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1. Introduction. This paper deals with processes of combining convex 
bodies in Euclidean w-space which are, in a sense, dual to the process of 
Minkowski addition and some of its generalizations. 

All the convex bodies considered will have a common interior point Q. 
Variables x and y denote vectors drawn from Q; we shall speak of their 
terminal points as the points x and y. Unit vectors will be denoted by u\ \\x\\ 
signifies the length of x. Convex bodies will be symbolized by K with dis
tinguishing marks. dK means the boundary of K. \K will mean the image 
of K under a homothetic transformation in the ratio X : 1. The centre of the 
homothety will always be Q. 

The distance function F(x) of a convex body is defined as follows: let y 
be the vector having the same direction as x which terminates at dK, then 
F(x) = \\x\\/\\y\\. If x = 0, we set F(0) = 0. The points x of K satisfy 
F{x) S 1 with equality if and only if x is a point of dK. Let u = x/ | |x | | ; 
then p = 1/F(u) = f(u) is the polar co-ordinate equation of dK with respect 
to a co-ordinate system with pole at Q. Since Q is an interior point of K, 
F(u) is continuous and bounded. 

The distance function satisfies: (a) F(x) > 0 for x ^ 0, F(0) = 0 ; (b) 
F(ixx) = ixF(x) for JJL > 0; (c) F{x + y) ^ F(x) + F(y) for any two vectors 
x and y. Conversely, any function F(x) satisfying (a) through (c) is the 
distance function of a unique convex body K (cf. (1), p. 22). 

The following observations regarding distance functions should be borne 
in mind; they follow immediately from the definition. F0(x) ^ Fi(x) if and 
only if Ko £ K\. If the distance function of K is F(x), that of \K is F(x)/X. 

If Fi(x), (i = 0, 1), is the distance function of the body Kt containing Q 
as an interior point, then 

F?\x) = (1 -û)Fo(x) +#F1(x), 0 ^# S 1, 

and, more generally, 

F¥\x) = ^/[(l -ê)FPo(x) +âFÏ(x)l ISPS » , 

satisfy conditions (a) through (c). By F#(CO) (x) we mean 

lim F#p\x) = max(/ro(x), Fi(x)) 
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for 0 < â < 1 with F^Çx) = Ft(x). Conditions (a) and (b) are obviously 
satisfied. Condition (c) is a consequence of Minkowski's inequality. Let 
&i = hi + eu Minkowski's inequality is 

y/[(l -ê)al+ûa\] g -\ /[(l -û)bl+ûbl] + ^ [ ( 1 -#)$+#<%]. 

If at S bt + cif the inequality is clearly still valid. Set at = Ft(x + y), 
bt = F*(x) and c* = F<(y) and condition (c) is verified for F&(p). A limit 
argument establishes (c) for p = oo. Consequently we may speak of a unique 
convex body K#(p) having the distance function F§{p\ We will call this body 
the pth dot-mean of K0 and Ki. It clearly contains Q as an interior point. For 
1 ^ p < oo ? the body 

will be denoted by S(p) (Ko, Ki) and called the pth dot-sum of Ko and Ki. Its 
distance function is %/[F0

p(x) + Fip(x)]. We set 

S(co)(i£0,i£i) = £ $ . 

We obtain a direct geometric meaning for K/p) as follows. If the polar 
co-ordinate equation of dKt is p = fi(u), then the polar co-ordinate equation 
of dK»™ is 

p= min (fo(u),fi(u)) îov p = oo . 

In particular if £ = 1, p is the harmonic mean of the distances to dK0 and 
dKi in the direction u. 

K^ = Xo n Xi 

for 0 < # < 1. 
In § 2, we first take up some elementary rules about such combinations 

of convex bodies. A deviation or metric in a space of convex bodies is intro
duced. The duality mentioned at the beginning of the paper is discussed and 
with its aid, we examine the topology induced by the deviation measure. 

Section 3 is devoted to the dependence of the family {K&(p)} on Ko, Kx 

and the parameters p and û, for 1 ^ p < oo. The dependence is continuous ; 
the family is monotonie decreasing in p and concave with respect to &. The 
special case p = °° is considered separately. 

We establish a theorem of the Brunn-Minkowski type for the family {K^p)} 
in the final section. This is 

VVn(K^) ^ l / - \ / K l -û)V-vl\Ko) + âV~p/n(K1)] for 1 ^ ^ < oo, 

V(K(
â

œ)) S mm(V(Ko), V(K{)) forO < # < 1. 

Here V(K) signifies the volume of the convex body K. 
A discussion of the cases of equality is included. 
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2. M e a s u r e s of d e v i a t i o n . T h e following rules follow immediately from 

the properties of Sp(a0, ai) = ^/[a0
p + a/] for non-negative numbers at 

applied to the appropr ia te dis tance functions. 

(i) $W(\K0,\K1) = XS^HKo.Ki). 

(ii) ^ ( i C J d ) =$<*&!, K0). 

(iii) S^iS^i^Ki),^) = S^(K0,S^(KltK2)). 

This last rule allows us to wri te wi thout misunders tanding S(v) (Ko, K\, . . . ,Km) 
defined inductively as 

$<p)($»(K0, Klt . . . , K^), Km). 

In tu rn we set 

SwtywoK», ^ W i X i , . . . , f/wmK„) = M^>(Ko, K u . . . , Km) 

if 
m 

22 Wi = 1, ^j ^ 0, 1 S p < °°. 

JkT^fXo, Xi ) = X ^ with û = WL We define M<°°>(K0, Kh . . . , Xm ) and 
6,(CO) (KQ, KI, . . . , Km) as bodies whose distance functions are 

lim MP(F0, Fh . . . , Fm), lim 5P(F 0 , Flt . . . , F ro). 
2?->oo P->co 

Since these limits are equal M(CO)(KQy Klt . . . , Km), S^(K0, Kh . . . , Km) are 
the same body. This is the convex body whose dis tance function is max 
(F0, Fi, . . . , Fm). dM(CO)(Ko, Ku . . . , Km) has the polar co-ordinate equat ion 
p = min (/o, / i , • • • ,/m) if d^C* has the equat ion p = fi(u). Clearly 

ii^(00) (î o, Ki,..., Km) = KQ r\ K1 n . . . n xm . 

We always have S ^ C ^ o , # i ) C ^ since 

\P [F?(*) + Ff(x)] > F t (*) 

for x 9^ 0. 
T h e bodies S (p ) (i£0, -Ki) and i£#(p) are not t ransla t ion- invar iant in the sense 

displayed by the usual Minkowski sum K0 + Ki. In the case of Minkowski 
sums, if i^i is t ransla ted by the addit ion of a vector tt to each vector in Ku 

then Ko + Ki is t ransla ted by the addit ion of the vector t0 + h. I t can be 
proved tha t , in general, there is no such t ranslat ion vector for S(p) (Ko, K\) 
or K#{v). For this reason we must distinguish bodies which differ by a t rans
lation. 

A measure of deviation between the two convex bodies is defined as follows. 
Let E be the sphere of radius one, centred a t Q. For 1 ^ p < oo y consider 
those numbers X > 0 such t h a t S^(K0, X£) C Kx and S^(Kh XE) C K0. W e 
define ô(p) (K0, K^ to be the greatest lower bound of the numbers 1/X. In te rms 
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of distance functions, if Ft(x) is the distance function of Ku d(p)(K0, Ki) is the 
greatest lower bound of numbers 1/X = n such t h a t 

y/[n{x) + vv\\x\\v] ^ F,(x) 

and 

y/[Fl{x)+^\\x\\v]^ Fo(x). 

Since such function Ft(x) is continuous and bounded over \\x\\ = 1, we have 

ô(p)(i£o,iCi) = max y/\Fl{u) ~ F{(u)\, 

the maximum being taken over the sphere of directions u. Clearly b{p) (Ko, K^ 
^ 0 with equali ty if and only if F0(x) = Fi(x), t h a t is Ko = K\. Fu r the r 
d(p)(Ko, Ki) = diP)(Kh Ko). T h e deviation satisfies a triangle inequal i ty: 

Ô™(KQ, K2) ^ ôM(Ko, X i ) + è<»(Ki, K2). 

For let 

/xi = «<*>(#<>, # 0 , 

M2 = ôM(Ko,K2), 

Ms = d^(KltK2). 

Then 

M2 = max -\/\Fl{u) - F\(u)\ ^ max ^/[\Fl(u) - F\(u)\ + \F\(u) - Fp
2(u)\] 

^ max y/\F%(u) - Fi(u)\ + max \ / | F ? ( M ) - ^1(^)1 = Mi + Ms, 

all the maxima being taken over the unit sphere of directions u. 
For p = oo, w e define ô(CO) (2£0, i£i) to be 

max (max [F0(u), Fi(u)]) 
l l w | | = l (0,1) 

if i£0 and i d are not identical and take Ô^C^o, K0) = 0. Ô^(KQ, KJ is thus 
the reciprocal of the radius of the largest sphere centred a t Q which lies in 
Ko Pi Klm We may al ternately describe ô(CO)(Ko, K±) as max (1/Vo, l A i ) where 
vtE is the largest sphere centred a t Q contained in Kt. Clearly d(CO)(Ko, Ki) 
= Ô^(KU Ko) and Ô^(K0, KJ è 0 with equali ty if and only if K0 = X i . 
This deviation satisfies a triangle inequal i ty: 

5(œ>(Xo, X 2) ^ ^ > ( X 0 , Xi ) + ^ ( i ^ , K2). 

If i£0 = ^ 2 , this follows from the non-negativi ty of the deviation. If K0 = Ki 
or Ki = K2j there is obvious equali ty. Otherwise, using the numbers v0, v1} v2 

defined above, we have 

maxl — , — ) S maxl — , — , — / < maxl — , — ) + maxl — , — } 
Vo ^2/ Vo v\ v2/ \vo v\/ \v\ v2/ 

which proves the assertion. 
Thus , for 1 ^ p ^ oo, the deviations 8(p) (K0, Ki) satisfy the requirements 
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for a metric in the space of convex bodies. For the remainder of the section, 
deviations will be considered only for 1 ^ p < » . 

Let K be a convex body with distance function F(x). We denote by K the 
polar reciprocal of K with respect to the unit sphere E centred at Q. The 
support function with respect to Q of K is defined as follows. Let x be any 
point other than Q, z a vector from Q in the direction of x which terminates 
at the support plane of K normal to x. The support function of i t is ||z|| • ||x||. 
Since K and K are polar reciprocals with respect to E, if y is the vector from 
Q having the same direction as x and terminating at dK, we have | \y\ | • | \z\ | = 1. 
Hence the support function of K is | | ^ | | / | b | | = F(x). Further, if H(x) is the 
distance function of K, then H(x) is the support function of K. If Q is an 
interior point of K, it is an interior point of K. Consider the convex body 
K&(p) ; its polar reciprocal K/p) has 

^ [ ( 1 ~ê)FPo(x)+âFÏ(x)} 

as its support function. This support function is the pth mean of the support 
functions of Ao and K\. In particular for p = 1, K${p) is the usual Minkowski 
mean (1 — ê)K0 + &Ki. More generally K&(p) is the convex body denoted 
by K»w called the pth mean of K0, Kx in (2). Similarly $w(K0,Ki) = 

It is convenient to express these notions in terms of the space ^ of convex 
bodies K with metric 5(27) and the space j ^ , of convex bodies K with metric 
ô(p) introduced in (2). There d(p) (i?0, Ki) was defined as the greatest lower 
bound of numbers n such that 

\/[F%(x) + vv\\x\\p] ^ F1(x) 

and 

•^/[Fp(x) + ^p\\x\\p] ^ Fo(x) 

where Ft(x) is the support function of Kt. Polar reciprocation with respect 
to E is an involutary mapping Rp: j g —> J^,. Under this mapping pth. dot-
means correspond to ^>th means. 

We have directly from the definitions of 5(p) and <5(2J) that d^(K0l KJ = 
5(2>)(i?o, Ki). Therefore Rp is a homeomorphism. In (2) it was shown that the 
metrics 5(p) are topologically equivalent and so it follows also for the metrics 8(p\ 

We summarize. 

THEOREM 1. Polar reciprocation with respect to E furnishes a homeomorphism 
C^fv —> J ^ , for 1 ^ p < °° and for each such p and q satisfying 1 rg q < oo f 

j g is homeomorphic to jfa. 

Let Em (1 ^ m < n) be an ra-dimensional linear subspace of the Euclidean 
w-space w hich contains Q. The distance function of K P\ Em in Em is the re
striction of the distance function of K to vectors in Em. Hence in Em we have 

$™ (K0) K{) H Em = S ^ (Xo H £Wf Xx H Em). 
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This is the dual of the following result. Let K* be the projection of K onto 
Em; then 

S^(i£o*,i£i*) = [S^(i£0 , ifi)]*. 

We have further 

s»> {Ko n E*, Xi n EW) c so» (Xo, KX) r\ Em 

and, as the dual of this result 

&»(K0*t Kt*) 2 [Sw(Ko, Ki)]*. 

The latter follows from the former with the observations that if F* is the 
support function of K r\ Em then it is the distance function of K*9 and by 
the first inclusion 

# [ ( W + ( W ] ^ C£/[/V + TV])*. 

3. Dependence of the means on their parameters. The pth dot-means 
K&{v) depend continuously on p, ê, K0 and Ki in the following sense. Let S 
be the space of elements (p, &, K0, Kx) where 1 Sp^P<œ,0Sê^lrKt 

in J^î with the distance d(e, e') between elements e = (p,&, K0t K^ and 
e' = (p', û'9 Ko', Kx') defined as \p - p'\ + \& - ê'\ + ô™ (K0, Ko') + ô™ 
(Ki, Ki). By Theorem 1, the deviation ô(1) can be replaced by any of the 
deviations ô((Z), 5((Z) for finite q ^ 1. Further let K(e) be the ^th dot-mean 
K^v) associated with element e. K(e) is continuous in e, that is if {en) is any 
sequence of elements of S for which 

lim d(en, e) = 0, 
W->co 

we have 

limô ( 1 \ i£fe),i£(e)) = 0 . 

To demonstrate this continuity, we first remark that the algebraic function 

fip^ao,^) = -\/[(l -#)aï+âapi] 

has no singularities for (p,&, a0, #i) satisfying 0<At^aieB<cQ, 
0 ^ # ^ 1, 1 S p û P < °° and so is uniformly continuous for such 
(p, #, a0, ai). Suppose that {Fon(x)} and {Fin(x)} converge to Fo(x) and Fi(x) 
uniformly for ||x|| = 1 and further satisfy A ^ Fin(x) < B. Then it is easily 
shown that {f(pn, &n, Fon(x), Fln(x))} is a sequence converging to f(p, #, Fo(x), 
Fi(x)) uniformly for \\x\\ = 1, where {pn} and {&n) converge to p and & and 
satisfy I ^ pn è P, 0 ^ dn ^ 1. 

The convergence of a sequence of elements en = (pn, d-ni K0n, Kin) of 5 to 
element e of S implies 

limô (1 )(i^,i£,n) = 0 
tt->co 
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which in turn is equivalent to the convergence of the associated sequences 
of distance functions {Fin(x)} to Fi(x) uniformly for ||x|| = 1. Moreover, 
since all the bodies in the sequences {Kin) as well as the limit bodies Kt are 
in c/i\ we know that there is a sphere (1/A)E containing each Kt and Kin, 
and a sphere (l/B)E contained in each Kt and Kin. From this it follows 
that 0 < A ^ Fin{x) ^ B < œ. Thus, by the preceding paragraph, the con
vergence of {en} to e entails the convergence of {f(pn,&n, Fon(x), Fin(x))} to 
f(p,&, Fo(x), Fi(x)) uniformly for \\x\\ = 1. This is to say that 

l imo ( 1 ) (X(0 , ^ ( e ) ) = 0 

as asserted. 
We next examine inclusion relations among the means K${v). Since 

\f[{\ -&)Fl{x) +âFl(x)] ^ y/[(l -â)Fl(x) +âF\(x)] 

for 1 S p < ç ^ °° with equality if and only if Fo(x) = Fi(x), we have 
K/p) 2 K&(Q) with equality if and only if KQ = K\. Thus the means are either 
constant if K0 = Kx = K/p) or are strictly monotonie decreasing in p from 
K*w to Ko r\ Ki. 

Finally consider the family {K§{v)} for fixed p and varying #. For p = oo , it 
is geometrically obvious that the family is convex by which we mean that 

K&Q (1 -Û)K^+ÔK^ 

where #' = (1 — #)#o + ##i. But this is true for all p satisfying 1 rg p ^ o°. 
In virtue of the monotonicity in p discussed in the preceding paragraph, it 
is enough to show the asserted convexity for p = 1. 

We make a further reduction of the problem. Since 

è™ = (i -#)Xo+#i? i , 

we have 

kp = [(i - # ' ) £ o + * ' i £ i f 

= [(1 -#) [ (1 -^Ko+âKJ+âKl -âJKo+â.Kjf, 

and 

(1 -#)££ +#K^ = (1 - 0 ) [ ( 1 - t f 0 ) i ?o+<V?i f + ^ [ ( 1 - ^ O i t o + ^ i ^ i f . 

Set K = (1 - tf0)i?o + #oi?i and iT = (1 - iïJKo + #ii?i. In terms of K, 
K' we must prove that [(1 - Û)K + ûK'f £ (1 ~ #)K + &£'. 

On a ray r from Q let x be on di£, x' on di£'. Then ## = (1 — ê)x + ##' is 
a point, in general interior, of the Minkowski sum (1 — d)K + ûKf. Let II, 
n r , IT,? be the polar planes of x, xf, and x&. These planes are orthogonal to r 
and meet r in points z, z', and z#. U and II' are support planes of K and Kf. 
IT,? is a plane exterior to [(1 — d)K + ûK']* unless x& happens to be a boundary 
point of (1 — û)K + âKf, in which case !!# is a support plane of [(1 — d)K 
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+ ûK']*. Let z = (1 — d)z + êz'. The plane II, orthogonal to r through z 
is a support plane of (1 — d)K + ûK'. 

If we can show that z& ^ z, it will follow that II is either exterior to 
[(1 — û)K + ûK'X^ or coincides with II# if z# = z. Since r is arbitrary, this 
will prove that 

[(i - Û)K + $K'T Q (i - &)£ + &£'. 

We have from the polarity relations: 

IWI-IWI = \W\\'\W\\ = I W H M I = i-
H ence 

\Zû\ 

^ f -IWI-IWI +• 
( 1 - * ) II II , » II I 

|(1 -â)x +âx'\ 

\Xô\ '•(iwf + TRiî) 
In the last step, we have utilized the collinearity of Q, x, and xr. Continuing: 

i NI = JT^4~~T~ = (1 ~*)M +t?l|2,il = M 

~ÎRT + FÏÏ 
where the collinearity of Q, z, zf, and z& has been used. In the inequality of 
the arithmetic and harmonic means, there is equality if and only if ||z|| = \\z'\\, 
from which we conclude that the original inclusion is an equality if and only 
if K = K'. 

This argument proves the convexity of {K/p)}. The family is linear if and 
only if 

J>(P) _ J>(P) 

which means K0 = K\. 
This completes the proof of our next theorem. 

THEOREM 2. The family {K&(p)\ depends continuously on (p,&, K0l Ki) for 
1 ^p^P <&>, O^&^i 1, Kt in "£{. It is strictly monotonie decreasing in 
p for 1 S p ^ °° and convex in û. 

An immediate consequence of Theorem 2 is as follows. Let W(8) (K) denote 
the sth cross-sectional measure of K, that is, the mixed volume 

V(K,...,K',E,..r,E) 
(n — s) s 

for 5 = 0, 1, . . . , n — 1. The measures W(s)(K) are well known to be mono-
tonic in K, that is if K C Kf then W(s)(K) ^ W(f)(K') (cf. (1), p. 50). Hence 
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when 1 ^ p ^ q ^ oo, with equality if and only if K0 and Ki are identical. 
Thus W(S)(K#(P)) is monotonie decreasing in p and, in virtue of Theorem 2, 
continuous in that parameter. In particular, the intersection Ko P\ K\ has 
minimal cross-sectional measures and K/p) has maximal. This latter family 
of bodies might well be called the set of weighted harmonic means of Ko and 
Ki in view of the next remarks. 

A special instance of the convexity of the family K&(1) is 

KP = [(i -ê)Ko + #Klf ç (1 -û)Ko +#KX. 

In the inclusion, there is equality if and only if Ko = Ki. This may be viewed 
as the analogue, for convex bodies, of the theorem of the arithmetic and 
harmonic means for positive numbers. Indeed, the latter may be looked upon 
as a special case of the former in which Ko and Ki are centrally symmetric 
bodies in a one-dimensional Euclidean space, the centre of symmetry being 
the common interior point Q. A similar observation is valid regarding the 
monotonicity of the means K/p) in p for fixed ê. 

The results of these last two paragraphs give us the inequalities 

Wis)(K^) £ Wis)((l -êWo+êK,) 

for 1 ^ p ^ oo with equality if and only if Ko = K\. The next section fur
nishes an improvement on this result for the case s = 0, that is for the volume 
functional. 

4. A dual Brunn-Minkowski theorem. For fixed p satisfying 
1 g p < « , let V{K^P)) = Vâ be the volume of K*™ where O ^ ^ l . Since 
K#(p) contains an interior point Q, V& > 0. The distance function of K^p) is 

F*(X) = \/[a -$)Fi(x) +m{x)i 
Let 

Kt = ~jnKù V(Kt) = 1. 

Set 

F*(x) = x/'[(l -ô')Fl(x) + #'Fp
1(x)] 

where Ft(x) = Vt
1,nFi(x) is the distance function of Kt. Finally, let V*> be 

the volume of that convex body whose distance function is F&>(x). Since 
F&(x) = F&>(x)/n, where 

M = i / tf\p^- + Y^\ .*' = Wiv\!n, 
we have V^'n = ix%,l'n. 
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The polar co-ordinate formula for the volume of a convex body gives 

where dw is the differential of surface area of the unit sphere E centred at Q. 
For the integrand we have 

Vtf 
(i -*') 

+ 
Û' 

^V/hi-^(j^n+"ijt)n] p-Y p_Y 
l\Fo(u)J \Fi(u)J J 

with equality if and only if F0(u) = Fx{u). Therefore 
%' * Ul§W + mû)f\dw " (1 -»'mRo) +û'nRl) = L 

There is equality if and only if K0 = Ki. This gives as the analogue of the 
Brunn-Minkowski theorem : V&1/n S M- There is equality if and only if K0 = \Ku 
X = (Vo/Vi)1/n, the centre of homothety being at Q. 

If p = oo f We have K0 H Kx C JST, and so V(K0 H Xi) ^ min (F0, Fi). 
Clearly there is equality if and only if one of the bodies Kt is a subset of the 
other. The volume functional is monotonie under set inclusion and so, by 
Theorem 2, V(K0 H Kx) ^ F(i^ ( p )) for 1 ^ £ < « with equality if and only 
if Xo = Xi. 

We collect these results in our last theorem. 
THEOREM 3. 

1L-^) + ,rW F "TO J ' 
/tff 1 ^ p < co, There is equality on the left if and only if Ko = Ki and on the 
right if and only if K0 = Xi£i with centre of homothety at Q. Further 

V^KoHK,) = V1/n(K^) ^mm(V1/n(KQ), V1'11^)) 

with equality on the right if and only if K0 = K\. 
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