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Topology of Certain Quotient Spaces of
Stiefel Manifolds

Samik Basu and B. Subhash

Abstract. We compute the cohomology of the right generalised projective Stiefel manifolds. Fol-
lowing this, we discuss some easy applications of the computations to the ranks of complementary
bundles and bounds on the span and immersibility.

1 Introduction

_e study of Stiefel manifolds and their quotients has a long history [8]. _eir topol-
ogy has played a fundamental role in solving many problems such as the celebrated
solution of the vector ûeld problem on spheres by Adams. _e cohomology of the
(real) projective Stiefel manifolds with Z/2-coeõcients was computed in [6] (in the
case of the projective orthogonal and unitary groups, this was ûrst computed in [3]).
_is was used to prove immersion results for real projective spaces in [5].

_e cohomology of the complex projective Stiefel manifoldswas the subject of the
paper [9], but it turned out to contain many errors. _e correct computation was
achieved in [1], and a universal property was associated with these manifolds. As a
consequence, the authors conclude the non-existence of certain sections to appropri-
ate bundles over projective spaces and lens spaces. Following this, the question of
parallelizability of complex projective Stiefel manifolds was settled in [2].

_is paper deals with right generalised projective Stiefel manifolds, which were
studied in [7]. _ese manifolds are interesting from a topological point of view and
also since a certain amount ofnumber theory is automaticallymixed inwith the topol-
ogy in the very deûnition of thesemanifolds. _ey are obtained as quotients of Stiefel
manifolds Wn ,k (the space of orthonormal k-frames in Cn) by an action of the circle
group S1. _e action is given by the formula z ⋅ (v1 , . . . , vk) ↦ (z l1v1 , . . . , z lkvk),
which can be described by right multiplication by a matrix with diagonal entries
(z l1 , . . . , z lk , 1, . . . , 1) onU(n)/U(n−k). We assume that the k-tuple (l1 , . . . , lk) ∈ Zk

is primitive, which means that the gcd of l1 , . . . , lk equals 1. _e corresponding quo-
tient space is called a right generalised projective Stiefel manifold PℓWn ,k . It is a smooth
real manifold of dimension k(2n − k) − 1 and can be realised as the homogeneous
space U(n)/S1 ×U(n − k). In [7], the question of parallelizability of thesemanifolds
is settled.

In this paper we are motivated by certain computations for complex projective
Stiefel manifolds and attempt to search for similar relations for the right generalised
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projective Stiefel manifolds. We compute the cohomology of thesemanifolds (cf._e-
orem 2.3) and observe that they satisfy a universal property for complementary bun-
dles of a certain sum of line bundles (cf. _eorem 2.6). Using these theorems we de-
duce implications for line bundles over speciûcmanifolds. _e cohomology formulas
also enable us to compute the Pontrjagin classes for themanifolds PℓWn ,k . Working
speciûcally with k = 2, we use these to bound the span and immersibility of these
manifolds in Euclidean spaces. Our methods improve the results in [7].

In Section 2,we compute the cohomology of themanifolds PℓWn ,k and introduce a
universal property of these spaces. We follow thiswith some applications in Section 3.

2 Some Cohomology Computations

In this section we compute the cohomology of themanifolds PℓWn ,k . We work with
Z-coeõcients up to Proposition 2.2 and Z/p-coeõcients therea�er. Our method in-
volves an interplay between Serre spectral sequences of various ûbrations and enables
us to deduce a universal property for PℓWn ,k . _roughout we assume that the gcd of
(l1 , . . . , lk) is 1.

Recall that the cohomology of the unitary group U(n) is an exterior algebra with
generators in degrees 1, 3, . . . , 2n− 1 ([4]). We denote this expression byH∗(U(n)) =
Λ(y1 , . . . , yn), where the class y j lies in degree 2 j − 1. _e Stiefel manifold Wn ,k is
homeomorphic toU(n)/U(n−k), and its cohomology is given byΛ(yn−k+1 , . . . , yn).
Recall that the principal S1 ûbration Wn ,k → PℓWn ,k yields a ûbration

Wn ,k Ð→ PℓWn ,k Ð→ BS1 ,

the latter space beingCP∞. Note that the StiefelmanifoldWn ,k alsoûbres over the�ag
manifold F(1, . . . , 1, n−k) of sequences of�ags of orthogonal subspaces of dimensions
1, . . . , 1, n − k, that is, with k subspaces of dimension 1 and one of dimension n − k.
_is ûts into a principal (S1)k ûbration Wn ,k → F(1, . . . , 1, n − k). _e S1 action
whose orbits are themanifold PℓWn ,k comes from the inclusion of S1 in (S1)k given
by Φℓ ∶ z ↦ (z l1 , . . . , z lk). _is induces a commutative sequence of ûbrations

S1 Φℓ //

��

(S1)k

��
Wn ,k

��

Wn ,k

��
PℓWn ,k //

��

F(1, . . . , 1, n − k)

��
CP∞

ϕℓ // (CP∞)k .

_ese ûbre sequences extend one step further. Consider Gk(Cn), the Grassmann
manifold of k−planes in Cn , which is the quotient U(n)/(U(k) × U(n − k)). One
has a principal U(k) bundleWn ,k → Gk(Cn), and the map (S1)k → U(k) given by
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the inclusion of diagonal matrices forms a similar diagram of principal ûbrations as
above. Putting all this together one obtains a commutative diagram

S1 //

��

(S1)k //

��

U(k)

��
Wn ,k

��

Wn ,k

��

Wn ,k

��
PℓWn ,k //

��

F(1, . . . , 1, n − k) //

��

Gk(Cn)

��
CP∞ // (CP∞)k // BU(k).

In the diagram above, the bottom le� square and the bottom right square are pullback
squares of ûbrations. Hence, the composite

(2.1) PℓWn ,k //

��

Gk(Cn)

��
CP∞ // BU(k)

is also a pullback. _ese ûbrations induce Serre spectral sequences

E p,q
2 = Hp(BU(k))⊗Hq(Wn ,k) Ô⇒ Hp+q(Gk(Cn)),(2.2)

E p,q
2 = Hp(CP∞)⊗Hq(Wn ,k) Ô⇒ Hp+q(PℓWn ,k).(2.3)

_e pullback diagram (2.1) induces a map between the two spectral sequences that
commuteswith the diòerentials. Recall that the cohomologyofBU(k) is apolynomial
algebra on the Chern classes c1 , . . . , ck , where c i = c i(ξk), ξk being the universal
k-plane bundle.

Proposition 2.1 In the spectral sequence (2.2) the classes y j ∈ H∗(Wn ,k) are trans-
gressive and support the diòerential d(y j) = −c′j (the classes c′j satisfy the equation
(1 + c′1 + . . . )(1 + c1 + ⋅ ⋅ ⋅ + ck) = 1).

Proof In the Serre spectral sequence for the ûbration

U(n)Ð→ Gk(Cn)Ð→ B(U(k) ×U(n − k)) ,
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the diòerentials are given by d(y i) = c i(ξk ⊕ ξn−k). _is formula follows from [4].
We have the diagram of ûbrations

(2.4) U(n)
q //

��

Wn ,k

��
Gk(Cn)

��

Gk(Cn)

��
B(U(k) ×U(n − k)) // BU(k),

and hence a morphism of the associated Serre spectral sequences. Note that for j ≥
n − k + 1, the classes y j ∈ H2 j−1(Wn ,k) pull back to y j ∈ H2 j−1(U(n)). We try to read
oò the expression for d(y j) in the spectral sequence for the right column from the
one on the le�.
Denote by E p,q

∗ (l) the spectral sequence corresponding to the le� vertical column
in (2.4). _e classes y1 , . . . , yn−k are not in the image of q∗. Let c i = c i(ξk) and
c̃ i = c i(ξn−k). Note that c i = 0 if i > k and c̃ j = 0 if j > n − k. _e formula
d(y j) = c j(ξk ⊕ ξn−k) implies that in the page E2(n−k)+1(l), c̃ i is equivalent to c′i for
i ≤ n − k. Hence,

d2(n−k)+2(yn−k+1) = cn−k+1(ξk ⊕ ξn−k) = ∑
i+ j=n−k+1

c i c̃ j

= ∑
i+ j=n−k+1

i≥1

c i c′j + c̃n−k+1 = ∑
i+ j=n−k+1

i≥1

c i c′j = −c′n−k+1

in E2(n−k)+2(l). _e last equation above follows from∑i+ j=d c i c′j = 0, which implies
∑i+ j=d , i≥1 c i c′j = −c′d .

We observe that the equation d2 j(y j) = −c′j holds for all j ≥ n − k + 1 in the page
E2 j(l). Proceeding by induction, we have in the page E2 j−1(l), c̃ i = c′i for i ≤ n − k
and c′i = 0 for n − k + 1 ≤ i ≤ j − 1. _en in the page E2 j(l) we have the equation

d(y2 j−1) = c j(ξk ⊕ ξn−k) = ∑
p+q= j

cp c̃q = ∑
p+q= j
p≤k

q≤n−k

cpc′q = ∑
p+q= j
p≤k

cpc′q = −c′j .

Denote by E p,q
∗ (r) the spectral sequence for the right column of (2.4). For degree

reasons, the diòerentials d j are 0 if j < 2(n − k)+ 2. _emorphism from the spectral
sequence of the right column to the le� column implies that the diòerentials on y i for
i > n − k are given by d(y i) = −c′i .

Nextwe translate theProposition 2.1 to obtain diòerentials in the spectral sequence
(2.3). For a tuple ℓ = (l1 , . . . , lk) and integers I = (i1 , . . . , ik), denote ∣I∣ = ∑ j i j and
ℓI =∏ j l

i j
j . We prove the following proposition.

Proposition 2.2 In the spectral sequence (2.3), the classes y j ( for j > n − k) are
transgressive and the diòerentials are given by d(y j) = −∑∣I∣= j(−1) jℓIx j .
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Proof In the diagram(2.1), themap ϕℓ ∶CP∞ → BU(k) classiûes the k-plane bundle
ξ l1 ⊕ ⋅ ⋅ ⋅ ⊕ ξ lk . _e Chern classes of this bundle are computed by

c(⊕ jξ l j) =∏
j
(1 + l jx).

For the classes c′j , deûne c′ = 1+ c′1 + ⋅ ⋅ ⋅ so that cc′ = 1. _is implies the pullback of c′
to CP∞ is given by the equation

ϕ∗ℓ c′ =∏
j
(1 + l jx)−1 .

_us, ϕ∗ℓ (c′j) = ∑∣I∣= j(−1) jℓIx j . _e result follows.

Using the formulas above, we now compute the Z/p cohomology of PℓWn ,k .

_eorem 2.3 For an odd prime p,

H∗(PℓWn ,k ;Z/p) ≅ (Z/p)[x]/(xN)⊗ Λ(yn−k+1 , . . . , yN−1 , yN+1 , . . . , yn),

where N = min{r ∶ r > n − k and ∑∣I∣=r ℓI /≡ 0 (mod p)}.

Proof We compute via the Serre spectral sequence (2.3)withZ/p coeõcientswhose
diòerentials are computed in Proposition 2.2.
By themultiplicative structure, the ûrst non-zero diòerential on a class in the ver-

tical 0-line is forced to be a transgression. With N deûned as in the statement, note
that the ûrst non-zero transgression is given by d2N(yN) = xN . _erefore, the page
E∗,∗2N+1 is isomorphic to the algebra

(Z/p)[x]/(xN)⊗ Λ(yn−k+1 , . . . , yN−1 , yN+1 , . . . , yn).

Since the classes y j are transgressive, there are no further diòerentials as x i = 0 for
i > N in E∗,∗2N+1. Hence, E2N+1 = E∞. It follows that wemust also have

H∗(PℓWn ,k ;Z/p) ≅ (Z/p)[x]/(xN)⊗ Λ(yn−k+1 , . . . , yN−1 , yN+1 , . . . , yn).

For themultiplicative structure, observe that the factor (Z/p)[x]/(xN) is a subal-
gebra as it comes from the horizontal 0-line. Arbitrarily pick classes

y j ∈ H2 j−1(PℓWn ,k ;Z/p)

(for j > n − k and j /= N), which pull back to y j ∈ H2 j−1(Wn ,k ;Z/p) under the
induced cohomology map of the quotient map Wn ,k → PℓWn ,k . _ese exist by the
additive computation above. _e classes y j are odd dimensional classes and hence
square to 0. _us,multiplication induces a ring map

(Z/p)[x]/(xN)⊗ Λ(yn−k+1 , . . . , yN−1 , yN+1 , . . . , yn)Ð→ H∗(PℓWn ,k ;Z/p)

which is an additive isomorphism by the argument above. _e result follows.

One can try to repeat the above argument for p = 2, but then the squares on the
classes y j might not be zero. However, if k = 2, this case cannot arise, and we have
the following result.
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_eorem 2.4 Let ℓ = (l1 , l2) and suppose that 2 divides∑p+q=n−1 l
p
1 l q2 . _en

H∗(PℓWn ,2;Z/2) ≅ Z/2[x , yn−1]/(xn , y2
n−1).

Otherwise,
H∗(PℓWn ,2;Z/2) ≅ Z/2[x , yn]/(xn−1 , y2

n).

Proof _e proof for _eorem 2.3 can be repeated verbatim here. _e only issue is
with multiplicative extensions. Again choose representatives for yn−1 , yn in an arbi-
trary fashion. We examine the possible values for y2

j . From dimension reasons no
other class exists in the degree of y2

n−1 and y2
n in either of the cases. _e rest of the

proof works as in _eorem 2.3.

Example 2.5 Put ℓ = (1, . . . , 1) so that we recover the complex projective Steifel
manifold. In that case note that∑∣I∣=r ℓI is the number of ordered k-tuples of elements
with sum r that is (r+k−1

k ) = (r+k−1
r−1 ). Consider

N = min{ r ∶ r > n − k and (r+k−1
r−1 ) /≡ 0 (mod p)} .

_e ûrst term in this set is r = n − k + 1 which is (n
k). In view of the relation

(r + k
r

) = (r + k − 1
r − 1

) + (r + k − 1
r

),

if (r+k−1
r−1 ) ≡ 0 (mod p), (r+k

r ) ≡ (r+k−1
r ) (mod p). _erefore, one can rewrite the

equation deûning N as N = min{r ∶ r > n − k and (n
r) /≡ 0 (mod p)}. _is matches

the cohomology computation in [1,_eorem 1.1].

Refer to the commutative diagram (2.1). _is is actually a homotopy pullback.
Hence, one has an associated universal property for themanifold PℓWn ,k .

_eorem 2.6 _e space PℓWn ,k classiûes line bundles L for which there exists an
(n − k)-bundle E such that E ⊕ j L l j is a trivial bundle.

Proof Since the diagram (2.1) is a homotopy pullback, [X , PℓWn ,k] is equivalent to
a map X → CP∞ and a map X → Gk(Cn) such that the composites to BU(k) are
homotopic. Denote by L the line bundle classiûed by the map to CP∞ and by E the
pullback of the complementary canonical bundle ξn−k over Gk(Cn). _en themaps
are homotopic on composition to BU(k) if and only if ⊕ jL l j ⊕ E = nєC. _e result
follows.

Remark 2.7 If ℓ = (1, . . . , 1), the universal property classiûes line bundles L such
that kL ⊕ E is a trivial bundle. We have the sequence of implications

kL ⊕ E ≅ nєC ⇐⇒ L∗ ⊗ E ⊕ kєC ≅ nL∗ ⇐⇒ E∗ ⊗ L ⊕ kєC ≅ nL

_us, the universal property is equivalent to having k linearly independent sections
to the bundle nL. _is reduces to the universal property in [1, (5.2)].
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3 Applications

In this sectionwe consider applications of the cohomology computations in Section 2.
We focus on the manifolds PℓWn ,2, but analogous computations can be done for
PℓWn ,k for k ≥ 3. _ere are two kinds of applications we consider, the ûrst being
ranks of complementary bundles using _eorem 2.6 and the second being bounds on
the number of linearly independent vector ûelds and immersion codimensions. We
ûx the notation

ϕd(l1 , l2) =
l d+1
1 − l d+1

2

l1 − l2
so that for ℓ = (l1 , l2) with l1 /= l2,∑∣I∣=d ℓI = ϕd(l1 , l2).

3.1 Ranks of Some Complementary Bundles

For a vector bundle ξ, call a bundle η complementary if ξ ⊕ η is a trivial bundle. _e
universal property of PℓWn ,k in _eorem 2.6 implies that the topology of the spaces
PℓWn ,k can be used to study the ranks of complementary bundles when ξ is of the
form L l1 ⊕ ⋅ ⋅ ⋅ ⊕ L lk . We concentrate on the case k = 2.

Suppose that X is amanifold of dimension 2n. Recall that a complex vector bundle
ξ over X possesses a complementary bundle ζ of dimension n. Usually one tries to
bound the dimension of ζ using Chern classes. Let η be a complex line bundle over
X and let ζ be such that ζ ⊕ η l1 ⊕ η l2 is trivial. Suppose that y = c1(η). It follows that

c i(ζ) = y i ∑
p+q=i

(−1)p l p1 (−1)q l q2 = y i(−1)i l i+1
1 − l i+1

2

l1 − l2
= ϕ i(l1 , l2)y i .

If cn(ζ) = ϕn(l1 , l2)yn /= 0, then rank(ζ) ≥ n. We ask the question: what happens if
this element is 0? One can argue from the homotopy theory of classifying spaces that
there exists a ζ of dimension n− 1. One can also observe this using the spaces PℓWn ,k .
Indeed, from _eorem 2.6, there exists a complementary ζ of dimension n − 1 if and
only if there is a li� in the diagram

PℓWn+1,2

��
X

η // CP∞

for ℓ = (l1 , l2). _e ûbre of the vertical map is Wn+1,2, and hence the obstructions
to such a li� lies in Hk+1(X; πkWn+1,2). In this case the coeõcient group is 0 unless
k ≥ 2n − 1 and π2n−1(Wn+1,2) ≅ Z. _erefore, the only possible obstruction to this
lies in the group H2n(X;Z), and this can be explicitly computed as the nth Chern
class. Next we consider an application where the spaces PℓWn ,2 give a better bound
than the Chern classes. Let Ld(m) denote the lens space S2d+1/(Z/m). Consider the
space X = S2 × Ld(m) so that H2(X) = Z{e2} ⊕ (Z/m){u} (e2 is the pullback of
the generator of H2S2 and u the pullback of the generator of H2Ld(m)). Consider
the line bundle λ given by the element e2 + u ∈ H2(X). We consider the following
question: if λ l1 ⊕ λ l2 ⊕ ζ is a trivial bundle, what are the possible restrictions on the
rank of ζ?
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_e dimension of X equals 2d + 3; thus, we can choose ζ to have dimension d + 1.
_e cohomology of Ld(m) is given by

H∗(Ld(m);Z) ≅ Z[u, v2d+1]/(mu, ud+1 , v2
2d+1 , uv2d+1)

and by the Kunneth formula

H∗(X;Z) ≅ Z[e2 , u, v2d+1]/(e22 ,mu, ud+1 , v2
2d+1 , uv2d+1).

We ask whether one can choose ζ of rank d. _e total Chern class of ζ is

c(ζ) = ( 1 + l1(e2 + u))−1(1 + l2(e2 + u))−1

_is implies that

cd+1(ζ) = ϕd+1(l1 , l2)(e2 + u)d+1 ≡ ϕd+1(l1 , l2)(d + 1)e2ud (mod m).
Hence, dim(ζ) ≥ d + 1 if m does not divide ϕd+1(l1 , l2)(d + 1).

We consider the case when m divides ϕd+1(l1 , l2) so that there is no obstruction
to dimension of ζ being d coming from the Chern class. Now we try to work out the
obstruction theory. A choice of ζ is equivalent to a li�

PℓWd+2,2

��
X λ // CP∞ ,

with ℓ = (l1 , l2).
_e cohomology of Ld(m) with Z/2 coeõcients (assuming that m is even) is

H∗(Ld(m);Z/2) ≅ Z[u, v]/(ud+1 , v2 − єu)
with deg(u) = 2, deg(v) = 1, and є ≡ m

2 (mod 2). _e Bockstein homomorphism
β∶H1(Ld(m);Z/2) → H2(Ld(m);Z) is given by the formula β(v) = m

2 u. Also, we
have the formula

Sq2(ud−1v) = (d − 1)udv .
Similarly, for the space X, we have

H∗(X; (Z/2)) ≅ Z[e2 , u, v]/(e22 , ud+1 , v2 − єu),

β(e2ud−1v) = m
2
e2udv , Sq2(e2ud−1v) = (d − 1)e2udv , Sq2(udv) = 0.

Next consider PℓWd+2,2. We haveH2d+1(PℓWd+2,2;Z/2) = Z/2 generated by yd+1,
if ϕd+1(l1 , l2) ≡ 0 (mod 2). In this case, the Bockstein

H2d+1(PℓWd+1,2;Z/2)

β
��

Z/2{yd}

H2d+2(PℓWd+1,2;Z) Z/ϕ(l1 , l2){xd+1}

is given by
β(yd+1) = 1

2ϕd+1(l1 , l2)xd+1 .
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In this case, also note that yd+2 is 0 in H2d+3(PℓWd+2,2;Z/2) so that Sq2(yd+1) = 0.
Using these computations we prove the following proposition.

Proposition 3.1 Suppose d is even, m is even, m divides ϕd+1(l1 , l2), and ν2(m) =
ν2(ϕd+1(l1 , l2)), where ν2(n) denotes the 2-adic valuation of n. _en dim(ζ) ≥ d + 1.

Proof Suppose dim(ζ) = d; then there exists f ∶X → PℓWd+2,2 such that f ∗(x) =
c1(λ) = e2 + u. We have

β(yd+1) =
1
2
ϕd(l1 , l2)xd+1 ,

hence,

β( f ∗(yd+1)) = β(
1
2
ϕd+1(l1 , l2)xd+1) = ϕd+1(l1 , l2)

2
(d + 1)e2ud =

m
2
e2ud .

_e last equality follows as m divides ϕd(l1 , l2), ν2(m) = ν2(ϕd(l1 , l2)) and d + 1 is
odd. _is implies f ∗(yd+1) = e2ud−1v + kudv for some k. _en

H2d+1(PℓWd+1,2;Z/2)
f ∗ //

Sq2

��

H2d+1(X;Z/2)

Sq2

��
H2d+3(PℓWd+1,2;Z/2)

f ∗ // H2d+3(X;Z/2)
implies

f ∗Sq2(yd+1) = Sq2 f ∗(yd+1) = Sq2(e2ud−1v + kudv) = e2udv /= 0

as d is even. However, f ∗Sq2(yd+1) = f ∗(0) = 0, which leads to a contradiction.
Hence, it follows that dim(ζ) ≥ d + 1.

3.2 Bounds for Span and Immersions in Euclidean Space

We compute the Pontrjagin classes for PℓWn ,2 and deduce some bounds for the span
and immersion codimension. _e dimension of themanifold PℓWn ,2 is 4n − 5. Note
the expression for the tangent bundle for PℓWn ,2 from [7, 2.2]:

τ(PℓWn ,2) ≅ r(ξ−l1 ⊗C ξ l2)⊕ r(ξ−l1 ⊗C β)⊕ r(ξ−l2 ⊗C β)⊕ єR .
In this expression, ξ is the complex line bundle associatedwith theprincipal S1-bundle
Wn ,2 → Pℓ(Wn ,2) and β is theuniversal complex vector bundle satisfying ξ l1⊕ξ l2⊕β ≅
nєC in _eorem 2.6. _e bundles ξs are deûned using the tensor product in the group
of complex line bundles so that ξ−n ≅ ξ̄n . _e operation r is the realiûcation functor
carrying a complex bundle to its underlying real bundle. Eliminating the bundle β
from the equation above one has the following expression from [7, Lemma 2.1]:

τ(PℓWn ,2)⊕ r(ξ−l2 ⊗C ξ l1)⊕ 3єR ≅ nr(ξ−l1 ⊕ ξ−l2).
Observe that the ûrst Chern class of the line bundle ξ equals the class x deûned in
Section 2. It follows that the total Pontrjagin class of the tangent bundle is given by
(modulo 2-torsion)

(3.1) p( τ(PℓWn ,2)) = (1 − l 21 x2)n(1 − l 22 x2)n( 1 − (l2 − l1)2x2)−1
.
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_us, the Pontrjagin classes lie in the subalgebra of H∗(PℓWn ,2) generated by x. We
have the following result on the span of thesemanifolds.

_eorem 3.2 For any ℓ = (l1 , l2) such that there is a prime q dividing n but not l2− l1,
the span of PℓWn ,2 is ≤ 4n − 5− 2⌊ n−2

2 ⌋. In addition for n odd, if q divides l n1 − l n2 , then
the span of PℓWn ,2 is ≤ 3n − 4.

Proof Recall that if the span of a vector bundle γ is k, then the Pontrjagin classes
p i(γ) are 0 for i > ⌊(dim(γ) − k)/2⌋. In the spectral sequence for H∗(PℓWn ,2;Z) of
Section 2, the ûrst diòerential onto a power of x hits some multiple of the element
xn−1. _erefore, the powers x i are non-trivial for i ≤ n − 2.

Suppose there is a prime q that divides n but not l2 − l1. _en the expression (3.1)
modulo q and xn is the same as (1 − (l2 − l1)2x2)−1, which has non-zero coeõcient
(modulo q) for every even power of x. _us the coeõcient of x2⌊ n−2

2 ⌋ is non-zero,
implying the ûrst part.
For n odd, write n − 1 = 2k and consider the possibility that the Pontrjagin class

pk(τ(PℓWn ,2)) /≡ 0 (mod q). _e expression (1 − (l2 − l1)2x2)−1 has a non-zero
coeõcient of xn−1. _erefore, pk(τ(PℓWn ,2) is non-zero if the class xn−1 is non-zero
in H∗(PℓWn ,2;Z/q), which in turn is equivalent to the condition ϕn−1(l1 , l2) ≡ 0
(mod q). Note that ϕn−1(l1 , l2) = l n1 −l n2

l1−l2
. Hence, the result follows.

Remark 3.3 Note that the second condition is easily satisûed (for example if q − 1
divides n and q does not divide any l i). _ere can be other results similar to _eo-
rem 3.2. For example, a similar argument demonstrates that if a prime q divides n − 1
but not l1 − l2, l1 or l1 + 3l2 the ûrst conclusion holds. If in addition q divides l n1 − l n2
the second condition holds. One canmake similar computationswith q dividing n−2
and so on. _us it is possible to write down many sets of divisibility relations for l1
and l2 which imply the ûrst consequence, and in addition if the prime divides l n1 − l n2
without dividing l1 − l2 then the second consequence also follows.

Next we consider the problem of immersing the manifold PℓWn ,2 in Euclidean
space. If PℓWn ,2 is immersed in RN for some N , then we have τ ⊕ ν ≅ NєR, where ν
is the normal bundle. _e total Pontrjagin class modulo elements of order 2, satisûes
p(ν) = p(τ(PℓWn ,2))−1 . From (3.1), it follows that

(3.2) p(ν) = (1 − l 21 x2)−n(1 − l 22 x2)−n( 1 − (l2 − l1)2x2) .

_eorem 3.4 Suppose that there exists a prime q dividing n − 1 and l2 − l1. _en
the class p

⌊
n−3
2 ⌋

(ν) is non-zero. Hence the manifold PlWn ,2 does not immerse in
R4n−5+2⌊ n−3

2 ⌋.

Proof We compute p(ν) modulo q and xn as in _eorem 3.2. Reducing (3.2) mod-
ulo q and xn , we get

p(ν) ≡ (1 − l 21 x2)−2(mod q, xn).
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_e coeõcient of x2⌊ n−3
2 ⌋ in this expression is

( −2
2⌊ n−3

2 ⌋) = ±(2⌊n − 3
2

⌋ + 1) .

_is equals n − 2 or n − 3, none of which are divisible by q as q divides n − 1.
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