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1. Introduction. This paper deals with processes of combining convex 
bodies in Euclidean w-space which are, in a sense, dual to the process of 
Minkowski addition and some of its generalizations. 

All the convex bodies considered will have a common interior point Q. 
Variables x and y denote vectors drawn from Q; we shall speak of their 
terminal points as the points x and y. Unit vectors will be denoted by u\ \\x\\ 
signifies the length of x. Convex bodies will be symbolized by K with dis­
tinguishing marks. dK means the boundary of K. \K will mean the image 
of K under a homothetic transformation in the ratio X : 1. The centre of the 
homothety will always be Q. 

The distance function F(x) of a convex body is defined as follows: let y 
be the vector having the same direction as x which terminates at dK, then 
F(x) = \\x\\/\\y\\. If x = 0, we set F(0) = 0. The points x of K satisfy 
F{x) S 1 with equality if and only if x is a point of dK. Let u = x/ | |x | | ; 
then p = 1/F(u) = f(u) is the polar co-ordinate equation of dK with respect 
to a co-ordinate system with pole at Q. Since Q is an interior point of K, 
F(u) is continuous and bounded. 

The distance function satisfies: (a) F(x) > 0 for x ^ 0, F(0) = 0 ; (b) 
F(ixx) = ixF(x) for JJL > 0; (c) F{x + y) ^ F(x) + F(y) for any two vectors 
x and y. Conversely, any function F(x) satisfying (a) through (c) is the 
distance function of a unique convex body K (cf. (1), p. 22). 

The following observations regarding distance functions should be borne 
in mind; they follow immediately from the definition. F0(x) ^ Fi(x) if and 
only if Ko £ K\. If the distance function of K is F(x), that of \K is F(x)/X. 

If Fi(x), (i = 0, 1), is the distance function of the body Kt containing Q 
as an interior point, then 

F?\x) = (1 -û)Fo(x) +#F1(x), 0 ^# S 1, 

and, more generally, 

F¥\x) = ^/[(l -ê)FPo(x) +âFÏ(x)l ISPS » , 

satisfy conditions (a) through (c). By F#(CO) (x) we mean 

lim F#p\x) = max(/ro(x), Fi(x)) 
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for 0 < â < 1 with F^Çx) = Ft(x). Conditions (a) and (b) are obviously 
satisfied. Condition (c) is a consequence of Minkowski's inequality. Let 
&i = hi + eu Minkowski's inequality is 

y/[(l -ê)al+ûa\] g -\ /[(l -û)bl+ûbl] + ^ [ ( 1 -#)$+#<%]. 

If at S bt + cif the inequality is clearly still valid. Set at = Ft(x + y), 
bt = F*(x) and c* = F<(y) and condition (c) is verified for F&(p). A limit 
argument establishes (c) for p = oo. Consequently we may speak of a unique 
convex body K#(p) having the distance function F§{p\ We will call this body 
the pth dot-mean of K0 and Ki. It clearly contains Q as an interior point. For 
1 ^ p < oo ? the body 

will be denoted by S(p) (Ko, Ki) and called the pth dot-sum of Ko and Ki. Its 
distance function is %/[F0

p(x) + Fip(x)]. We set 

S(co)(i£0,i£i) = £ $ . 

We obtain a direct geometric meaning for K/p) as follows. If the polar 
co-ordinate equation of dKt is p = fi(u), then the polar co-ordinate equation 
of dK»™ is 

p= min (fo(u),fi(u)) îov p = oo . 

In particular if £ = 1, p is the harmonic mean of the distances to dK0 and 
dKi in the direction u. 

K^ = Xo n Xi 

for 0 < # < 1. 
In § 2, we first take up some elementary rules about such combinations 

of convex bodies. A deviation or metric in a space of convex bodies is intro­
duced. The duality mentioned at the beginning of the paper is discussed and 
with its aid, we examine the topology induced by the deviation measure. 

Section 3 is devoted to the dependence of the family {K&(p)} on Ko, Kx 

and the parameters p and û, for 1 ^ p < oo. The dependence is continuous ; 
the family is monotonie decreasing in p and concave with respect to &. The 
special case p = °° is considered separately. 

We establish a theorem of the Brunn-Minkowski type for the family {K^p)} 
in the final section. This is 

VVn(K^) ^ l / - \ / K l -û)V-vl\Ko) + âV~p/n(K1)] for 1 ^ ^ < oo, 

V(K(
â

œ)) S mm(V(Ko), V(K{)) forO < # < 1. 

Here V(K) signifies the volume of the convex body K. 
A discussion of the cases of equality is included. 
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2. M e a s u r e s of d e v i a t i o n . T h e following rules follow immediately from 

the properties of Sp(a0, ai) = ^/[a0
p + a/] for non-negative numbers at 

applied to the appropr ia te dis tance functions. 

(i) $W(\K0,\K1) = XS^HKo.Ki). 

(ii) ^ ( i C J d ) =$<*&!, K0). 

(iii) S^iS^i^Ki),^) = S^(K0,S^(KltK2)). 

This last rule allows us to wri te wi thout misunders tanding S(v) (Ko, K\, . . . ,Km) 
defined inductively as 

$<p)($»(K0, Klt . . . , K^), Km). 

In tu rn we set 

SwtywoK», ^ W i X i , . . . , f/wmK„) = M^>(Ko, K u . . . , Km) 

if 
m 

22 Wi = 1, ^j ^ 0, 1 S p < °°. 

JkT^fXo, Xi ) = X ^ with û = WL We define M<°°>(K0, Kh . . . , Xm ) and 
6,(CO) (KQ, KI, . . . , Km) as bodies whose distance functions are 

lim MP(F0, Fh . . . , Fm), lim 5P(F 0 , Flt . . . , F ro). 
2?->oo P->co 

Since these limits are equal M(CO)(KQy Klt . . . , Km), S^(K0, Kh . . . , Km) are 
the same body. This is the convex body whose dis tance function is max 
(F0, Fi, . . . , Fm). dM(CO)(Ko, Ku . . . , Km) has the polar co-ordinate equat ion 
p = min (/o, / i , • • • ,/m) if d^C* has the equat ion p = fi(u). Clearly 

ii^(00) (î o, Ki,..., Km) = KQ r\ K1 n . . . n xm . 

We always have S ^ C ^ o , # i ) C ^ since 

\P [F?(*) + Ff(x)] > F t (*) 

for x 9^ 0. 
T h e bodies S (p ) (i£0, -Ki) and i£#(p) are not t ransla t ion- invar iant in the sense 

displayed by the usual Minkowski sum K0 + Ki. In the case of Minkowski 
sums, if i^i is t ransla ted by the addit ion of a vector tt to each vector in Ku 

then Ko + Ki is t ransla ted by the addit ion of the vector t0 + h. I t can be 
proved tha t , in general, there is no such t ranslat ion vector for S(p) (Ko, K\) 
or K#{v). For this reason we must distinguish bodies which differ by a t rans­
lation. 

A measure of deviation between the two convex bodies is defined as follows. 
Let E be the sphere of radius one, centred a t Q. For 1 ^ p < oo y consider 
those numbers X > 0 such t h a t S^(K0, X£) C Kx and S^(Kh XE) C K0. W e 
define ô(p) (K0, K^ to be the greatest lower bound of the numbers 1/X. In te rms 
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of distance functions, if Ft(x) is the distance function of Ku d(p)(K0, Ki) is the 
greatest lower bound of numbers 1/X = n such t h a t 

y/[n{x) + vv\\x\\v] ^ F,(x) 

and 

y/[Fl{x)+^\\x\\v]^ Fo(x). 

Since such function Ft(x) is continuous and bounded over \\x\\ = 1, we have 

ô(p)(i£o,iCi) = max y/\Fl{u) ~ F{(u)\, 

the maximum being taken over the sphere of directions u. Clearly b{p) (Ko, K^ 
^ 0 with equali ty if and only if F0(x) = Fi(x), t h a t is Ko = K\. Fu r the r 
d(p)(Ko, Ki) = diP)(Kh Ko). T h e deviation satisfies a triangle inequal i ty: 

Ô™(KQ, K2) ^ ôM(Ko, X i ) + è<»(Ki, K2). 

For let 

/xi = «<*>(#<>, # 0 , 

M2 = ôM(Ko,K2), 

Ms = d^(KltK2). 

Then 

M2 = max -\/\Fl{u) - F\(u)\ ^ max ^/[\Fl(u) - F\(u)\ + \F\(u) - Fp
2(u)\] 

^ max y/\F%(u) - Fi(u)\ + max \ / | F ? ( M ) - ^1(^)1 = Mi + Ms, 

all the maxima being taken over the unit sphere of directions u. 
For p = oo, w e define ô(CO) (2£0, i£i) to be 

max (max [F0(u), Fi(u)]) 
l l w | | = l (0,1) 

if i£0 and i d are not identical and take Ô^C^o, K0) = 0. Ô^(KQ, KJ is thus 
the reciprocal of the radius of the largest sphere centred a t Q which lies in 
Ko Pi Klm We may al ternately describe ô(CO)(Ko, K±) as max (1/Vo, l A i ) where 
vtE is the largest sphere centred a t Q contained in Kt. Clearly d(CO)(Ko, Ki) 
= Ô^(KU Ko) and Ô^(K0, KJ è 0 with equali ty if and only if K0 = X i . 
This deviation satisfies a triangle inequal i ty: 

5(œ>(Xo, X 2) ^ ^ > ( X 0 , Xi ) + ^ ( i ^ , K2). 

If i£0 = ^ 2 , this follows from the non-negativi ty of the deviation. If K0 = Ki 
or Ki = K2j there is obvious equali ty. Otherwise, using the numbers v0, v1} v2 

defined above, we have 

maxl — , — ) S maxl — , — , — / < maxl — , — ) + maxl — , — } 
Vo ^2/ Vo v\ v2/ \vo v\/ \v\ v2/ 

which proves the assertion. 
Thus , for 1 ^ p ^ oo, the deviations 8(p) (K0, Ki) satisfy the requirements 
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for a metric in the space of convex bodies. For the remainder of the section, 
deviations will be considered only for 1 ^ p < » . 

Let K be a convex body with distance function F(x). We denote by K the 
polar reciprocal of K with respect to the unit sphere E centred at Q. The 
support function with respect to Q of K is defined as follows. Let x be any 
point other than Q, z a vector from Q in the direction of x which terminates 
at the support plane of K normal to x. The support function of i t is ||z|| • ||x||. 
Since K and K are polar reciprocals with respect to E, if y is the vector from 
Q having the same direction as x and terminating at dK, we have | \y\ | • | \z\ | = 1. 
Hence the support function of K is | | ^ | | / | b | | = F(x). Further, if H(x) is the 
distance function of K, then H(x) is the support function of K. If Q is an 
interior point of K, it is an interior point of K. Consider the convex body 
K&(p) ; its polar reciprocal K/p) has 

^ [ ( 1 ~ê)FPo(x)+âFÏ(x)} 

as its support function. This support function is the pth mean of the support 
functions of Ao and K\. In particular for p = 1, K${p) is the usual Minkowski 
mean (1 — ê)K0 + &Ki. More generally K&(p) is the convex body denoted 
by K»w called the pth mean of K0, Kx in (2). Similarly $w(K0,Ki) = 

It is convenient to express these notions in terms of the space ^ of convex 
bodies K with metric 5(27) and the space j ^ , of convex bodies K with metric 
ô(p) introduced in (2). There d(p) (i?0, Ki) was defined as the greatest lower 
bound of numbers n such that 

\/[F%(x) + vv\\x\\p] ^ F1(x) 

and 

•^/[Fp(x) + ^p\\x\\p] ^ Fo(x) 

where Ft(x) is the support function of Kt. Polar reciprocation with respect 
to E is an involutary mapping Rp: j g —> J^,. Under this mapping pth. dot-
means correspond to ^>th means. 

We have directly from the definitions of 5(p) and <5(2J) that d^(K0l KJ = 
5(2>)(i?o, Ki). Therefore Rp is a homeomorphism. In (2) it was shown that the 
metrics 5(p) are topologically equivalent and so it follows also for the metrics 8(p\ 

We summarize. 

THEOREM 1. Polar reciprocation with respect to E furnishes a homeomorphism 
C^fv —> J ^ , for 1 ^ p < °° and for each such p and q satisfying 1 rg q < oo f 

j g is homeomorphic to jfa. 

Let Em (1 ^ m < n) be an ra-dimensional linear subspace of the Euclidean 
w-space w hich contains Q. The distance function of K P\ Em in Em is the re­
striction of the distance function of K to vectors in Em. Hence in Em we have 

$™ (K0) K{) H Em = S ^ (Xo H £Wf Xx H Em). 
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This is the dual of the following result. Let K* be the projection of K onto 
Em; then 

S^(i£o*,i£i*) = [S^(i£0 , ifi)]*. 

We have further 

s»> {Ko n E*, Xi n EW) c so» (Xo, KX) r\ Em 

and, as the dual of this result 

&»(K0*t Kt*) 2 [Sw(Ko, Ki)]*. 

The latter follows from the former with the observations that if F* is the 
support function of K r\ Em then it is the distance function of K*9 and by 
the first inclusion 

# [ ( W + ( W ] ^ C£/[/V + TV])*. 

3. Dependence of the means on their parameters. The pth dot-means 
K&{v) depend continuously on p, ê, K0 and Ki in the following sense. Let S 
be the space of elements (p, &, K0, Kx) where 1 Sp^P<œ,0Sê^lrKt 

in J^î with the distance d(e, e') between elements e = (p,&, K0t K^ and 
e' = (p', û'9 Ko', Kx') defined as \p - p'\ + \& - ê'\ + ô™ (K0, Ko') + ô™ 
(Ki, Ki). By Theorem 1, the deviation ô(1) can be replaced by any of the 
deviations ô((Z), 5((Z) for finite q ^ 1. Further let K(e) be the ^th dot-mean 
K^v) associated with element e. K(e) is continuous in e, that is if {en) is any 
sequence of elements of S for which 

lim d(en, e) = 0, 
W->co 

we have 

limô ( 1 \ i£fe),i£(e)) = 0 . 

To demonstrate this continuity, we first remark that the algebraic function 

fip^ao,^) = -\/[(l -#)aï+âapi] 

has no singularities for (p,&, a0, #i) satisfying 0<At^aieB<cQ, 
0 ^ # ^ 1, 1 S p û P < °° and so is uniformly continuous for such 
(p, #, a0, ai). Suppose that {Fon(x)} and {Fin(x)} converge to Fo(x) and Fi(x) 
uniformly for ||x|| = 1 and further satisfy A ^ Fin(x) < B. Then it is easily 
shown that {f(pn, &n, Fon(x), Fln(x))} is a sequence converging to f(p, #, Fo(x), 
Fi(x)) uniformly for \\x\\ = 1, where {pn} and {&n) converge to p and & and 
satisfy I ^ pn è P, 0 ^ dn ^ 1. 

The convergence of a sequence of elements en = (pn, d-ni K0n, Kin) of 5 to 
element e of S implies 

limô (1 )(i^,i£,n) = 0 
tt->co 
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which in turn is equivalent to the convergence of the associated sequences 
of distance functions {Fin(x)} to Fi(x) uniformly for ||x|| = 1. Moreover, 
since all the bodies in the sequences {Kin) as well as the limit bodies Kt are 
in c/i\ we know that there is a sphere (1/A)E containing each Kt and Kin, 
and a sphere (l/B)E contained in each Kt and Kin. From this it follows 
that 0 < A ^ Fin{x) ^ B < œ. Thus, by the preceding paragraph, the con­
vergence of {en} to e entails the convergence of {f(pn,&n, Fon(x), Fin(x))} to 
f(p,&, Fo(x), Fi(x)) uniformly for \\x\\ = 1. This is to say that 

l imo ( 1 ) (X(0 , ^ ( e ) ) = 0 

as asserted. 
We next examine inclusion relations among the means K${v). Since 

\f[{\ -&)Fl{x) +âFl(x)] ^ y/[(l -â)Fl(x) +âF\(x)] 

for 1 S p < ç ^ °° with equality if and only if Fo(x) = Fi(x), we have 
K/p) 2 K&(Q) with equality if and only if KQ = K\. Thus the means are either 
constant if K0 = Kx = K/p) or are strictly monotonie decreasing in p from 
K*w to Ko r\ Ki. 

Finally consider the family {K§{v)} for fixed p and varying #. For p = oo , it 
is geometrically obvious that the family is convex by which we mean that 

K&Q (1 -Û)K^+ÔK^ 

where #' = (1 — #)#o + ##i. But this is true for all p satisfying 1 rg p ^ o°. 
In virtue of the monotonicity in p discussed in the preceding paragraph, it 
is enough to show the asserted convexity for p = 1. 

We make a further reduction of the problem. Since 

è™ = (i -#)Xo+#i? i , 

we have 

kp = [(i - # ' ) £ o + * ' i £ i f 

= [(1 -#) [ (1 -^Ko+âKJ+âKl -âJKo+â.Kjf, 

and 

(1 -#)££ +#K^ = (1 - 0 ) [ ( 1 - t f 0 ) i ?o+<V?i f + ^ [ ( 1 - ^ O i t o + ^ i ^ i f . 

Set K = (1 - tf0)i?o + #oi?i and iT = (1 - iïJKo + #ii?i. In terms of K, 
K' we must prove that [(1 - Û)K + ûK'f £ (1 ~ #)K + &£'. 

On a ray r from Q let x be on di£, x' on di£'. Then ## = (1 — ê)x + ##' is 
a point, in general interior, of the Minkowski sum (1 — d)K + ûKf. Let II, 
n r , IT,? be the polar planes of x, xf, and x&. These planes are orthogonal to r 
and meet r in points z, z', and z#. U and II' are support planes of K and Kf. 
IT,? is a plane exterior to [(1 — d)K + ûK']* unless x& happens to be a boundary 
point of (1 — û)K + âKf, in which case !!# is a support plane of [(1 — d)K 
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+ ûK']*. Let z = (1 — d)z + êz'. The plane II, orthogonal to r through z 
is a support plane of (1 — d)K + ûK'. 

If we can show that z& ^ z, it will follow that II is either exterior to 
[(1 — û)K + ûK'X^ or coincides with II# if z# = z. Since r is arbitrary, this 
will prove that 

[(i - Û)K + $K'T Q (i - &)£ + &£'. 

We have from the polarity relations: 

IWI-IWI = \W\\'\W\\ = I W H M I = i-
H ence 

\Zû\ 

^ f -IWI-IWI +• 
( 1 - * ) II II , » II I 

|(1 -â)x +âx'\ 

\Xô\ '•(iwf + TRiî) 
In the last step, we have utilized the collinearity of Q, x, and xr. Continuing: 

i NI = JT^4~~T~ = (1 ~*)M +t?l|2,il = M 

~ÎRT + FÏÏ 
where the collinearity of Q, z, zf, and z& has been used. In the inequality of 
the arithmetic and harmonic means, there is equality if and only if ||z|| = \\z'\\, 
from which we conclude that the original inclusion is an equality if and only 
if K = K'. 

This argument proves the convexity of {K/p)}. The family is linear if and 
only if 

J>(P) _ J>(P) 

which means K0 = K\. 
This completes the proof of our next theorem. 

THEOREM 2. The family {K&(p)\ depends continuously on (p,&, K0l Ki) for 
1 ^p^P <&>, O^&^i 1, Kt in "£{. It is strictly monotonie decreasing in 
p for 1 S p ^ °° and convex in û. 

An immediate consequence of Theorem 2 is as follows. Let W(8) (K) denote 
the sth cross-sectional measure of K, that is, the mixed volume 

V(K,...,K',E,..r,E) 
(n — s) s 

for 5 = 0, 1, . . . , n — 1. The measures W(s)(K) are well known to be mono-
tonic in K, that is if K C Kf then W(s)(K) ^ W(f)(K') (cf. (1), p. 50). Hence 
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when 1 ^ p ^ q ^ oo, with equality if and only if K0 and Ki are identical. 
Thus W(S)(K#(P)) is monotonie decreasing in p and, in virtue of Theorem 2, 
continuous in that parameter. In particular, the intersection Ko P\ K\ has 
minimal cross-sectional measures and K/p) has maximal. This latter family 
of bodies might well be called the set of weighted harmonic means of Ko and 
Ki in view of the next remarks. 

A special instance of the convexity of the family K&(1) is 

KP = [(i -ê)Ko + #Klf ç (1 -û)Ko +#KX. 

In the inclusion, there is equality if and only if Ko = Ki. This may be viewed 
as the analogue, for convex bodies, of the theorem of the arithmetic and 
harmonic means for positive numbers. Indeed, the latter may be looked upon 
as a special case of the former in which Ko and Ki are centrally symmetric 
bodies in a one-dimensional Euclidean space, the centre of symmetry being 
the common interior point Q. A similar observation is valid regarding the 
monotonicity of the means K/p) in p for fixed ê. 

The results of these last two paragraphs give us the inequalities 

Wis)(K^) £ Wis)((l -êWo+êK,) 

for 1 ^ p ^ oo with equality if and only if Ko = K\. The next section fur­
nishes an improvement on this result for the case s = 0, that is for the volume 
functional. 

4. A dual Brunn-Minkowski theorem. For fixed p satisfying 
1 g p < « , let V{K^P)) = Vâ be the volume of K*™ where O ^ ^ l . Since 
K#(p) contains an interior point Q, V& > 0. The distance function of K^p) is 

F*(X) = \/[a -$)Fi(x) +m{x)i 
Let 

Kt = ~jnKù V(Kt) = 1. 

Set 

F*(x) = x/'[(l -ô')Fl(x) + #'Fp
1(x)] 

where Ft(x) = Vt
1,nFi(x) is the distance function of Kt. Finally, let V*> be 

the volume of that convex body whose distance function is F&>(x). Since 
F&(x) = F&>(x)/n, where 

M = i / tf\p^- + Y^\ .*' = Wiv\!n, 
we have V^'n = ix%,l'n. 
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The polar co-ordinate formula for the volume of a convex body gives 

where dw is the differential of surface area of the unit sphere E centred at Q. 
For the integrand we have 

Vtf 
(i -*') 

+ 
Û' 

^V/hi-^(j^n+"ijt)n] p-Y p_Y 
l\Fo(u)J \Fi(u)J J 

with equality if and only if F0(u) = Fx{u). Therefore 
%' * Ul§W + mû)f\dw " (1 -»'mRo) +û'nRl) = L 

There is equality if and only if K0 = Ki. This gives as the analogue of the 
Brunn-Minkowski theorem : V&1/n S M- There is equality if and only if K0 = \Ku 
X = (Vo/Vi)1/n, the centre of homothety being at Q. 

If p = oo f We have K0 H Kx C JST, and so V(K0 H Xi) ^ min (F0, Fi). 
Clearly there is equality if and only if one of the bodies Kt is a subset of the 
other. The volume functional is monotonie under set inclusion and so, by 
Theorem 2, V(K0 H Kx) ^ F(i^ ( p )) for 1 ^ £ < « with equality if and only 
if Xo = Xi. 

We collect these results in our last theorem. 
THEOREM 3. 

1L-^) + ,rW F "TO J ' 
/tff 1 ^ p < co, There is equality on the left if and only if Ko = Ki and on the 
right if and only if K0 = Xi£i with centre of homothety at Q. Further 

V^KoHK,) = V1/n(K^) ^mm(V1/n(KQ), V1'11^)) 

with equality on the right if and only if K0 = K\. 
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