POLAR MEANS OF CONVEX BODIES AND A DUAL
TO THE BRUNN-MINKOWSKI THEOREM

WILLIAM ]J. FIREY

1. Introduction. This paper deals with processes of combining convex
bodies in Euclidean #n-space which are, in a sense, dual to the process of
Minkowski addition and some of its generalizations.

All the convex bodies considered will have a common interior point Q.
Variables ¥ and y denote vectors drawn from Q; we shall speak of their
terminal points as the points x and y. Unit vectors will be denoted by u; ||x||
signifies the length of x. Convex bodies will be symbolized by K with dis-
tinguishing marks. dK means the boundary of K. AK will mean the image
of K under a homothetic transformation in the ratio A : 1. The centre of the
homothety will always be Q.

The distance function F(x) of a convex body is defined as follows: let y
be the vector having the same direction as x which terminates at K, then
F(x) = ||x||/lly]]. If x =0, we set F(0) = 0. The points x of K satisfy
F(x) £ 1 with equality if and only if x is a point of K. Let u = x/||x||;
then p = 1/F(u) = f(u) is the polar co-ordinate equation of 0K with respect
to a co-ordinate system with pole at Q. Since Q is an interior point of K,
F(u) is continuous and bounded.

The distance function satisfies: (a) F(x) > 0 for x % 0, F(0) = 0; (b)
F(ux) = pF(x) for p > 0; (c) F(x + ) = F(x) + F(y) for any two vectors
x and y. Conversely, any function F(x) satisfying (a) through (c) is the
distance function of a unique convex body K (cf. (1), p. 22).

The following observations regarding distance functions should be borne
in mind; they follow immediately from the definition. Fo(x) = F;(x) if and
only if Ky C K. If the distance function of K is F(x), that of AK is F(x)/\.

If Fi(x), (z =0,1), is the distance function of the body K; containing Q
as an interior point, then

FPx) = (1 = 9)Fo(x) +9F1(), 09 <1,
and, more generally,
FP(x) = V(1 = 8)Fi(x) +oFi(x)], 1Sp<w,
satisfy conditions (a) through (c). By F3® (x) we mean
lim F3” (x) = max(Fo(x), F1(x))
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for 0 < ¢ <1 with F;®(x) = F;(x). Conditions (a) and (b) are obviously
satisfied. Condition (c) is a consequence of Minkowski's inequality. Let
a; = b; + ¢;; Minkowski’s inequality is

VI = 8)ab +0at) = /(1 — )68 + 957 + V/[(1 —9)eh + 963,
If a; = b, 4 ¢;, the inequality is clearly still valid. Set a; = F;(x + v),
b, = Fi(x) and ¢; = F;(y) and condition (c) is verified for F3®. A limit
argument establishes (c) for p = ». Consequently we may speak of a unique
convex body Ks® having the distance function F3®. We will call this body
the pth dot-mean of K, and K. It clearly contains Q as an interior point. For

1 £ p < =, the body
V2K

will be denoted by S® (K,, K;) and called the pth dot-sum of K, and K. Its
distance function is &/[F¢?(x) + Fi?(x)]. We set

S“(Ko, Ky) = K53,

We obtain a direct geometric meaning for Ky® as follows. If the polar
co-ordinate equation of dK; is p = f,(u), then the polar co-ordinate equation

of dKs® is
B (1-9 3 ]
p = 1/4/[ ) f”(u) forl £ p < o,

p=min (fo(u), f1(x)) forp = =.

In particular if p = 1, p is the harmonic mean of the distances to dK, and
dK in the direction u.

K(oo) KO N Kl

for 0 < ¢ < 1.

In § 2, we first take up some elementary rules about such combinations
of convex bodies. A deviation or metric in a space of convex bodies is intro-
duced. The duality mentioned at the beginning of the paper is discussed and
with its aid, we examine the topology induced by the deviation measure.

Section 3 is devoted to the dependence of the family {Ks®} on K, K;
and the parameters p and ¢, for 1 £ p < «. The dependence is continuous;
the family is monotonic decreasing in p and concave with respect to 4. The
special case p = = is considered separately.

We establish a theorem of the Brunn-Minkowski type for the family {Ky®}
in the final section. This is

VESY £ 1/ =) VMK, +0V7"K)]  forl £ p < o,
V(KS) < min(V(K,), V(K1) for0 <¢ < 1.

Here V(K) signifies the volume of the convex body K.
A discussion of the cases of equality is included.
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2. Measures of deviation. The following rules follow immediately from
the properties of S,(ao, a1) = v/[as’ + a,”] for non-negative numbers a;
applied to the appropriate distance functions.

(i) S® Ko, \K,) = AS® (K, K).
(ii) S® (K, K1) = S (K, Ko).
(iii) S@) (5@) (Ko, Ky), K») = S@) (K, S’“’)(Kl, K»)).

This last rule allows us to write without misunderstanding S® (K,, K3, . . . ,K,,)
defined inductively as

S'(p) (S(Z’) (KO, Klv o Km-l)y Km)-
In turn we set
S (J/wiKo, YwiKy, ..., waK,) = MP (Ko, Ky, ..., K,)
if

M® (Ko, K;) = Ks® with ¢ = w;. We define M (K, Ky, ..., K,) and

S (Ko, Ky, ..., K,) as bodies whose distance functions are

lim M,(Fo, Fy, ..., Fp), im S,(Fo, Fy, . .., Fy).

P00 Do
Since these limits are equal M (Ko, Ky, ..., K,), S® (Ko, Ky, . . ., K,,) are
the same body. This is the convex body whose distance function is max
(Fo, Frvy o ooy F). IM™ (Ko, K4, ..., K,,) has the polar co-ordinate equation
p = min (fo, f1, ..., fw) if 0K; has the equation p = f;(u). Clearly

MKy Ky ..., Ky) = KoMK, N ..NK,.

We always have S® (K,, K;) C K, since

VIFix) + Fix)] > Fi(x)

for x # 0.

The bodies S® (K,, K;) and Ky® are not translation-invariant in the sense
displayed by the usual Minkowski sum K, + K;. In the case of Minkowski
sums, if K; is translated by the addition of a vector ¢; to each vector in K,
then K, + K; is translated by the addition of the vector ¢y + #;. It can be
proved that, in general, there is no such translation vector for S®(K,, K;)
or Ky@. For this reason we must distinguish bodies which differ by a trans-
lation.

A measure of deviation between the two convex bodies is defined as follows.
Let E be the sphere of radius one, centred at Q. For 1 £ p < =, consider
those numbers X\ > 0 such that S® (K, A\E) C K; and S® (K, \E) C K,. We
define §® (K, K;) to be the greatest lower bound of the numbers 1/A. In terms
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of distance functions, if F;(x) is the distance function of K, §® (K,, K) is the
greatest lower bound of numbers 1/\ = u such that

VIFi() + o |[5]"] 2 Fi()
and
VIFI(x) + 7| [x] "] 2 Fo(x).
Since such function F;(x) is continuous and bounded over ||x|| = 1, we have
87 (Ko, Ky) = max \/|Fh(u) — Fi(u)|,

the maximum being taken over the sphere of directions u. Clearly §® (Ko, K;)
2 0 with equality if and ounly if Fo(x) = Fi(x), that is K¢ = K;. Further
0" (K, Ky) = 0@ (K4, K¢). The deviation satisfies a triangle inequality:

5P (Ko, Ko) < 67 (Ko, K1) + 6@ (K, K»).

For let
p1 = 6@ (Ko, Ky),
pe = 6@ (Ko, K»),
py = 8@ (K, Ko).
Then

uo = max \/|Fh(u) — F3(u)| < max ~/[|F§(u) — Fi(u)| + |Fi(u) — F3(u)|]
< max /|Fi(u) — Fi(u)| + max \/|Fi(u) — F3u)| = p1 + us,

all the maxima being taken over the unit sphere of directions u.
For p = «, we define §* (K,, K,;) to be

max (max [Fo(u), F1(u)])

[ull=1 (0,1)

if Koand K; are not identical and take § (Ko, K¢) = 0. § (K,, K,) is thus
the reciprocal of the radius of the largest sphere centred at Q which lies in
Ko, N K,. We may alternately describe § (Ko, K;) as max (1/v,, 1/v;) where
v.E is the largest sphere centred at Q contained in K, Clearly 6§ (K,, K;)
= §(Ky, Ko) and 6 (Ko, K1) = 0 with equality if and only if K, = K,.
This deviation satisfies a triangle inequality:

(Ko, K3) £ 6 (Ko, Ky) + 6 (K1, Ks).

If K, = K, this follows from the non-negativity of the deviation. If K, = K,
or K; = K,, there is obvious equality. Otherwise, using the numbers vy, v1, vs
defined above, we have

max( L) 2 mar(E L 1) <oman(E 1) 4 man(L L)
Vo Ve Vo Vi Ve Vo Vi1 V1 V2

which proves the assertion.
Thus, for 1 £ p £ », the deviations §? (K,, K,) satisfy the requirements
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for a metric in the space of convex bodies. For the remainder of the section,
deviations will be considered only for 1 £ p < .

Let K be a convex body with distance function F(x). We denote by K the
polar reciprocal of K with respect to the unit sphere E centred at Q. The
support function with respect to Q of K is defined as follows. Let x be any
point other than Q, z a vector from Q in the direction of x which terminates
at the support plane of K normal to x. The support function of K is ||2] -||x]|.
Since K and K are polar reciprocals with respect to E, if v is the vector from
Q having the same direction as x and terminating at K, we have ||y||-||2]| = L.
Hence the support function of K is ||x||/||y|]| = F(x). Further, if H(x) is the
distance function of K, then H(x) is the support function of K. If Q is an
interior point of K, it is an interior point of K. Consider the convex body
K;®; its polar reciprocal ]%0(”> has

VI =) Fi(x) +3F(x)]

as its support function. This support function is the pth mean of the support
functions of K, and K;. In particular for p = 1, [E,;“’) is the usual Minkowski
mean (1 — #)K, + 9K, More generally Ks® is the convex body denoted
by Ks® called the pth mean of K, K, in (2). Similarly §<”> (Ko, K;) =
S® (R,, K,).

It is convenient to express these notions in terms of the space /%, of convex
bodies K with metric §® and the space .%, of convex bodies K with metric
8@ introduced in (2). There 6@ (K,, K;) was defined as the greatest lower
bound of numbers x such that

VIFS ) + @ [x|]7] = Fi(v)

and
VIF () + w?|[%] 7] = Folx)

where F,(x) is the support function of K, Polar reciprocation with respect
to E is an involutary mapping R,: % — #,. Under this mapping pth dot-
means correspond to pth means.

We have directly from the definitions of §® and @ that §® (K, K;) =
8@ (Ko, K,). Therefore R, is a homeomorphism. In (2) it was shown that the
metrics 6@ are topologically equivalent and so it follows also for the metrics §@.

We summarize.

THEOREM 1. Polar reciprocation with respect to E furnishes a homeomorphism
Hp = Hpy for 1 £ p < o and for each such p and q satisfying 1 < q < o,
Ay 1S homeomorphic to A,

Let E, (1 £ m < n) be an m-dimensional linear subspace of the Euclidean
n-space w hich contains Q. The distance function of K N\ E,, in E,, is the re-
striction of the distance function of K to vectors in E,,. Hence in E,, we have

S® (Ko, Ky) N Ep = SP (Ko N\ Epy, K1 N Ey).
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This is the dual of the following result. Let K* be the projection of K onto
E,; then

S@(K*, K1*) = [S® (Ko, K1)]*.
We have further
S@ (K¢ E,, K1\ E,) € S® (K, K,) NVE,
and, as the dual of this result
S? (Ko*, Ki*) D [S® (K, K1) %

The latter follows from the former with the observations that if F* is the
support function of K M E, then it is the distance function of K*, and by
the first inclusion

VIEFEF? + (F*)] = (YIFe + FP)*

3. Dependence of the means on their parameters. The pth dot-means
Ks® depend continuously on p, ¢, K, and K; in the following sense. Let S
be the space of elements (p,?, Koy, K1) wherel S p = P <»,0=9 =1,K;
in 2 with the distance d(e, ¢/) between elements e = (p,d, Ko, K;) and
¢ = (p, ¢, K, Ky) defined as [p — p'| + ¢ — &+ 60 (K,, Ko) + 6
(K1, Ky'). By Theorem 1, the deviation 8 can be replaced by any of the
deviations §®, 3@ for finite ¢ = 1. Further let K(¢) be the pth dot-mean
K;® associated with element e. K (e) is continuous in e, that is if {e,} is any
sequence of elements of S for which

limd(e, e) =0,

we have
lim 6“(K (e,), K (e)) = 0.

n-oo

To demonstrate this continuity, we first remark that the algebraic function

F(p,8, o, a1) = /(1 —&)ab +a]

has no singularities for (p,d, ao, ¢1) satisfying 0 < 4 £¢; £ B < «,
0=2d9=1, 12p=P <o and so is uniformly continuous for such
(p, 4, ao, a1). Suppose that { Fo,(x)} and { F1,(x)} converge to Fo(x) and Fy(x)
uniformly for [|x|| = 1 and further satisfy 4 £ F;,(x) £ B. Then it is easily
shown that {f(pn, %y Fou (%), F1(x))} is a sequence converging to f(p, &, Fo(x),
Fi(x)) uniformly for ||x|| = 1, where {p,} and {&,} converge to p and & and
satisfy 1 £, =P, 09, = 1.

The convergence of a sequence of elements ¢, = (Pn, Fn, Kon, K1n) of S to
element ¢ of .S implies

lim § (K, Ki) = 0

n—c0
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which in turn is equivalent to the convergence of the associated sequences
of distance functions {F,(x)} to F,(x) uniformly for ||x|| = 1. Moreover,
since all the bodies in the sequences {K,} as well as the limit bodies K; are
in % we know that there is a sphere (1/4)E containing each K; and K,
and a sphere (1/B)E contained in each K; and K. From this it follows
that 0 < A £ F,,(x) £ B < «. Thus, by the preceding paragraph, the con-
vergence of {e,} to e entails the convergence of {f(pn, Fn, Fon(x), F1n(x))} to
f(p, &, Fo(x), Fi(x)) uniformly for ||x|| = 1. This is to say that

lim 8V (K (e,), K (e)) = 0

n-=oo
as asserted.
We next examine inclusion relations among the means Ks®. Since

VL =) F(x) +0F(x)] < /1(1 — ) Fi(x) +9Fi(x)]

for 1 £ p < g £ » with equality if and only if Fo(x) = Fi(x), we have
Ks® D Ky with equality if and only if Ky = K;. Thus the means are either
constant if Ky = K; = Ky® or are strictly monotonic decreasing in p from

Ky® to KoM K.
Finally consider the family {Ks;®} for fixed p and varying ¢. For p = «, it
is geometrically obvious that the family is convex by which we mean that

Ki# € (1 = )Ki) + 9K
where ¢ = (1 — #)3¢ + 9. But this is true for all p satisfying 1 < p < .
In virtue of the monotonicity in p discussed in the preceding paragraph, it

is enough to show the asserted convexity for p = 1.
We make a further reduction of the problem. Since

~

K® = (1 — 9K, +0K,,
we have
K = [(1 =Ko +9'RT
= [(1 =) —9)Ko +0 K1l +9[(1 —9)Ks + 9K,
and

(1 — 9Ky, +9K5 = (1 —9)[(1 —)Ko +190K1]A +9[(1 —9)Ko +8.K,] .
Set K = (1 —d9)Ko+ 9K, and K’ = (1 — 9;)Ko + ¢,K;. In terms of K,
K’ we must prove that [(1 — 9K +9K']” € (1 — 9)K + 9K'.

On a ray r from Q let x be on 9K, x" on dK’. Then x5 = (1 — &)x + I« is
a point, in general interior, of the Minkowski sum (1 — ¢)K + ¢K’. Let II,
I’, Ty be the polar planes of x, x’, and x5. These planes are orthogonal to 7
and meet 7 in points z, g, and zs. I and II’ are support planes of K and K’.
I, is a plane exterior to [(1 — #)K + #K']” unless xs happens to be a boundary
point of (1 — #)K + dK’, in which case IIs is a support plane of [(1 — #)K
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+ 3K']". Let 2 = (1 — 9)z + 9¢2'. The plane II, orthogonal to » through z
is a support plane of (1 — #)K + 9K’

If we can show that zy < 2, it will follow that II is either exterior to
[(1 — K + ¢K']" or coincides with Il if 23 = Z. Since 7 is arbitrary, this
will prove that

(1 —9K +9K']"C (1 — 9K + 9K,
We have from the polarity relations:

[lall {1l = {121 [|"]] = [lza][ - [[oal| =

Hence
a-9

l|2s]| = ElR Hz” Hx”"'“ H A& ']

ﬂ‘—H“‘onH + I 7ﬂ [|xs]|

_ 0 =9 tow]]
-3 2
(il +27)

In the last step, we have utilized the collinearity of Q, x, and x’. Continuing:

el = =55 = (L = Dllsll +olI<1| = II2l
________ + ——
|1 2]
where the collinearity of Q, z, 2/, and z; has been used. In the inequality of
the arithmetic and harmonic means, there is equality if and only if ||z]| = ||2||,
from which we conclude that the original inclusion is an equality if and only
if K =K'
This argument proves the convexity of {Ks;®}. The family is linear if and
only if
K.z(Sz;) = thll))
which means K, = K.
This completes the proof of our next theorem.

THEOREM 2. The family {Ks®} depends continuously on (p,d, Ko, K1) for
1S p=P<o,0=¢=1, K;in J4. It is strictly monotonic decreasing in
pforl £ p £ o and convex in 9.

An immediate consequence of Theorem 2 is as follows. Let W, (K) denote
the sth cross-sectional measure of K, that is, the mixed volume
V(K,...,K; E L E)
(n — s) Ty
for s =0,1,...,n — 1. The measures W, (K) are well known to be mono-
tonic in K, that is if K € K’ then Wy (K) £ Wy (K") (cf. (1), p. 50). Hence
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WK = Wiy (Ks”)

when 1 £ p < ¢ £ o, with equality if and only if K, and K; are identical.
Thus W) (Ks®) is monotonic decreasing in ¢ and, in virtue of Theorem 2,
continuous in that parameter. In particular, the intersection Ko /M K; has
minimal cross-sectional measures and Ky® has maximal. This latter family
of bodies might well be called the set of weighted harmonic means of K, and
K, in view of the next remarks.

A special instance of the convexity of the family Ky is

K = [(1 =8)K, +0K:]" € (1 —9)Ko + 09K

In the inclusion, there is equality if and only if K¢ = K. This may be viewed
as the analogue, for convex bodies, of the theorem of the arithmetic and
harmonic means for positive numbers. Indeed, the latter may be looked upon
as a special case of the former in which K, and K; are centrally symmetric
bodies in a one-dimensional Euclidean space, the centre of symmetry being
the common interior point Q. A similar observation is valid regarding the
monotonicity of the means K;® in p for fixed .
The results of these last two paragraphs give us the inequalities

W(s)(Kzgp)) é W(s)((l —19)[{0 +19K1)

for 1 £ p £ » with equality if and only if Ky = K;. The next section fur-
nishes an improvement on this result for the case s = 0, that is for the volume
functional.

4. A dual qunn—Minkowski theorem. For fixed p satisfying
1 =p <w,let V(Ks®) = Vs be the volume of K3® where 0 < ¢ < 1. Since
K® contains an interior point Q, Vs > 0. The distance function of Ks® is

Fo(x) = /(1 =) Fi(x) +9Fi(x)].
Let

K= K; V(K =

Vl/n
Set

Fy(x) = /[(1 — ) F3(x) + ' Fi(x)]
where F,(x) = V/F,(x) is the distance function of K. Finally, let Vs be

the volume of that convex body whose distance function is Fy (x). Since
Fy(x) = Fy (x)/n, where

1 -9 & ’ n
B = 1/ /‘/[—(-‘_ﬁp/n ) le/n] = 0/-"2’/17{/ ’

we have Vpl/n = Vg 1/,
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The polar co-ordinate formula for the volume of a convex body gives

- 1 1 n
ot [ T
"= ndosl Fy ()l ¥
where dw is the differential of surface area of the unit sphere E centred at Q.
For the integrand we have

1/ 1/ (ﬂ 1—0;1) +( &1 > = 1/ [(1 —%) <I7’0tu)>n+0, (Ft@)]

Fg(u) }‘;’1_(;5

with equality if and only if Fo(«) = F,(u). Therefore

o1 [(1_—0’) &
Yo 25 )l @y @)
There is equality if and only if Ky = K,. This gives as the analogue of the
Brunn—Minkowski theorem: V3!/* < u. There is equality if and only if Ko=MAK,,
A = (Vo/ V)", the centre of homothety being at Q.

If p =, we have KgMNK; C K; and so V(KoM K;) = min (V,, V1).
Clearly there is equality if and only if one of the bodies K, is a subset of the
other. The volume functional is monotonic under set inclusion and so, by
Theorem 2, V(Ko N K;) £ V(Ks®) for 1 £ p < o with equality if and only
lf Ko = K].

We collect these results in our last theorem.

]dw = 1 -¢)V(EK) +¢'V(E,) = 1.

nJag

THEOREM 3.

1/n 1/n 3 (o p (1_1?) 3 :I
VMK, N Ky £ VIMEP) € 1/ 4/ [VW"<K0>+V’”"<K1> '

for 1 = p < . There is equality on the left if and only if Ko = K, and on the
right if and only if Ko = NK, with centre of homothety at Q. Further

V™K N Ky) = V(KF) £ min(V(Ko), V"(Ky))
with equality on the right if and only if Ko = Ki.
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