishikawa 2019; Omori, Ito & Ishikawa
2020), but it is more common to use a coarse-grained approach, namely to separately
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calculate the dissipation in the propulsive layer and then replace this layer with an effective
slip velocity when determining the external flow (Keller & Wu 1977; Sabass & Seifert
2010; Osterman & Vilfan 2011; Vilfan 2012). A fundamental limit on swimming efficiency
can be obtained by finding the slip profile that minimizes the external dissipation for a
given swimming speed. For spherical swimmers, by using the classical squirmer model
of Lighthill (1952) and Blake (1971), one can show that the contribution of the second
mode of squirming (which characterizes the stresslet) to the dissipated power can only
be positive. Because the swimming speed for spherical squirmers is independent of this
second mode, we can conclude that minimizing the dissipation requires the second mode
to be zero, thereby making the optimal swimmer a neutral one (Blake 1973). However, such
a simple decomposition of contributions cannot be achieved for non-spherical swimmers,
and so the correlation between the dipole coefficient and the dissipation is not clearly
known. Recently, using the boundary element method and numerical optimization, Guo
et al. (2021) showed on some example shapes that when the swimmer body is not front–aft
symmetric, pushers or pullers can be more efficient than neutral swimmers. In this study,
we systematically investigate the relation between the stresslet and the shape of nearly
spherical optimal swimmers. By employing the recently derived minimum dissipation
theorem (Nasouri, Vilfan & Golestanian 2021), we circumvent the nonlinear optimization
problem and arrive at the flow field for the optimal swimmer using the flow fields of two
auxiliary passive problems. We remarkably find that the stresslet of an optimal swimmer
is solely a function of the third Legendre mode describing the shape of the swimmer, and
so depending on the value (or sign) of this mode, the optimal swimmer can be a pusher,
puller or neutral.

2. The problem statement

In this study, our aim is to determine whether an optimal nearly spherical swimmer is
a puller, pusher or neutral. To this end, we consider a swimming body of axisymmetric
shape moving with a steady velocity VAez, where ez is a unit vector representing the axis of
symmetry. We parametrize the surface of the swimming object in axisymmetric spherical
coordinates by

r(θ) = a

[
1 +

∞∑
�=1

α�P�(cos θ)

]
, (2.1)

where a denotes the radius of the undeformed sphere, θ represents the polar angle with
respect to ez and P� is the Legendre polynomial of degree � (see figure 1). We assume
α� � 1, thus the particle possesses a nearly spherical shape. Note that because the first
mode merely implies body translation and does not indicate any departure from the
spherical shape, we set α1 = 0.

At the small scales of microswimmers, viscous forces dominate inertial forces, and the
flow is governed by the Stokes equations ∇ · σ = 0 and ∇ · v = 0 with v denoting the flow
field, σ = −pI + μ(∇v + ∇v�) the stress field and p the pressure field. The swimmer
is surface-driven and its active mechanism induces an effective tangential slip-velocity
vs on its surface, which imposes the boundary condition on the fluid velocity in the
co-moving frame v = vs. The slip profile determines the swimming velocity VA through
a relationship that can be derived from the Lorentz reciprocal theorem (Stone & Samuel
1996). The dissipated power is given by P = − ∫ vs · σ · n dS. We consider the swimmer
to be optimal, thus this slip profile minimizes the viscous dissipation P, while maintaining
the swimming speed VA.
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Figure 1. (a) Schematic of the nearly spherical swimmer described in (2.1). (b) The isolated contribution of
the first four modes in the shape function. Black lines show the perturbed shape and the grey lines illustrate the
reference unperturbed sphere.

We should note that the present analytical description of microswimmers applies
exclusively to non-deformable active swimmers of nearly spherical shape. Prime
examples of these swimmers include a broad class of ciliated microorganisms or
synthetic microswimmers that achieve locomotion via a thin slip layer (e.g. self-phoretic
mechanisms).

As discussed earlier, the far-field flow generated by the force- and torque-free motion of
a microswimmer has the form (to the leading order) v(x) = −(3/(8πμ))(x · S · x) x/r5

and is characterized by the stresslet S. Here, because the motion is axisymmetric, the
stresslet takes the simple form of

S = 8πμa2VA β
(

ezez − 1
3 I
)

, (2.2)

where β is the dimensionless dipole coefficient (Batchelor 1970; Nasouri & Elfring 2018).
Under this definition, the sign of β determines the swimming type such that β < 0 holds
for pushers, β > 0 for pullers and β = 0 indicates neutral swimming. Thus, to determine
the swimming type of an optimal nearly spherical swimmer, we need to find the relation
between β and α�.

Conventionally, finding the flow field surrounding an optimal swimmer requires
extensive optimization schemes, which are often implemented by means of computational
tools. Here, we alternatively apply a fundamental theorem that sets the lower bound on the
energy dissipation of a self-propelled active microswimmer of arbitrary shape (Nasouri
et al. 2021). It states that the motion of an active swimmer with minimal dissipation can be
conveniently expressed as a linear superposition of two passive bodies of the same shape
satisfying no-slip and perfect-slip boundary conditions at their surfaces, respectively.
This theorem relies on the fact that perfect-slip bodies require the least dissipation for
motion, which suggests that a swimmer with a similar slip profile will be more efficient.
A superposition with the no-slip problem is needed to obtain a force-free flow around an
active swimmer (see Nasouri et al. (2021) for the details of the derivation). Specifically,
defining vA as the flow field induced by the motion of the optimal swimmer, this theorem
dictates

vA = vPS − vNS, (2.3)
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where vPS is the flow field owing to the motion of a passive perfect-slip body of the same
shape translating with speed VPS = [RNS/(RNS − RPS)]VA, and vNS is the flow field of
its no-slip counterpart moving with speed VNS = [RPS/(RNS − RPS)]VA, with RNS and
RPS being the translational drag coefficients for the no-slip and the perfect-slip body,
respectively.

Accordingly, by means of this theorem, the optimization problem is reduced to finding
the flow fields of two passive systems (henceforth referred to using ‘PS’ and ‘NS’)
and their corresponding drag coefficients. Following an asymptotic approach, we will
prove that the dipole coefficient takes a particularly simple expression and can solely be
expressed in terms of the third Legendre mode as

β = 27
14 α3. (2.4)

Based on this, the nearly spherical optimal swimmer is classified as a pusher when α3 < 0,
puller when α3 > 0 and neutral if α3 = 0.

3. Solution of the passive problem

As discussed earlier, to find the flow field of the optimal active swimmer, we only need
to determine the flow fields around a passive body of the same shape, once with a no-slip
and once with a perfect-slip boundary condition.

Recalling that the particle is nearly spherical (i.e. α� � 1), we use an asymptotic
approach to find the flow fields, and expand all entities in terms of surface modes. At the
zeroth order (denoted by ‘(0)’), we recover the flow fields arising from the passive motion
of a spherical particle with no-slip and perfect-slip boundary conditions. The first-order
correction (denoted by ‘(1)’) will then arise from the surface departure from the spherical
shape, and so, based on the linearity of the field equations, must be a linear superposition
of the surface modes, e.g. v = v(0) +∑

� α�v
(1)
� . In what follows, we find the zeroth- and

first-order flow fields for both the NS and PS problems by applying the Lamb’s solution at
each order separately.

We should also account for the correction to the surface normal vector at the first
order. At the zeroth order we have n(0) = er, and the departure from spherical shape
leads to n(1) = −∑� α�P1

�(cos θ) eθ , where P1
�(cos θ) = dP�(cos θ)/dθ is the associate

Legendre polynomial of the first order. The tangent vector is given by t(0) = eθ and
t(1) = ∑

� α�P1
�(cos θ) er.

3.1. No-slip problem
The solution for the flow past a nearly spherical body with a no-slip boundary is discussed
by Happel & Brenner (1983). In the following, we derive the flow field in a form that
will be convenient for the solution of the active problem in the next section. Owing to the
linearity of the problem, we only need to solve the flow field for a single mode of surface
deformation (e.g. α�), and the complete solution will be achieved by linear superposition
of all modes.

In the co-moving frame of reference, the no-slip boundary condition requires vanishing
velocities at the deformed surface of the object such that

vNS = 0 at r(θ) = a [1 + α�P�(cos θ)] . (3.1)
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This condition can be expanded perturbatively to linear order in α� as

v(0) + α�

(
v(1) + a

∂v(0)

∂r
P�(cos θ)

)∣∣∣∣∣
r=a

= 0. (3.2)

To find the Stokes flow that satisfies the above boundary condition, along with the
condition v = −VNS ez at r → ∞, we use Lamb’s general solution in spherical coordinates
as an ansatz (Happel & Brenner 1983). For axisymmetric problems, this solution simplifies
to

vr

VNS
= − cos θ +

∞∑
n=1

n + 1
2

(
nAn − 2Bn

(a
r

)2
)(a

r

)n
Pn(cos θ), (3.3a)

vθ

VNS
= sin θ +

∞∑
n=1

(
−n − 2

2
An + Bn

(a
r

)2
)(a

r

)n
P1

n(cos θ), (3.3b)

where An and Bn are series coefficients that must be determined from the boundary
conditions.

The solution for the zeroth-order problem corresponding to an undeformed sphere can
readily be obtained by imposing v

(0)
r = 0 and v

(0)
θ = 0 at r = a. This leads us to A(0)

1 =
3/2, B(0)

1 = 1/4 and A(0)
n = B(0)

n = 0 for n � 2. The zeroth-order flow field

v
(0)
r

VNS
= −1

2

(
2 − 3a

r
+ a3

r3

)
cos θ,

v
(0)
θ

VNS
= 1

4

(
4 − 3a

r
− a3

r3

)
sin θ, (3.4a,b)

represents the well-known flow past a no-slip sphere (Happel & Brenner 1983).
The boundary condition for the first-order problem (3.2) then reads v(1) =

−a(∂v(0)/∂r) P�(cos θ) at r = a. By noting that ∂v
(0)
r /∂r = 0 at r = a, we find upon using

appropriate orthogonality relations that only the series coefficients of order n = � ± 1
have non-zero values. Specifically, we find A(1)

�−1 = −A(1)
�+1 = −(3/2)/(2� + 1), B(1)

�−1 =
−(3/4)(� − 1)/(2� + 1) and B(1)

�+1 = (3/4)(� + 1)/(2� + 1). The first-order correction to
the flow can be evaluated by inserting these coefficients into the generic solution given
in (3.3). Examples of flow patterns for the first three deformation modes are shown in
figure 2(a,d,g).

The drag force exerted on an object is always determined by the force monopole as
FD = −4πμaA1VNS. Accordingly, the translational drag coefficient for an approximate
sphere only depends on the zeroth and second Legendre modes and can be written as
(Happel & Brenner 1983)

RNS

6πμa
= 1 − 1

5
α2. (3.5)

3.2. Perfect-slip problem
For the perfect-slip boundary condition, the impermeability and vanishing tangential stress
need to be satisfied at the surface of the approximate sphere,

vPS · n = 0 and t · σPS · n = 0 at r(θ) = a [1 + α�P�(cos θ)] . (3.6a,b)
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Figure 2. Streamlines around a slightly deformed sphere with no-slip (a,d,g), perfect-slip (b,e,h) and optimal
active swimmer (c, f,i) in the co-moving frame. Each row shows one deformation mode with the amplitude
α� = 0.05 for: � = 2 (a–c), � = 3 (d– f ), and � = 4 (g–i). The colour indicates the fluid velocity, scaled by the
speed of the active swimmer.

A Taylor expansion up to linear order in α� leads to

v(0)
r + α�

(
v(1)

r + v
(0)
θ P1

�(cos θ) + a
∂v

(0)
r

∂r
P�(cos θ)

)∣∣∣∣∣
r=a

= 0, (3.7a)

σ
(0)
rθ + α�

(
σ

(1)
rθ +

(
σ (0)

rr − σ
(0)
θθ

)
P1

�(cos θ) + a
∂σ

(0)
rθ

∂r
P�(cos θ)

)∣∣∣∣∣
r=a

= 0. (3.7b)

Again, we solve the flow problem using Lamb’s solution (3.3) and determine the
coefficients An and Bn that satisfy the above conditions. The solution for the zeroth-order
problem corresponding to an undeformed sphere is obtained by requiring v

(0)
r = 0 and

σ
(0)
rθ = 0, which readily leads us to A(0)

1 = 1, B(0)
1 = 0 and A(0)

n = B(0)
n = 0 for n � 2.

Thus, at the zeroth order we have

v
(0)
r

VPS
= −

(
1 − a

r

)
cos θ,

v
(0)
θ

VPS
= 1

2

(
2 − a

r

)
sin θ (3.8a,b)
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which, as expected, is the flow past a spherical air bubble (Happel & Brenner
1983).

Proceeding to the first order, noting that σ
(0)
rθ = σ

(0)
θθ = 0 everywhere in the fluid

domain, we again find that all the terms except n = � ± 1 are zero. The first-order
coefficients arising from the effect of α� are thereby found as

A(1)
�−1 = − (� + 1)(� + 2)

(2� − 1)(2� + 1)
, A(1)

�+1 = �2 + � + 3
(2� + 3)(2� + 1)

, (3.9a)

B(1)
�−1 = −(� − 1)(�2 + � + 3)

2(2� − 1)(2� + 1)
, B(1)

�+1 = �(� − 1)(� + 1)

2(2� + 3)(2� + 1)
. (3.9b)

These coefficients determine the first-order solution for the flow field with the perfect-slip
boundary condition (figure 2b,e,h). From the drag force FD = −4πμaA1VPS, we
determine the drag coefficient as

RPS

4πμa
= 1 − 4

5
α2. (3.10)

The result is consistent with the calculation for an ellipsoidal particle, where only the
deformation mode � = 2 is present (Chang & Keh 2009), but has a broader validity, as it
shows that deformation modes beyond the second do not influence the drag coefficient in
linear order.

4. Optimal active swimmer

Having derived the solutions of the flow problems for no-slip and perfect-slip boundary
conditions, we next make use of these solutions to construct the flow field induced by a
self-propelling active microswimmer with minimum dissipation, i.e. the optimal swimmer.
As shown in (2.3), the flow field surrounding the optimal swimmer can be reconstructed by
a linear superposition of the flow fields of the no-slip and perfect-slip problems, weighted
by a specific combination of their drag coefficients.

4.1. Stresslet of the optimal microswimmer
We first evaluate the stresslet of the optimal swimmer and its dipole coefficient. Because
both passive flows are expanded in terms of Lamb’s solution, their superposition, too,
has the same form. A comparison between the flow field in (3.3) and the definition
of the stresslet (2.2) shows that only the coefficient A2 contributes to the stresslet.
Specifically, the dipolar contribution to the flow field, which decays as r−2, reads
v/V = 3

2 A2(3 cos2 θ − 1)(a/r)2er, which indicates that the dipole coefficient must be
β = −(3/2)A2. Note that A(1)

2 /= 0 only for � ∈ {1, 3} and here we have set α1 = 0, so
in the perturbative expansion the dipole coefficient evaluates to

β = −3
2
A(1)

2 α3, (4.1)

with

A(1)
2 = RNS

RNS − RPS

[
A(1)

2

]
PS

− RPS

RNS − RPS

[
A(1)

2

]
NS

(4.2)

being the corresponding coefficient of the active swimmer, expressed in terms of those of
the NS and PS problems.
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Figure 3. Streamlines in laboratory frame of optimal swimmers of various shapes. The non-zero surface
modes for each swimmer are given at the top of each panel. The colours in the flow field indicate its velocity
scaled by the swimming speed of the active particle. The swimmer surface colours represent the slip velocity
as in figure 2.

From (4.1), one can see that the corrections to the drag coefficients RNS and RPS do not
have any contributions to β in the leading order. Equation (4.2) can therefore be evaluated
with the drag coefficients of spherical particles. Remarkably, the dipole coefficient, to
the leading order, only depends on the third Legendre mode of the shape function (α3),
and other modes have no contribution. Inserting the values of A(1)

2 from the NS and PS
calculations into (4.1), we finally arrive at our final solution given in (2.4).

4.2. Flow field of the optimal microswimmer
The full velocity field induced by the optimal active microswimmer (figure 2c, f,i) can be
obtained up to the linear order in deformation amplitudes by evaluating all coefficients in
the same way as shown in (4.2). Thereby, the drag coefficients RNS and RPS need to be
evaluated to linear order, as given in (3.5) and (3.10). In figure 3, the flow fields for some
nearly spherical optimal swimmers are shown in the laboratory frame.

5. Conclusions

In this study we analysed the swimming type of nearly spherical optimal swimmers. We
applied the minimum dissipation theorem (Nasouri et al. 2021) to determine the flow field
of the optimal swimmer and to show that the dipole coefficient (or the strength of the
stresslet) only depends to leading order on the third mode of the shape function. Thus,
depending on the sign of this mode, the optimal swimmer is a puller (when positive),
pusher (when negative) or neutral (when zero). Using our results, one can determine
the optimal swimming type for surface-driven nearly spherical swimmers by simply
describing the shape function in terms of the Legendre expansion and calculating the third
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mode. Our results can also be applied to phoretic particles which use their surface activity
to gain propulsion. For instance, for a chemically active particle, the slip velocity depends
on the surface coating pattern which characterizes the chemical activity and mobility rates.
For a given nearly spherical phoretic particle, one can then use our results to determine
whether that surface coating minimizes the viscous dissipation. In the hydrodynamically
optimal case, the dipole coefficient follows from the shape as derived here. We should
note that for optimizing phoretic particles, one should also account for the dissipation in
the slip layer and the energetics of the chemical reaction (Sabass & Seifert 2010, 2012),
which is not considered here and can be a natural extension to this work.

Our derivation demonstrates how the recently proposed theorem can enable us to find
a perturbative explicit solution to a problem that would otherwise hardly be analytically
tractable. It is also possible to extend the presented results by accounting for the nonlinear
effect of the quadratic and higher-order terms, in which case the contribution of other
surface modes will be non-zero. Beyond that, one can use the methodology discussed here
to evaluate the swimming type of any optimal swimmer of any arbitrary shape, provided
the flow fields for the no-slip and perfect-slip problems are known.

Funding. This work was supported by the Deutsche Forschungsgemeinschaft (A.D.M.I., grant number DA
2107/1-1); Slovenian Research Agency (A.V., grant number P1-0099); and the Max Planck Society.

Declaration of interests. The authors report no conflicts of interest.

Author ORCIDs.
Abdallah Daddi-Moussa-Ider https://orcid.org/0000-0002-1281-9836;
Babak Nasouri https://orcid.org/0000-0002-4376-2510;
Andrej Vilfan https://orcid.org/0000-0001-8985-6072;
Ramin Golestanian https://orcid.org/0000-0002-3149-4002.

REFERENCES

ALOUGES, F., DESIMONE, A. & LEFEBVRE, A. 2007 Optimal strokes for low Reynolds number swimmers:
an example. J. Nonlinear Sci. 18, 277–302.

BATCHELOR, G.K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545–570.
BECHINGER, C., DI LEONARDO, R., LÖWEN, H., REICHHARDT, C., VOLPE, G. & VOLPE, G. 2016 Active

particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006.
BERKE, A.P., TURNER, L., BERG, H.C. & LAUGA, E. 2008 Hydrodynamic attraction of swimming

microorganisms by surfaces. Phys. Rev. Lett. 101, 038102.
BLAKE, J. 1973 A finite model for ciliated micro-organisms. J. Biomech. 6, 133–140.
BLAKE, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199–208.
BLAKE, J.R. & SLEIGH, M.A. 1974 Mechanics of ciliary locomotion. Biol. Rev. 49, 85–125.
CHANG, Y.C. & KEH, H.J. 2009 Translation and rotation of slightly deformed colloidal spheres experiencing

slip. J. Colloid Interface Sci. 330, 201–210.
DADDI-MOUSSA-IDER, A., LISICKI, M., MATHIJSSEN, A.J.T.M., HOELL, C., GOH, S.,

Bławzdziewicz, J., Menzel, A.M. & Löwen, H. 2018 State diagram of a three-sphere microswimmer in
a channel. J. Phys.: Condens. Matter 30, 254004.

DRESCHER, K., LEPTOS, K.C., TUVAL, I., ISHIKAWA, T., PEDLEY, T.J. & GOLDSTEIN, R.E. 2009
Dancing Volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 168101.

GOLESTANIAN, R., LIVERPOOL, T.B. & AJDARI, A. 2005 Propulsion of a molecular machine by asymmetric
distribution of reaction products. Phys. Rev. Lett. 94, 220801.

GOMPPER, G., WINKLER, R.G., SPECK, T., SOLON, A., NARDINI, C., PERUANI, F., LÖWEN, H.,
GOLESTANIAN, R., KAUPP, U.B., ALVAREZ, L., et al.2020 The 2020 motile active matter roadmap.
J. Phys.: Condens. Matter 32, 193001.

GUO, H., ZHU, H., LIU, R., BONNET, M. & VEERAPANENI, S. 2021 Optimal slip velocities of
micro-swimmers with arbitrary axisymmetric shapes. J. Fluid Mech. 910, A26.

HAPPEL, J. & BRENNER, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.

922 R5-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-1281-9836
https://orcid.org/0000-0002-1281-9836
https://orcid.org/0000-0002-4376-2510
https://orcid.org/0000-0002-4376-2510
https://orcid.org/0000-0001-8985-6072
https://orcid.org/0000-0001-8985-6072
https://orcid.org/0000-0002-3149-4002
https://orcid.org/0000-0002-3149-4002
https://doi.org/10.1017/jfm.2021.562


Optimal swimmers can be pullers, pushers or neutral

ITO, H., OMORI, T. & ISHIKAWA, T. 2019 Swimming mediated by ciliary beating: comparison with a
squirmer model. J. Fluid Mech. 874, 774–796.

KANTSLER, V., DUNKEL, J., POLIN, M. & GOLDSTEIN, R.E. 2013 Ciliary contact interactions dominate
surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110, 1187–1192.

KELLER, S.R. & WU, T.Y. 1977 A porous prolate-spheroidal model for ciliated micro-organisms. J. Fluid
Mech. 80, 259–278.

KIM, S. & KARRILA, J.S. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-
Heinemann.

LAUGA, E. & ELOY, C. 2013 Shape of optimal active flagella. J. Fluid Mech. 730, R1.
LAUGA, E. & MICHELIN, S. 2016 Stresslets induced by active swimmers. Phys. Rev. Lett. 117, 148001.
LAUGA, E. & POWERS, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72,

096601.
LIGHTHILL, J. 1975 Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics.
LIGHTHILL, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very

small Reynolds numbers. Commun. Pure Appl. Maths 5, 109–118.
LIN, Z., THIFFEAULT, J.-L. & CHILDRESS, S. 2011 Stirring by squirmers. J. Fluid Mech. 669, 167–177.
MICHELIN, S. & LAUGA, E. 2010 Efficiency optimization and symmetry-breaking in a model of ciliary

locomotion. Phys. Fluids 22, 111901.
NASOURI, B. & ELFRING, G.J. 2018 Higher-order force moments of active particles. Phys. Rev. Fluids 3,

044101.
NASOURI, B. & GOLESTANIAN, R. 2020 Exact phoretic interaction of two chemically active particles. Phys.

Rev. Lett. 124, 168003.
NASOURI, B., VILFAN, A. & GOLESTANIAN, R. 2019 Efficiency limits of the three-sphere swimmer. Phys.

Rev. Fluids 4, 073101.
NASOURI, B., VILFAN, A. & GOLESTANIAN, R. 2021 Minimum dissipation theorem for microswimmers.

Phys. Rev. Lett. 126, 034503.
OMORI, T., ITO, H. & ISHIKAWA, T. 2020 Swimming microorganisms acquire optimal efficiency with

multiple cilia. Proc. Natl Acad. Sci. USA 117, 30201–30207.
OSTERMAN, N. & VILFAN, A. 2011 Finding the ciliary beating pattern with optimal efficiency. Proc. Natl

Acad. Sci. USA 108, 15727–15732.
PEDLEY, T.J., BRUMLEY, D.R. & GOLDSTEIN, R.E. 2016 Squirmers with swirl: a model for Volvox

swimming. J. Fluid Mech. 798, 165–186.
PIRONNEAU, O. & KATZ, D.F. 1974 Optimal swimming of flagellated micro-organisms. J. Fluid Mech. 66,

391–415.
SABASS, B. & SEIFERT, U. 2010 Efficiency of surface-driven motion: nanoswimmers beat microswimmers.

Phys. Rev. Lett. 105, 218103.
SABASS, B. & SEIFERT, U. 2012 Dynamics and efficiency of a self-propelled, diffusiophoretic swimmer.

J. Chem. Phys. 136, 064508.
SHAPERE, A. & WILCZEK, F. 1987 Self-propulsion at low Reynolds number. Phys. Rev. Lett. 58, 2051–2054.
SHAPERE, A. & WILCZEK, F. 1989 Efficiencies of self-propulsion at low Reynolds number. J. Fluid Mech.

198, 587–599.
SPAGNOLIE, S.E., MORENO-FLORES, G.R., BARTOLO, D. & LAUGA, E. 2015 Geometric capture and

escape of a microswimmer colliding with an obstacle. Soft Matt. 11, 3396–3411.
SPRENGER, A.R., SHAIK, V.A., ARDEKANI, A.M., LISICKI, M., MATHIJSSEN, A.J.T.M., GUZMÁN-

LASTRA, F., LÖWEN, H., MENZEL, A.M. & DADDI-MOUSSA-IDER, A. 2020 Towards an analytical
description of active microswimmers in clean and in surfactant-covered drops. Eur. Phys. J. E 43, 58.

STONE, H.A. & SAMUEL, A.D.T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett.
77, 4102–4104.

UNDERHILL, P.T., HERNANDEZ-ORTIZ, J.P. & GRAHAM, M.D. 2008 Diffusion and spatial correlations in
suspensions of swimming particles. Phys. Rev. Lett. 100, 248101.

VILFAN, A. 2012 Optimal shapes of surface slip driven self-propelled microswimmers. Phys. Rev. Lett. 109,
128105.

ZHANG, P., JANA, S., GIARRA, M., VLACHOS, P. & JUNG, S. 2015 Paramecia swimming in viscous flow.
Eur. Phys. J.: Spec. Top. 224, 3199–3210.

922 R5-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

56
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.562

	1 Introduction
	2 The problem statement
	3 Solution of the passive problem
	3.1 No-slip problem
	3.2 Perfect-slip problem

	4 Optimal active swimmer
	4.1 Stresslet of the optimal microswimmer
	4.2 Flow field of the optimal microswimmer

	5 Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


