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1. Introduction

Let C be a compact Riemann surface of genus g ≥ 2 and G be a complex reductive
algebraic group. The G-character variety of C, or Betti moduli space, is the affine GIT
quotient

MB(C,G) :=Hom(π1(C),G)�G

=
{
(A1,B1, . . . ,Ag,Bg) ∈G2g

∣∣ g∏
j=1

[Aj,Bj ] = 1G
}

�G. (1)

It parametrises isomorphism classes of semi-simple representations of the fundamental
group of C with value in G. Remarkably, the space MB(C,G) is homeomorphic to the
Dolbeault moduli space MDol(C,G), parametrising instead isomorphism classes of
semistable principal G-Higgs bundles on C of degree zero; see [66]. For example, a
GLn-Higgs bundle is a pair (E,φ) with E vector bundle of rank n and φ∈H0(C,End(E)⊗
K). Such a pair is an SLn-Higgs bundle if in addition the determinant of E is trivial and
the trace of φ vanishes.

Since the pioneering work of Hitchin [37], the (nonalgebraic) homeomorphism between
MB(C,G) and MDol(C,G) has been exploited to study the topology of character
varieties. The main result of this article is the computation of some geometric invariants
of MDol(C,G) and MB(C,G), namely, the intersection E-polynomials and the inter-
section Poincaré polynomials of MDol(C,G) and MB(C,G) for G = GL2 , SL2 ,PGL2;
see §1.2.

The motivation for this work stems from the newly stated P=W conjectures [26,
Conjecture 1.2, 1.4, 1.5] for singular character varieties; see also [15, Question 4.1.7]
and the seminal paper [13]. In fact, the explicit knowledge of intersection E-polynomials
and intersection Poincaré polynomials is an essential ingredient in the proof of the P=W
conjectures in rank 2 and genus 2 in [26, Main Theorem]. Here, as an applications of our
computations, we collect in Theorem 1.1 several results related to the P=W conjectures
in rank 2 and arbitrary genus. For brevity, we simply write MB for MB(C,G) and MDol

for MDol(C,G) when G=GL2 or SL2, and we suppress subscripts B or Dol when we refer
indifferently to the Betti or the Dolbeault side.

Theorem 1.1 (Remarks on the P=W conjectures). The following facts hold:

A. the intersection E-polynomial IE(MB) is palindromic;
B. the PI=WI conjecture for SL2 is equivalent to the PI=WI conjecture for GL2;
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C. IH<4g−6(M) is freely generated by tautological classes;
D. the mixed Hodge structure on H∗(MDol) is not pure for g > 3;
E. the P=W conjecture for any resolution of M(C,GLn) fails when M(C,GLn) does

not admit a symplectic resolution.1

In Section 5 we recall the content of the P=W conjectures and we give a proof of
Theorem 1.1. Here we briefly explain the relevance of the previous statements in view of
the P=W conjectures.

A. Theorem 1.1.A (Theorem 5.4) provides numerical evidence for the PI=WI
conjecture. Indeed, the PI=WI conjecture implies the palindromicity of
IE(MB).

B. Theorem 1.1.B (Corollary 5.6) is a useful reduction statement. It says that it
is enough to prove the PI=WI conjecture only for a portion of the intersection
cohomology, namely, its Γ-invariant part; see (5) and (6).

C. The known proofs of the P=W conjecture for twisted character varieties [13]
and [16] (cf. also Subsection 5.1) rely on the generation by tautological classes of
the Γ-invariant part of H∗(M). This is unknown for the intersection cohomology
of the singular moduli spaces. Theorem 1.1.C (Theorem 5.7) provides a partial
answer; that is, the tautological generation of the intersection cohomology in low
degree.

D&E. Theorem 1.1.D and 1.1.E stress the difference between the P=W conjectures for
character varieties with or without a symplectic resolution; see Subsection 5.5,
Subsection 5.6, and also [26].

Our strategy to compute the intersection E-polynomials of M is to use the Kirwan–
O’Grady desingularisation πT : T → M (Subsection 3.2) and determine all of the
summands of the decomposition theorem for πT ; cf. [44, Remark 2.28]. This is a subtle
task that we can complete thanks to a tight control of the geometry of πT .

Theorem 1.2 (Decomposition theorem for πT ). There is an isomorphism in
DbMHMalg(M) or in Db(M) (ignoring the Tate shifts)

RπT,∗Q[dimT ] = ICM ⊕
2g−4⊕

i=−2g+4

Q
� 2g−3−|i|

2 �
Σ [dimΣ−2i](−2g+3− i)

⊕
2g−4⊕

i=−2g+4

iΣ◦,∗L
� 2g−3−|i|

2 �[dimΣ−2i](−2g+3− i)

⊕
3g−4⊕

j=−3g+4

Q
b(j)
Ω [dimΩ−2j](−3g+3− j),

1A resolution of singularities f : X → Y is symplectic if a holomorphic symplectic form on the
smooth locus of X extends to a symplectic form on Y.
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where

• Σ is the singular locus of M;
• Ω is the singular locus of Σ;
• iΣ◦ : Σ◦ := Σ\Ω→ Σ is the natural inclusion;
• L is the rank-1 local system on Σ◦ corresponding to a quasi-étale double cover

q : Σι → Σ branched along Ω (see Definition 3.3);
• b(−3g+3+ j) is the coefficient of the monomial qj in the polynomial(

1− q2g−2
)(

1− q2g
)(

1− q4− q2g−3− q2g−1+2q2g
)

(1− q)
3
(1− q2)

− 1− q2g

1− q2

− q(1− q2g−3)(1− q2g−2)

(1− q)(1− q2)
.

Note in addition that the same decomposition holds for the Mukai moduli space of
semistable sheaves on K3 or abelian surfaces with Mukai vector v = 2w ∈ H∗

alg(S,Z),
where w is primitive and w2 = 2(g− 1), thus suggesting other potential applications
of Theorem 1.2. This is indeed a consequence of the stable isosingularity principle
(Theorem 2.11), which roughly says that Betti, Dolbeault and Mukai moduli spaces have
the same type of singularities, in the sense of Definition 2.6.

It is conceivable that the computation of the intersection E-polynomials in rank 3 can
be pursued with no substantial conceptual difference. In higher rank, however, this seems
hard. In fact, closed formulas may be cumbersome and less enlightening. Notwithstanding,
we believe that the rank 2 case can inspire the investigation of the higher rank case,
especially in relation to the P=W conjectures [26] and the Hausel–Thaddeus topological
mirror symmetry conjecture for singular character varieties [32, Remark 3.30].

1.1. Notation
The intersection cohomology of a complex variety X with middle perversity and
rational coefficients is denoted by IH∗(X). Ordinary singular cohomology with rational
coefficients is denoted by H∗(X). The subscript c stands for compactly supported
intersection or ordinary cohomology, respectively IH∗

c (X) and H∗
c (X). Recall that they

all carry mixed Hodge structures.
The Poincaré polynomial, the intersection Poincaré polynomial, the intersection Euler

characteristic, the E-polynomial and the intersection E-polynomial are defined by

Pt(X) =
∑
d

dimHd(X)td,

IPt(X) =
∑
d

dimIHd(X)td,

Iχ(X) =
∑
d

(−1)ddimIHd(X),
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E(X) =
∑
r,s,d

(−1)ddim(GrWr+sH
d
c (X,C))r,survs,

IE(X) =
∑
r,s,d

(−1)ddim(GrWr+s IH
d
c (X,C))r,survs.

We will often write q := uv.
The action of a finite group Γ on X induces the splitting

Hd(X) =Hd(X)Γ⊕H∗
var(X),

where Hd(X)Γ is fixed by the action of Γ and Hd
var(X) is the variant part; that

is, the unique Γ-invariant complement of Hd(X)Γ in Hd(X). Analogous splittings
hold for the Γ-modules Hd

c (X), IHd(X) and IHd
c (X). The label Γ or var, writ-

ten after the polynomials above, imposes to replace ordinary (or intersection) coho-
mology with its Γ-invariant or Γ-variant part respectively; for example, IE(X)Γ =∑

r,s,d(−1)ddim(GrWr+s IH
d
c (X,C)Γ)r,survs.

If ι : X → X is an involution, we simply use the superscript + or − to denote the
ι-invariant and ι-variant part; for example, P (X)+ =

∑
ddimHd(X)+td := P (X)〈ι〉.

We always denote by C a complex projective curve of genus g ≥ 2, unless differently
stated. For notational convenience, we simply write MB for MB(C,G) and MDol for
MDol(C,G) when G = GL2 or SL2, and we suppress subscripts B or Dol when we refer
indifferently to the Betti or the Dolbeault side. We adopt the same convention for the
strata ΣB(C,G), ΣDol(C,G), ΩB(C,G), ΩDol(C,G).

1.2. Computations
As an application of the decomposition theorem (Theorem 1.2), we can express IE(M)

as a function of the E-polynomials of M, Σι and Ω; see Proposition 3.2 for the definition
of these strata and Subsection 4.1 for the proofs of the following expressions.

Theorem 1.3.

IE(M) = E(M)+(q2E(Σι)
++ qE(Σι)

−) · 1− q2g−4

1− q2
+E(Ω) · q2g−2. (2)

Theorem 1.4. The intersection E-polynomials of MB are

IE(MB(C, SL2)) =(q2g−2+1)(q2−1)2g−2+
1

2
q2g−3(q2+1)((q+1)2g−2

− (q−1)2g−2)+22g−1q2g−2((q+1)2g−2+(q−1)2g−2),

IE(MB(C,PGL2)) =(q2g−2+1)(q2−1)2g−2+
1

2
q2g−3(q2+ q+1)(q+1)2g−2

− 1

2
q2g−3(q2− q+1)(q−1)2g−2,

IE(MB(C,GL2)) =(q−1)2g · IE(MB(C,PGL2)).

Corollary 1.5. The intersection E-polynomials IE(MB) are palindromic.

https://doi.org/10.1017/S1474748021000487 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000487


1620 M. Mauri

Corollary 1.6. The intersection Euler characteristics of M are

Iχ(M(C, SL2)) = 22g−2(22g−1+1),

Iχ(M(C,PGL2)) = 3 ·22g−3.

We list the intersection E-polynomial of MB(C, SL2) in low genus (we truncate the
polynomial at degree 3g− 3: the coefficients of the monomials of higher degree can be
determined by symmetry, since IE(MB(C, SL2)) is palindromic of degree 6g−6):

g = 2 : 1+17q2+ · · ·
g = 3 : 1−4q2+75q4+384q6+ · · ·
g = 4 : 1−6q2+15q4+243q6+3875q8+ · · ·
g = 5 : 1−8q2+28q4−56q6+1103q8+28672q10+71848q12+ · · · .

Remark 1.7. The intersection E-polynomial of MB(C, SL2) is a polynomial in q2.
This fails for twisted SL2-character varieties (cf. [52, (2)]; see also Subsection 5.1 for
the definition of the twist), but it holds true for twisted PGL2-character varieties,
since their cohomology is generated by classes of weight 4; see [34, Proposition 4.1.8].
The E-polynomial of MB(C, SL2) is a polynomial in q2, too; see [48, Theorem 2]
or [4, Theorem 1.3].

Theorem 1.8. The intersection E-polynomial of MDol(C, SL2) is

IE(MDol(C, SL2)) = E(MDol(C, SL2)
sm)+

1

2
(uv)g ((1−u)g(1−v)g +(1+u)g(1+v)g)

+
1

2
(uv)g+1(1− (uv)2g−4)

(
(1−u)g(1−v)g

1−uv
− (1+u)g(1+v)g

1+uv

)
+22g(uv)2g−2.

An explicit formula for the E-polynomial of the smooth locus of MDol(C, SL2) was
computed in [41, Theorem 3.7]. Together with Theorem 1.8 and Proposition 2.4, this
gives the intersection Poincaré polynomial of M(C, SL2).

Theorem 1.9. The intersection Poincaré polynomial of M(C, SL2) is

IPt(M(C, SL2)) =
(t3+1)2g

(t2−1)(t4−1)
+(g−1)t4g−3 (t+1)2g−2

t−1

− t4g−4

4(t2−1)(t4−1)

(
(t2+1)2(t+1)2g − (t+1)4(t−1)2g

)
+

1

2
t4g−4((t+1)2g−2− (t−1)2g−2)− 1

2
t4g−6((t+1)2g − (t−1)2g)

+
1

2
(22g −1)t4g−4((t+1)2g−2+(t−1)2g−2).

Therefore, we have

IPt(M(C, SL2)) =
(t3+1)2g

(t2−1)(t4−1)
−2g · t4g−5+O(t4g−4). (3)
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We list the intersection Poincaré polynomial of MB(C, SL2) in low genus:

g = 2 : 1+ t2+17t4+17t6

g = 3 : 1+ t2+6t3+2t4+6t5+17t6+6t7+81t8+12t9+396t10+6t11+66t12

g = 4 : 1+ t2+8t3+2t4+8t5+30t6+16t7+31t8+72t9+59t10+72t11+385t12

+80t13+3955t14+80t15+3885t16+16t17+259t18

g = 5 : 1+ t2+10t3+2t4+10t5+47t6+20t7+48t8+140t9+93t10+150t11

+304t12+270t13+349t14+522t15+1583t16+532t17+29414t18+532t19

+72170t20+280t21+28784t22+30t23+1028t24.

The Poincaré polynomial of MB(C, SL2) was obtained in [12, Theorem 1.5], which,
however, contains small transcription errors (cf. [7, Theorem 2.2] and [10, (47)]).

Pt(M(C, SL2)) =
(t3+1)2g

(t2−1)(t4−1)
+

(t+1)2g(t2+1)+(t−1)2g(t2−1)

2(t4−1)

+

g∑
k=2

{(
2g

k

)
−
(

2g

k−2

)}
tk+2Mod[k,2] (t

2k−2Mod[k,2]−1)(t2g−2k+2−1)

(t−1)(t4−1)

− 1

2
t((t+1)2g +(t−1)2g)+

t2g+2−1

t−1
− t4g−4+

(t−1)2gt4g−4

4(t2+1)

− (t+1)2gt4g−4

2(t2−1)

(
2g

t+1
+

1

t2−1
− 1

2
+3−2g

)
+

1

2
(22g −1)t4g−4((t+1)2g−2+(t−1)2g−2−2),

where Mod[k,l] is the remainder on division of k by l. We can then inspect the difference
IPt(M(C, SL2))−Pt(M(C, SL2)) in low genus:

g = 2 : 16t4

g = 3 : 6t3+ t4+6t5+ t6+6t7+79t8+ t10

g = 4 : 8t3+ t4+8t5−20t6+16t7−19t8+22t9+56t10+56t11+327t12

+8t13+28t14+ t16

g = 5 : 10t3+ t4+10t5−65t6+20t7−196t8−35t9−20t10−25t11+124t12

+240t13+256t14+262t15+1279t16+120t17+211t18+10t19+45t20+ t22.

Corollary 1.10. Let C be a curve of genus g ≥ 6. Then we have

IPt(M)−Pt(M) = 2g · t3+ t4+2g · t5−
{(

2g

3

)
−
(
2g

2

)
−2g

}
t6+O(t7).

At this point it is worth recalling how the (intersection) cohomology of M(C,G) with
G = GLn , SLn and PGLn compares and how to extend the previous results for the SL2

case to PGL2 and GL2.
The morphism

alb : M(C,GLn)→M(C,GL1) (4)
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sends a representation or a Higgs bundle to its associated determinant representation or
Higgs bundle. It is an étale locally trivial fibration with monodromy group Γ� (Z/2Z)2g

and fibre isomorphic to M(C, SLn). The quotient of M(C, SLn) for the residual action of
Γ is M(C,PGLn). Hence, there exist morphisms of mixed Hodge structures

H∗(M(C,GLn))�H∗(M(C, SLn))
Γ⊗H∗(M(C,GL1)), (5)

H∗(M(C,PGLn))�H∗(M(C, SLn))
Γ. (6)

Analogous splittings hold for IH∗, H∗
c , IH∗

c . A proof of these facts can be found, for
instance, in [26, §3.2].

The analogues of Theorems 1.8 and 1.9 for PGL2 can be obtained by substituting all of
the occurrences of the coefficient 22g with 1 in the formulas of the theorems; see Remark
4.3. According to (5), the corresponding polynomials for GL2 are the product of the
E-polynomials or the (intersection) Poincaré polynomial for PGL2 with E(T ∗ Jac(C)) =

(uv)g(1−u)g(1−v)g or Pt(Jac(C)) = (t+1)2g, respectively.
Here, as a corollary of Theorems 1.4, 1.9 and (6), we study the portion of

IH∗(M(C, SL2)) on which Γ acts nontrivially. The following should be considered the
untwisted analogue of [35, Proposition 8.2] in rank 2. This suggests that intersection
cohomology may be the right cohomology theory to formulate a topological mirror
symmetry conjecture for M(C, SLn) and M(C,PGLn); see [32, Remark 3.30] and [49].

Corollary 1.11. The variant intersection E-polynomial and Poincaré polynomials for
the action of Γ are

IEvar(MB(C, SL2)) =
1

2
(22g −1)q2g−2((q+1)2g−2+(q−1)2g−2),

IEvar(MDol(C, SL2)) =
1

2
(22g −1)(uv)3g−3((u+1)g−1(v+1)g−1+(u−1)g−1(v−1)g−1),

IPt,var(M(C, SL2)) =
1

2
(22g −1)t4g−4((t+1)2g−2+(t−1)2g−2).

In particular, q−2g+2IEvar(MB(C, SL2)) and q−6g+6IEvar(MDol(C, SL2);q,q) are palin-
dromic polynomials of degree 2g−2.

As a byproduct, we also obtain the E-polynomials and the Poincaré polynomial of the
Kirwan–O’Grady desingularisation πT : T →M . We write explicitly the E-polynomials of
M(C, SL2) and leave the straightforward computations of the other polynomials to the
reader (cf. Subsection 4.2 and Subsection 2.3).

Theorem 1.12. The E-polynomials of T (C, SL2) are

E(TB(C, SL2)) = (q2g−2+1)(q2−1)2g−2+
1

2
q2g−3(q2+1)((q+1)2g−2

− (q−1)2g−2)+22g−1q2g−2((q+1)2g−2+(q−1)2g−2)

+
1

2
q((1+ q)2g−1(1+ q2g−3)+(1− q)2g−1(1− q2g−3))

1− q2g−3

1− q

+22g
q

(1− q)3(1− q2)
(2− q− q3− q2g−4−2q2g−2+ q2g−1
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−2q2g +4q2g+1− q2g+2+ q2g+3+ q4g−6− q4g−5+4q4g−4

−2q4g−3+ q4g−2−2q4g−1− q4g+1− q6g−6− q6g−4+2q6g−3),

E(TDol(C, SL2)) = E(MDol(C, SL2)
sm)

+
1

2
(uv)g

(1− (uv)2g−2)

(1−uv)

(
(1−u)g(1−v)g(1− (uv)2g−3)

1−uv

+
(1+u)g(1+v)g(1+(uv)2g−3)

1+uv

)
−22g

(1− (uv)2g−2)2

(1− (uv)2)(1−uv)

+22g
(
1− (uv)2g−2

)(
1− (uv)2g

)
(1−uv)

3
(1− (uv)2)

(1− (uv)4− (uv)2g−3

− (uv)2g−1+2(uv)2g).

In particular, the E-polynomial E(TB) is palindromic.

1.3. Outline and relation with other work
• In Section 2 we collect some preliminary results: the intersection cohomology

of an affine cone, the decomposition theorem, some properties of the mixed
Hodge structures of singular semi-projective varieties (cf. [34]) and the stable
isosingularity principle (implicitly used in [41, p. 834]). Analogous degeneration
techniques employed to establish the stable isosingularity principle have been
discussed in [16] and [17, §4] in relation to twisted character varieties.

• In Section 3 we describe the singularities of M and the geometry of the Kirwan–
O’Grady desingularisation πT : T → M . This part highly relies on [56] and [41].
The computation of the Poincaré polynomial of the incidence variety I2g−3 in [41]
contains a mistake, and we fix it in Subsection 3.3.

• In Subsection 3.4 we use several times the decomposition theorem to determine the
intersection cohomology of the normal slice to strata of a Whitney stratification
of M.

The singularities of the Betti and Dolbeault moduli spaces are locally modelled
on Nakajima quiver varieties which usually do not admit a symplectic resolution.
Although a lot is known about the intersection cohomology of quiver varieties
with symplectic resolutions (see, for instance, [54]), the local computations in
Subsection 3.4 seem new.

• In Section 4 we complete the proof of Theorem 1.2. Then in Subsection 4.1
and Subsection 4.2 we argue how to compute the intersection E-polynomials and
intersection Poincaré polynomial of M and we prove the results of Subsection 1.2.
The E-polynomial of M is known thanks to [48], [4] and [41], while the ordinary
Poincaré polynomial of M appears in [12]. Despite the active research in the
field and the stimuli from the PI=WI conjecture, there are few previous works
exhibiting explicit computations of the intersection cohomology of Dolbeault and
Betti moduli spaces; see [25] and [26].
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In [40] Kiem studied the intersection cohomology of character varieties with
coefficients in a compact Lie group. However, the methods in [40] do not extend
to the complex reductive case, since for a general complex reductive group G
the representation space Hom(π1(C),G) is not smooth, and the quotient map
Hom(π1(C),G)→Hom(π1(C),G)�G is not placid in the sense of [30].

We mention another remarkable precedent. The Dolbeault moduli space is a
partial compactification of the cotangent bundle of the moduli space of stable
vector bundles. The intersection cohomology of the moduli space of semistable
vector bundles was determined in [43] for rank 2 (or, equivalently, in [40]) and in
[53] in full generality. It is unclear how this result may imply Theorem 1.2.

• Section 5 explores many implications concerning the P=W conjectures for M
stemming from the previous calculations.

2. Preliminaries

2.1. Intersection cohomology of affine cones
Let X be a complex projective variety of dimension n−1 with an ample line bundle L.
The graded ring associated to L is the graded C-algebra

R(X,L) :=
⊕
m≥0

H0(X,Lm).

The affine cone over X with conormal bundle L is

C(X,L) := SpecR(X,L).

Let s1, . . . ,sN be a set of generators for R(X,L) of degree m1, . . . ,mN . Then there exists
an embedding C(X,L) ⊆ CN such that C(X,L) is invariant with respect to the Gm-
action

t · (x1, . . . ,xN ) = (tm1x1, . . . ,t
mNxN ). (7)

Conversely, any affine variety with a Gm-action and a fixed point which is attractive for
t→ 0 is isomorphic to an affine cone; see, for instance, [21, §3.5].

All of the singularities of this article are locally modelled on affine cones, whose
coordinate rings are not necessarily generated in degree 1. For this reason, here we
compute their intersection cohomology, thus generalising [19, Example 2.2.1].

Proposition 2.1 (Intersection cohomology of an affine cone).

IHd(C(X,L))�
{
IHd

prim(X) for d < n

0 for d≥ n,

where IHd
prim(X) := ker(c1(L)

n−d∪ : IHd(X)→ IH2n−d(X)) is the primitive intersection
cohomology.
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Proof. Denote by C(X,L)∗ := C(X,L) \ {vertex} the punctured affine cone. By [23,
Lemma 1] or [45, Proposition 4.7.2], we can write

IHd(C(X,L))�
{
IHd(C(X,L)∗) for d < n

0 for d≥ n.

Suppose now that R(X,L) is generated in degree 1. Then the blow-up of the origin

p : BC(X,L) := SpecX
⊕
m≥0

Lm → C(X,L)

is the total space of the line bundle L∗. By the hard Lefschetz theorem, the relative long
exact sequence of the inclusion C(X,L)∗ ↪→BC(X,L) splits into the short exact sequences

0→ IHd−2(X)
c1(L)∪−−−−→ IHd(X)→ IHd(C(X,L)∗)→ 0 for d < n. (8)

Therefore, we obtain that for d < n,

IHd(C(X,L))� coker(c1(L)∪ : IHd−2(X)→ IHd(X))� IHd
prim(X).

If R(X,L) is not generated in degree 1, then BC(X,L) is the total space of a line
bundle only up to a finite cover; see [57, §1.2]. More precisely, consider the finite morphism
g : CN → CN defined by

g(x1, . . . ,xN ) = (xm1
1 , . . . ,xmN

N ).

Set V ′ = g−1C(X,L), where C(X,L) is embedded in CN as in (7). We see that C(X,L)
is the quotient of V ′ by the finite group A = (Z/m1Z)× . . .× (Z/mNZ) acting on V ′ by
coordinatewise multiplication.
V ′ has a Gm-action defined by t ·(x1, . . . ,xN )= (tx1, . . . ,txN ) and covering the Gm-action

on C(X,L) given by (7). Since the Gm-action on V ′ has weight 1, X ′ is the spectrum of
a graded algebra generated in degree 1, say, V ′ = C(X ′,L′) for some projective variety
X ′ and ample line bundle L′. In particular, there exists a commutative diagram

C(X ′,L′) BC(X ′,L′) X ′

C(X,L) BC(X,L) X

g

p′

p

i′

i

(9)

where p and p′ are blow-ups of the vertices of the cones, i and i′ are the embedding of
the exceptional divisors and the vertical arrows are quotients with respect to (the lift of)
the action of A. Thus, we have IH∗(C(X ′,L′))A � IH∗(C(X,L)).

The discussion above shows that the sequences (8) are exact for C(X ′,L′) and it is A-
equivariant by the commutativity of (9). Taking invariants, we show then that (8) holds
for C(X,L) unconditionally.
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2.2. The perverse Leray filtration
In this section we briefly recall the statement of the decomposition theorem and the
definition of the perverse filtration.

For a complex algebraic variety X let Db(X,Q) be the bounded derived category of
complexes of sheaves of Q-vector spaces with algebraically constructible cohomology.
Denote the full abelian subcategory of perverse sheaves by Perv(X) and the perverse
cohomology functors by pHi : Db(S,Q)→ Perv(X); see [5] or [19].

Let MHMalg(X) be the category of algebraic mixed Hodge modules with rational coef-
ficients and DbMHMalg(X) its bounded derived category. Let pHi : DbMHMalg(X)→
MHMalg(X) be the cohomology functors; see [62] or [63].

The simple objects of DbMHMalg(X) (respectively Db(X,Q)) are the intersection
cohomology complexes ICX(L), where L is a polarisable variation of pure Hodge
structures (respectively a local system) on a Zariski-open subset of the smooth locus
of X. We denote simply by ICX the complex ICX(QX\Sing(X)). In particular, IHd(X)�
Hd(X,ICX(QX\Sing(X))[−dimX]).

There is a forgetful functor rat : DbMHMalg(X)→Db(X,Q) which commutes with pHi

and pushforward Rf∗ and maps MHMalg(X) in Perv(X). We will make no notational
distinction between K ∈DbMHMalg(X) and rat(K).

Now let f : X → Y be a proper morphism of varieties with defect of semismallness

r := dimX×Y X−dimX.

The decomposition theorem of Beilinson–Bernstein–Deligne–Gabber, or its mixed Hodge
module version by Saito, says that there is an isomorphism in DbMHMalg(X) (respec-
tively in Db(X,Q))

Rf∗ICX =
r⊕

i=−r

pHi(Rf∗ICX)[−i] =
r⊕

i=−r

⊕
l

ICY i,l
(Li,l)[−i],

where Li,l are polarisable variations of pure Hodge structures (respectively local systems)
on the strata of a stratification Y =

⊔
lYi,l; see [5] and [61].

The perverse (Leray) filtration is

PkIH
d(X) = Im

{
Hd(

k−r⊕
i=−r

pHi(Rf∗ICX)[−i−dimX])→ IHd(X)

}
.

When Y is affine, de Cataldo and Migliorini provided a simple geometric characterisation
of the perverse filtration; see [20, Theorem 4.1.1]. Let Λs ⊂ Y be a general s-dimensional
affine section of Y ⊂ AN . Then

PkIH
d(X) = Ker

{
IHd(X)→ IHd(f−1(Λd−k−1))

}
. (10)

This means that the cocycle η ∈ IHd(X) belongs to PkIH
d(X) if and only if its restriction

to f−1(Λd−k−1) vanishes; that is, η|f−1(Λd−k−1) = 0.
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2.3. Mixed Hodge structure of semi-projective varieties
In order to compute the intersection Poincaré polynomial of M, we observe that MDol

and TDol are semi-projective.

Definition 2.2. (34, Definition 1.1.1). A semiprojective variety is a complex quasi-
projective variety X with a Gm-action such that

• the fixed point set Fix(X) is proper;
• for every m ∈X the limit limλ→0λ ·m exists.

The core of X, denoted Core(X), is the (proper) union of the repelling sets of Fix(X);
see [34, Corollary 1.2.2].

Proposition 2.3. Let X be a semi-projective variety. Then the inclusion Core(X) ⊂X

is a homotopy equivalence.

Proof. The flow R+×X →X, induced by the Gm-action, defines a deformation retract
of X onto a neighbourhood of Core(X), which in turn is homotopy equivalent to
Core(X).

Proposition 2.4. If X is a semiprojective variety, then

1. the mixed Hodge structure on IH∗(X) is pure;
2. Wd−1H

d(X) = ker{Hd(X)→ IHd(X)}, and WdH
d(X) =Hd(X).

Proof. Let f : X̃ → X be a Gm-equivariant resolution of singularities of X. Then X̃ is
smooth and semiprojective, and it has pure cohomology by [34, Corollary 1.3.2]. Via the
decomposition theorem, the mixed Hodge structure on IH∗(X)⊂H∗(X̃) is pure, too.

As X retracts onto the proper algebraic variety Core(X), the weight filtration on
H∗(X) � H∗(Core(X)) is concentrated in degree [0,2d] by [60, Theorem 5.39]; that is,
WdH

d(X) =Hd(X).
The resolution f induces a surjective morphism Core(X̃)→Core(X) of proper algebraic

varieties. Hence, by [60, Corollary 5.43] we have

Wd−1H
d(Core(X)) = ker{f∗ : Hd(Core(X))→Hd(Core(X̃))},

and so Wd−1H
d(X) = ker{f∗ : Hd(X) → Hd(X̃)} by Proposition 2.3. Finally, since f∗

factors as Hd(X)→ IHd(X) ↪→Hd(X̃), we conclude that

Wd−1H
d(X) = ker{Hd(X)→ IHd(X)}.

The multiplicative group Gm acts on MDol(C, SLn) by λ ·(E,φ) = (E,λφ). The Hitchin
fibration

χ : MDol(C, SLn)→
n⊕

i=2

H0(C,K⊗i
C ) (11)

assigns to (E,φ) the characteristic polynomial of the Higgs field φ. By [66, Theorem
6.11] the map χ is a proper Gm-equivariant map, where Gm acts linearly on H0(X,K⊗i

X )
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with weight i. In particular, Fix(MDol(C, SLn)) is contained in the nilpotent cone χ−1(0).
Therefore, MDol(C, SLn) is semiprojective.

The same argument works for G=GLn ,PGLn as well.

2.4. Stable isosingularity principle
Let S be a smooth projective K3 surface or an abelian surface. In this section we establish
a stable isosingularity principle for the (nonproper) Dolbeault moduli spaces M(C,GLn)

and M(C, SLn) and the (proper) Mukai moduli spaces M(S,v) and K(S,v). This means
that these moduli spaces have the same analytic singularities, up to multiplication by a
polydisk. The upshot is that

• the description of the local model of the singularities of M(S,v) in [56] or [8] holds
for M(C,GL2) and M(C, SL2) mutatis mutandis;

• the same sequence of blow-ups which desingularises M(S,v) in [56] resolves the
singularities of M(C,GL2) and M(C, SL2) mutatis mutandis;

• the description of the summands of the decomposition theorem in Theorem 1.2
holds for M(C,GL2), M(C, SL2), M(S,v) and K(S,v) with Mukai vector v=2w ∈
H∗

alg(S,Z), where w is primitive and w2 = 2(g−1).

We briefly recall the definition of Mukai moduli space. Fix an effective Mukai vector2

v ∈ H∗
alg(S,Z). Define M(S,v) the moduli space of Gieseker H -semistable sheaves on S

with Mukai vector v for a sufficiently general polarisation H (which we will typically
omit in the notation); see [65, §1]. Further, if S is an abelian variety with dual Ŝ, and
dimM(S,v)≥ 6, then the Albanese morphism alb : M(S,v)→ S× Ŝ is isotrivial, and we
set K(S,v) := alb−1(0S,OS).

Remark 2.5 (Donagi–Ein–Lazarsfeld degeneration). Mukai moduli spaces should be
thought of as locally trivial deformations of Dolbeault moduli spaces as follows. Fix an
ample curve C ⊂ S of genus g ≥ 2. Donagi, Ein and Lazarsfeld showed in [22] that there
exists a flat family πW : W → P1 such that

1. π−1
W (P1 \{0})�M(S,(0,nC,−nC2/2))×A1;

2. π−1
W (0)�MDol(C,GLn).

Unless g = 2 and n = 2, M(S,(0,nC, − nC2/2)) and MDol(C,GLn) have Q-factorial
terminal symplectic singularities; see [39, Theorem B] and [6, Theorem 1.2], together
with Simpson’s isosingularity principle [66, Theorem 10.6]. Hence, by [55, Theorem 17]
the morphism πW is locally analytically trivial.3 Roughly, this means that the two moduli
spaces have the same singularities. We make this statement precise in Proposition 2.10.

We start by stating the notion of stable isosingularity.

2That is, there exists a coherent sheaf F on S such that v = (rk(F),c1(F),χ(F)− ε(S)rk(F)),
with ε(S) := 1 if S is K3 and 0 if S is abelian.

3The local triviality of πW holds for g = 2 and n= 2, too, by [58, Proposition 2.16].
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Definition 2.6. Two varieties X and Y are stably isosingular if there exist complex
Whitney stratifications4 by (smooth nonnecessarily connected) locally Zariski-closed
subsets Xi and Yi such that

1. X =
⊔

iXi and Y =
⊔

iYi;
2. the posets of closed subsets {Xi} and {Y i} ordered by inclusion are equal;
3. the normal slices through Xi and Yi are locally analytically isomorphic.

If dimX = dimY , then we say that X and Y are isosingular.

It is implicit in 3. that the stratifications above are analytically equisingular along
each stratum; that is, the analytic type of the normal slices through x ∈Xi (respectively
y ∈ Yi) is independent of x (respectively y). Not all algebraic variety admits such a
stratification; see [68, Example 13.1]. However, the moduli spaces considered below will
satisfy the following stronger condition of analytic normal triviality.

Definition 2.7. A Whitney stratification X =
⊔

iXi is analytically trivial in the
normal direction to each strata, if for any x∈Xi there exists a normal slice Nx through
Xi at x, and a neighbourhood of x in X which is locally analytically isomorphic to
Nx×TxXi at (x,0).

Note that if X and Y are stably isosingular via Whitney stratifications which are
analytically trivial in the normal direction and a sequence of blow-ups along (the strict
transforms of) some Xi gives a desingularisation of X, then the same sequence of blow-ups
along the corresponding strata Yi gives a desingularisation of Y. In addition, if X and
Y are isosingular, then an analytic neighbourhood of any point of X is isomorphic to an
analytic neighbourhood of some point in Y.

Example 2.8 (Analytically trivial fibrations). Let f : X → Y be an analytic locally
trivial fibration, and suppose that F := f−1(y), with y ∈ Y , admits an analytically
equisingular Whitney stratification. Then X and F are stably isosingular. Indeed, by
the local triviality, any Whitney stratification of f−1(y) can be lifted to a Whitney
stratification on X with the same normal slices. In particular, if W is a smooth algebraic
variety, F and F ×W are stably isosingular.

Lemma 2.9 (Quadraticity of deformation spaces). Let [F ] ∈MB(C,GLn) or M(S,v) be
a singular point corresponding to the polystable representation or polystable sheaf F. Then
the representation space Hom(π1(C),GLn) at F or the deformation space DefF (cf. [38,
§2.A.6]) is quadratic; that is, it is locally isomorphic to a (reduced) complete intersection
of homogeneous quadrics.

Proof. This follows from the Goldaman-Millson theory [28] if [F ] ∈MB(C,GLn) or [2,
Theorem 1.2] if [F ] ∈M(S,v), with S K3 surface. Looking into the proof of [2, Theorem
3.7 and 3.8] and [69], one can see that the same proof holds for [F ] ∈ M(S,v) with S
abelian surface.

4See [31, Chapter 1] for a definition.
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Proposition 2.10. Let S be a K3 or an abelian surface with Pic(S) � Z generated by
the class of a curve C of genus g ≥ 2. Then MB(C,GLn) and M(S,(0,nC,−nC2/2)) are
isosingular.

Proof. Given a (quasi-projective) variety X equipped with the action of a reductive group
G, let ξ : X → Y :=X �G be the quotient map. Any fibre ξ−1(y), with y ∈ Y , contains
a closed G-orbit T (y). Denote the conjugacy class of a closed subgroup H of G by (H).
Then Y(H) is the set of points y ∈ Y such that the stabiliser of x ∈ T (y) is in (H). The
loci Y(H) are the strata of the stratification by orbit type of Y.

If Y is a Nakajima quiver variety,5 then the stratification by orbit type is a complex
Whitney stratification, which is analytically trivial in the normal direction to each
stratum, due to [50, Proposition 4.2].
MB(C,GLn) and M(S,(0,nC, − nC2/2)) are PGLN -quotients, and the quadraticity

of the deformation spaces implies that they are locally modelled on Nakajima quiver
varieties; see [6, Theorem 2.5] and [2, Proposition 6.1]. By construction, the stratifications
by orbit type of MB(C,GLn) and M(S,(0,nC, − nC2/2)) are locally isomorphic to
stratification by orbit type of quiver varieties, and so they are complex Whitney
stratifications, analytically trivial in the normal direction to each stratum.

A singular point of either moduli space is a polystable objects

F = F l1
1 ⊕. . .⊕F ls

s ,

where Fi are distinct stable factors. The automorphism group of F is
s∏

i=1

GLli ⊂GLn ,

which can be identified up to constants with the stabiliser of a point in T (F ) under the
PGLN -action; see, for instance, [39, §2.5].6

The poset of inclusions of the orbit type strata for both the Dolbeault and Mukai moduli
spaces is isomorphic to the poset of inclusion of the stabilisers of T (F ), and the analytic
type of the normal slice through an orbit type strata is prescribed by the (abstract)
isomorphism class of the stabiliser; see again [6, Theorem 2.5] and [39, §2.7]. This gives
2. and 3. of Definition 2.6. The isosingularity follows from

dimMB(C,GLn) = 2(g−1)n2+2 = v2+2 = dimM(S,(0,nC,−nC2/2)).

There exists a clear geometric argument for Proposition 2.10, sketched below.

5We use Nakajima quiver varieties only tangentially in this place. For brevity we omit the
definition, and we refer the reader, for instance, to [27].

6Note that this is the only place where we use the assumption that S has Picard number
one. Otherwise, if [C] can be decomposed in the sum of effective classes, then the rank
of the automorphism group of F ∈ M(S,(0,nC, −nC2/2)) may be greater than n, and the
stratification by orbit type of M(S,(0,nC, −nC2/2)) would have more strata than that of
MB(C,GLn). Observe, however, that a general result is achieved in Theorem 2.11.
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Sketch of the proof of Proposition 2.10 via a degeneration argument. Via
the Donagi–Ein–Lazarsfeld degeneration one can actually prove that MDol(C,GLn) is
isosingular to a neighbourhood of a nilpotent cone of M(S,(0,nC,−nC2/2)) as defined
in [22, §2]. This is an analytic open set of the Mukai moduli space that intersects all
of the orbit type strata, if C generates the Picard group of S. In order to extend the
result to the whole Mukai moduli space, it is sufficient to invoke the analytic triviality in
the normal direction of the stratification by orbit type of M(S,(0,nC,−nC2/2)), which
follows from the quadraticity of the deformation spaces Lemma 2.9.

Theorem 2.11 (Stable isosingularity principle). Let C be a curve of genus g ≥ 2, and
let S be a K3 or an abelian surface. Fix a Mukai vector v = nw ∈H∗

alg(S,Z), where w is
primitive and w2 = 2(g−1).

Then M(C,GLn), M(C, SLn), M(S,v) and K(S,v) are stably isosingular.

Proof.

• MDol(C,G) and MB(C,G) are isosingular by [66, Theorem 10.6], independently on
the complex structure of C.

• Now let S′ be a K3 or an abelian surface such that C embeds in S′ and
generates its Picard group. Then M(S′,(0,nC,−nC2/2)) and M(S,v) (respectively
K(S′,(0,nC, − nC2/2)) and K(S,v)) are isosingular by [59, Theorem 1.17],
independently on the complex structure of S.

• MB(C,GLn) and M(S′,(0,nC,−nC2/2)) are isosingular by Proposition 2.10.
• Let S be an abelian surface. The morphisms alb: M(S,v) → S × Ŝ and

alb: MDol(C,GLn) → M(C,GL1), given by alb((E,φ)) = (detE,trφ), are étale
locally trivial fibrations with fibers MDol(C, SLn) and K(S,v), respectively. The
restriction of alb to the orbit type strata is étale locally trivial, too. This means that
there exists a neighbourhood of [F ] ∈ M(S,v)(H) locally analytically isomorphic
to

N[F ]×T[F ]M(S,v)(H) �N[F ]×T[F ]K(S,v)(H)×Talb([F ])(S× Ŝ) (12)

at ([F ],0), where N[F ] is a normal slice through K(S,v)(H) at [F ]. Further, the
morphism alb is locally given by the linear projection onto the last factor of (12)
by Lemma 2.9. The same argument works for MDol(C, SLn), too. As in Example
2.8, we conclude that MDol(C,GLn) and MDol(C, SLn) (respectively M(S,v) and
K(S,v)) are stably isosingular.

3. Kirwan–O’Grady desingularisation

3.1. Singularities of M
Recall that M denotes indifferently the moduli spaces MB(C,G) or MDol(C,G) with
G=GL2 or SL2. The stratification by orbit type of M (cf. Subsection 2.4) determines a
filtration by closed subsets

M ⊃ Σ := SingM ⊃ Ω := SingΣ.

In this section we characterise Σ, Ω and their normal slices, mainly appealing to [56].
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Proposition 3.1.

1. M(C,G) is an algebraic variety of dimension 6g−6 if G= SL2 or 8g−6 if G=GL2.
2. The singular locus of M is the subvariety of strictly semi-simple Higgs bundles or

representations.
3. If g ≥ 3, M is factorial with terminal symplectic singularities. If g = 2, M admits a

symplectic resolution.

Proof. The statements have been proved for MB(C,GL2) in [6, Theorem 1.1, 1.2, 1.5,
Lemma 2.8]. The same holds for M by the stable isosingularity principle (Theorem 2.11),
possibly with the exception of the factoriality. However, to show that M is factorial, one
can repeat the argument of [6, Theorem 1.2] word for word.

Proposition 3.2 (Singularities of M ).

1. The singular locus of MB(C, SL2), denoted ΣB(C, SL2), is{
(A1,B1, . . . ,Ag,Bg) ∈ (C∗)2g ⊂ SL2g

2

}
�SL2 � (C∗)2g/(Z/2Z),

where C∗ ⊂ SL2 is the torus of diagonal matrices, and Z/2Z acts on (C∗)2g by v �→
v−1. Set Σι,B(C, SL2) := (C∗)2g.

2. The singular locus of MB(C,GL2), denoted ΣB(C,GL2), is{
(A1,B1, . . . ,Ag,Bg) ∈ (C∗)2g × (C∗)2g ⊂GL2g

2

}
�GL2 ,

which is isomorphic to the second symmetric product of (C∗)2g. Set
Σι,B(C,GL2) := (C∗)2g × (C∗)2g.

3. The singular locus of MDol(C, SL2), denoted ΣDol(C, SL2), is

{(E,Φ)|(E,Φ)� (L,φ)⊕ (L−1,−φ), L ∈ Jac(C), φ ∈H0(C,KC)},

which is isomorphic to

(Jac(C)×H0(C,KC))/(Z/2Z)� T ∗ Jac(C)/(Z/2Z),

where Z/2Z acts on Jac(C) by L �→ L−1 and on H0(C,KC) by φ �→ −φ. Set
Σι,Dol(C, SL2) := T ∗ Jac(C).

4. The singular locus of MDol(C,GL2), denoted ΣDol(C,GL2), is

{(E,Φ)|(E,Φ)� (L,φ)⊕ (L′,φ′), L,L′ ∈ Jac(C), φ,φ′ ∈H0(C,KC)},

which is isomorphic to the second symmetric product of T ∗ Jac(C). Set Σι,Dol(C,GL2)
:= T ∗ Jac(C)×T ∗ Jac(C).

5. The singular locus of Σ(C, SL2), denoted Ω(C, SL2), is a set of 22g points.
6. The singular locus of Σ(C,GL2), denoted Ω(C,GL2), is isomorphic to M(C,GL1).

Proof. The result follows easily from Proposition 3.1.(2).
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Definition 3.3.

1. By Proposition 3.2, there exists a double cover q : Σι → Σ branched along Ω.
2. The involution ι : Σι → Σι is the deck transformation of q.
3. The largest open subset of Σι where q is étale is denoted Σ◦

ι := q−1(Σ\Ω).
4. There exists a rank-1 local system L on Σ◦ := Σ\Ω such that

q∗QΣ◦
ι
=QΣ◦ ⊕L .

Proposition 3.4 (Normal slices).

1. A slice NΣ normal to Σ at a point in Σ \Ω is locally analytically isomorphic to an
affine cone over the incidence variety

I2g−3 :=

{
([xi],[yj ]) ∈ P2g−3×P2g−3

∣∣ 2g−3∑
k=0

xkyk = 0

}
with conormal bundle O(1,1) := (OP2g−3(1)�OP2g−3(1))|I2g−3

.
2. Let (W,q) be a vector space of dimension 3 endowed with a quadratic form q

of maximal rank and (V ,ω) be a symplectic vector space of dimension 2g. Let
Homω(W,V ) be the cone of linear maps from W to V whose image is isotropic.
Note that the group SO(W ) acts on Homω(W,V ) by precomposition.

Then a normal slice NΩ through Ω is isomorphic to an affine cone over
PHomω(W,V )�SO(W ).

Proof. The local models have been described in [56, (3.3.2)] (see also [8, Proposi-
tion 3.2.(2)]) and in [56, (1.5.1)] (together with Lemma 2.9) for M(S,v) with v =

(2,0, − 2c). The description holds for M, too, by the stable isosingularity principle
(Theorem 2.11).

3.2. Geometry of the desingularisation
Inspired by [42], O’Grady exhibits a desingularisation of the Mukai moduli spaces M(S,v)

of semistable sheaves on a projective K3 surface S with Mukai vector v = (2,0,− 2c) ∈
H∗

alg(S,Z). By the stable isosingularity principle (cf. Subsection 2.4), the same sequence
of blow-ups gives a desingularisation of M. In this section, we recall the geometry of the
exceptional locus, and we compute the E-polynomials of its strata.

Proposition 3.5 (Kirwan–O’Grady desingularisation). Let

• πR : R→M be the blow-up of M along Ω;
• πS : S →R be the blow-up of R along ΣR := π−1

R,∗Σ;
• πT : T → S be the blow-up of S along its singular locus.

Then the composition π := πR ◦πS ◦πT : T →M is a log resolution of M.7

7In genus 2 the (unique) symplectic resolution of M can be obtained by contracting a P2-bundle
in S. See [26, Proposition 8.6] where πR and πS are denoted η and ζ, respectively. In particular,
the resolution π is not symplectic.
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Proof. It follows from [56, 1.8.3] and Theorem 2.11.

Notation 3.6.

• D1, D2 and D3 are (the strict transform of) the exceptional divisors in T of the
blow-ups πR, πS and πT , respectively.

• Dij := Di ∩Dj and D123 := D1 ∩D2 ∩D3 are (smooth closed) strata of the
exceptional locus of π.

• Ik := {([x0 : . . . : xk],[y0 : . . . : yk]) ∈ Pk×Pk|
∑k

i=0xiyi = 0}.
• Homω

k (W,V ) is the subspace of linear maps in Homω(W,V ) of rank ≤ k.
• Grω(k,V ) is the Grassmanian of k -dimensional linear subspaces of V, isotropic

with respect to the symplectic form ω.
• P̂5 is the blow-up of P5 � P(S2(W )) (space of quadratic forms on W ) along P2

(locus of quadratic form of rank 1).
• Q̂ is the blow-up of Q ⊂ P(S2(W )) (space of degenerate quadratic forms on W )

along P2 (locus of quadratic form of rank 1).

Proposition 3.7 (Geometry of the blow-ups πR, πS and πT ).

1. The preimages π−1
R (Ω), (πR ◦πS)

−1(Ω) and π−1(Ω) are trivial fibrations over Ω;
2. The exceptional locus ΩR of πR is isomorphic to (PHomω(W,V )�SO(W ))×Ω.
3. Let I ′2g−3 be the quotient of I2g−3 by the involution which exchanges the coordinates

xi and yi. A slice normal to ΣR ∩ΩR � (PHomω
1 (W,V )�SO(W ))×Ω � P2g−1×Ω

in ΩR is locally analytically isomorphic to an affine cone over I ′2g−3.
4. The singular locus ΔS of S is the strict transform of (PHomω

2 (W,V )�SO(W ))×Ω⊆
ΩR via πR, which is isomorphic to a P2-bundle over Grω(2,V )×Ω.

5. A slice normal to ΔS in S is locally analytically isomorphic to the quotient
C2g−3/±1.

Proof. Since Ω(C, SL2) is a collection of 22g points, (1) obviously holds. Consider now
the étale cover τ : M(C, SLn)×M(C,GL1) → M(C,GLn) trivialising (4). For some (or
any) x ∈ Ω(C, SLn) we have

π−1
T (C, SLn)

(x)×Ω(C,GLn)� π−1
T (C, SLn)

(x)×M(C,GL1)� π−1
T (C,GLn)

(Ω(C,GLn)),

since τ is étale. Thus, (1) holds for G=GL2, too.
(2), (3), (4), (5) follow instead from Proposition 3.4.(2), [56, (1.7.12) and (1.7.16)],

[56, (3.5.1)] and [56, (3.5.1)] respectively; alternatively, see the proof of [8, Proposition
3.2].

Proposition 3.8 (The exceptional divisors of πT ).

1. D1 is a P̂5-bundle over Grω(3,V )×Ω.
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2. There exists a vector bundle E on Σ◦
ι such that D◦

2 is the quotient of the I2g−3-bundle
I2g−3 in P(E)×P(E∗) by the involution ι′

ι′ : P(E)×P(E∗)→ P(E)×P(E∗),

(v,[xi],[yj ]) �→ (ι(v),[yj ],[xi]),

extending the involution ι on Σ◦
ι defined in Definition 3.3.

3. D3 is a P2g−4-bundle over a (Zariski locally trivial) P2-bundle over Grω(2,V )×Ω.
4. D13 is a Q̂-bundle over Grω(3,V )×Ω.

Proof. Let Um be the universal bundle over Grω(m,V ), with m= 2,3, and Homk(W,Um)
be the subbundle of Hom(W,Um) of rank ≤ k. The quotient space PHomk(W,Um)�

SO(W ) is isomorphic to the space of quadrics P(S2
kUm) of rank ≤ k. There are obvious

forgetful maps

f3 : PHom(W,U3)→ PHomω(W,V )

f2 : PHom2(W,U2)→ PHomω
2 (W,V ),

which induces the following diagrams

BlP(S2
1U3)P(S

2
2U3)×Ω BlP(S2

1U3)P(S
2U3)×Ω D1 D13 = Exc(πT |D1

)

P(S2U3)×Ω ΩS ΔS

Grω(3,V )×Ω ΩR.

�

Q̂−bundle

�

birat. birat. P
2g−5−bundle

f3�SO(W )

P
5−bundle birat.

D3

P(S2U2)×Ω ΔS

(PHom(W,U2)�SO(W ))×Ω (PHomω
2 (W,V )�SO(W ))×Ω

Grω(2,V )×Ω ΩR.

P
2g−4−bundle

�

� birat.

f2�SO(W )

P
2−bundle birat.

A proof of the isomorphisms above is provided in [56, (3.1.1) and (3.5.1)]; alternatively,
see [8, Proposition 3.2]. This shows (1), (3), (4). To show (2), one can repeat the argument
of [8, Proposition 3.2.(2)] verbatim.

Proposition 3.9. Grω(m,V ) and the fibres of ΔS, D1, D3, D13 and ΩS over Ω have
pure cohomology of Hodge–Tate type. In particular, they do not have odd cohomology.
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Their E-polynomials are

E(Grω(2,V )) =
(1− q2g−2)(1− q2g)

(1− q)(1− q2)

E(Grω(3,V )) =
(1− q2g−4)(1− q2g−2)(1− q2g)

(1− q)(1− q2)(1− q3)

E(ΔS) =
(1− q3)(1− q2g−2)(1− q2g)

(1− q)2(1− q2)
·E(Ω)

E(D1) =
(1− q4)(1− q2g−4)(1− q2g−2)(1− q2g)

(1− q)3(1− q2)
·E(Ω)

E(D3) =
(1− q3)(1− q2g−3)(1− q2g−2)(1− q2g)

(1− q)3(1− q2)
·E(Ω)

E(D13) =
(1− q3)(1− q2g−4)(1− q2g−2)(1− q2g)

(1− q)3(1− q2)
·E(Ω)

E(ΩS) = E(D1)−E(ΔS) ·
2g−6∑
i=0

qi+1

=
(1− q2g−2)(1− q2g−1)(1− q2g)

(1− q)2(1− q2)
·E(Ω).

Proof. Note that Grω(m,V ) is a smooth projective variety whose cohomology is of Hodge–
Tate type; see, for instance, [8, Lemma 3.1]. Hence, the fibres of ΔS , D1, D3 and D1∩D3

over Ω have pure cohomology of Hodge–Tate type by Proposition 3.7 and 3.8. Since
ΩS has only quotient singularities, the natural inclusion H∗(ΩS)� IH∗(ΩS) ↪→H∗(D1)

implies that the fibres of ΩS over Ω have pure cohomology of Hodge–Tate type. The
computation of the E-polynomials follows immediately from [8, Lemma 3.1], Proposition
3.7 and 3.8, except maybe for ΩS . In that case, we use the decomposition theorem for
the blow-up map πT |D1

, which actually reduces to [67, Theorem 7.31].

3.3. The incidence variety I2g−3

The incidence variety I2g−3 ⊂ P2g−3×P2g−3 is the projectivisation of the vector bundle
Ω1

P2g−3(1) over P2g−3. Hence, we can write

H∗(I2g−3) =Q[a,b]/(a2g−2,b2g−2,

2g−3∑
i=0

(−1)ia2g−3−ibi), (13)

where a and b have degree 2, and they are pullback of the first Chern classes of the
tautological line bundle of P2g−3 via the two projections I2g−3 ⊂ P2g−3×P2g−3 → P2g−3.
Note that I2g−3 has no odd cohomology.

The involution which exchanges the factors of the product P2g−3×P2g−3 leaves I2g−3

invariant and in cohomology exchanges the classes a and b. Consider the decomposition
into eigenspaces for the involution (relative to eigenvalues ±1 respectively)

H∗(I2g−3) =H∗(I2g−3)
+⊕H∗(I2g−3)

−.
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For d= 2k < 4g−7, we have

Hd(I2g−3)
+ =Hd(P2g−3×P2g−3)+ = 〈aibj |i+ j = d〉+ = 〈aibj +ajbi|i+ j = d〉.

Therefore, we obtain that

dimH2k(I2g−3) = k+1, dimH2k(I2g−3)
+ =

⌈
k+1

2

⌉
, dimH2k(I2g−3)

− =

⌈
k

2

⌉
.

Proposition 3.10. Setting q := t2 = uv, the Poincaré polynomials (equivalently E-
polynomials) of I2g−3 of the invariant and variant parts of its cohomology are

Pt(I2g−3) = E(I2g−3) =
(1− q2g−2)(1− q2g−3)

(1− q)2
(14)

Pt(I2g−3)
+ = E(I2g−3)

+ =
(1− q2g−2)2

(1− q2)(1− q)
(15)

Pt(I2g−3)
− = E(I2g−3)

− = q
(1− q2g−2)(1− q2g−4)

(1− q2)(1− q)
. (16)

Proof. I2g−3 is a P2g−4-bundle over P2g−3, and this gives (14). We now estimate
Pt(I2g−3)

+−Pt(I2g−3)
−. For d= 2k < 4g−7, we have

dimH2k(I2g−3)
+−dimH2k(I2g−3)

− =

⌈
k+1

2

⌉
−
⌈
k

2

⌉
=

{
1 for k = 2l,

0 for k = 2l+1.

Since the polarisation O(1,1) is ι-invariant, the hard Lefschetz theorem gives
dimHd(I2g−3)

± = dimH8g−14−d(I2g−3)
±. Thus, we can write

Pt(I2g−3)
+−Pt(I2g−3)

− =

g−2∑
l=0

q2l+ q2g−3

g−2∑
l=0

q2l =
(1− q2g−2)(1+ q2g−3)

(1− q2)
. (17)

Finally, substituting (14) and (17) in

Pt(I2g−3)
+ =

1

2
(Pt(I2g−3)+(Pt(I2g−3)

+−Pt(I2g−3)
−))

Pt(I2g−3)
− = Pt(I2g−3)−Pt(I2g−3)

+,

we obtain (15) and (16).

3.4. Intersection cohomology of local models
The goal of this section is to compute the intersection cohomology of the normal slices
NΣ and NΩ. This is an important step to determine the summands of the decomposition
theorem in Theorem 1.2.

Proposition 3.11. Let NΣ be a slice normal to Σ at a point in Σ\Ω. Then

IHd(NΣ)�
{
Hd

prim(I2g−3)�Q for d= 2k < 4g−6,

0 otherwise.
(18)
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IH2k(NΣ)⊆
{
H2k(I2g−3)

+ for k = 2l,

H2k(I2g−3)
− for k = 2l+1.

(19)

Proof. (18) follows from Proposition 2.1, since NΣ is locally isomorphic to an affine cone
over the smooth variety I2g−3 (with ι-invariant conormal bundle O(1,1)) by Proposition
3.4.(1).

Since O(1,1) is ι-invariant, Hd
prim(I2g−3) is ι-invariant, too. Hence, (19) follows from

the following dimensional argument:

1≥ dimIH2k(NΣ)≥ dimIH2k(NΣ)
+ = dimH2k(I2g−3)

+−dimH2k−2(I2g−3)
+

=

⌈
k+1

2

⌉
−
⌈
k

2

⌉
=

{
1 for k = 2l,

0 for k = 2l+1.

Proposition 3.12. Let NΣR∩ΩR
be a slice normal to ΣR∩ΩR in ΩR. Then

IHd(NΣR∩ΩR
)�

{
Hd

prim(I
′
2g−3)�Q for d= 4k < 4g−6,

0 otherwise.
(20)

In particular,

dimH4g−6+2i(I ′2g−3)−dimIH4g−6+2i(NΣR∩ΩR
) =

⌈
2g−3−|i|

2

⌉
. (21)

Proof. Proposition 2.1 and 3.7.(3) give (20), while (21) follows immediately from
H2k(I ′2g−3) =H2k(I2g−3)

+.

Proposition 3.13. The intersection E-polynomial of ΩR is

IE(ΩR) =
(1− q4g−4)(1− q2g)

(1− q)(1− q2)
·E(Ω).

Proof. We apply the decomposition theorem to the restriction of πS to the strict
transform ΩS := π−1

S,∗ΩR.
By Proposition 3.7.(3), the defect of semismallness of πS |ΩS

is

r(πS |ΩS
) := dimΩS ×ΩR

ΩS −dimΩR

= 2dimI ′2g−3+dimΣR∩ΩR−dimΩR = 4g−8,

and ΣR ∩ΩR is the only support of the decomposition theorem for πS |ΩS
. Note that

RiπS,∗Qπ−1
S (ΣR∩ΩR) are trivial local systems over ΣR ∩ ΩR � P2g−1 × Ω, because of

Proposition 3.7.(1) and the simple connectedness of P2g−1. Hence, there exist integers
a(i) such that

R(πS |ΩS
)∗Q[dimΩS ] =

4g−8⊕
i=−4g+8

pHi((πS |ΩS
)∗Q[dimΩS ])[−i]

= ICΩR
⊕
⊕2g−4

i=−2g+4
Q

a(i)
ΣR∩ΩR

[dimΣR∩ΩR−2i](−2g+3− i).
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At the stalk level, at x ∈ ΣR∩ΩR, we obtain by (21)

a(i) = dimH4g−6+2i(I ′2g−3)−dimIH4g−6+2i(NΣR∩ΩR
) =

⌈
2g−3−|i|

2

⌉
.

Together with Proposition 3.9, we get

IE(ΩR) = E(ΩS)−E(Ω) ·E(P2g−1) ·
2g−4∑

i=−2g+4

q2g−3+i

⌈
2g−3−|i|

2

⌉

=

(
(1− q2g−2)(1− q2g−1)(1− q2g)

(1− q)2(1− q2)
− q(1− q2g−3)(1− q2g−2)(1− q2g)

(1− q)2(1− q2)

)
·E(Ω)

=
(1− q4g−4)(1− q2g)

(1− q)(1− q2)
·E(Ω).

Proposition 3.14. Let NΩ be a slice normal to Ω. Then IH∗(NΩ) is pure of Hodge–Tate
type with intersection Poincaré polynomial (equivalently, intersection E-polynomials)

IPt(NΩ) = IE(NΩ) =
1− q2g

1− q2
.

Proof. Since IH∗(NΩ) ↪→ IH∗(π−1
R (x)) for some x ∈Ω, IH∗(NΩ) is pure of Hodge–Tate

type by Proposition 3.9.
Recall now that NΩ is an affine cone over ΩR by Proposition 3.2.(2). Hence, Proposition

2.1 implies that the intersection Poincaré polynomial IPt(NΩ) is a polynomial in the
variable q = t2 of degree at most 3g−4, given by

IE(NΩ) = [IE(π−1
R (x))− qIE(π−1

R (x))]≤3g−4 =
1

E(Ω)
[IE(ΩR)− qIE(ΩR)]≤3g−4

=

[
(1− q4g−4)(1− q2g)

(1− q2)

]
≤3g−4

=
1− q2g

1− q2
.

4. Decomposition theorem

Proof of Theorem 1.2. Let π◦
T be the restriction of πT over M◦ :=M \Ω. By Proposition

3.2.(1) the defect of semismallness of π◦
T is

r(π◦
T ) := dimπ−1

T (M◦)×M◦ π−1
T (M◦)−dimM

= 2dimI2g−3+dimΣ−dimM = 4g−8,

and Σ◦ is the only support of the decomposition theorem for π◦
T . Hence, there exists a

splitting

Rπ◦
T,∗Q[dimT ] = ICM◦ ⊕

2g−4⊕
i=−2g+4

Li[dimΣ−2i]
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for some semisimple local systems Li supported on Σ◦. Restricting to D◦
2 = π−1

T (Σ◦), we
obtain

R(π◦
T |D◦

2

)∗Q[dimT ] = ICM◦ |D◦
2
⊕

2g−4⊕
i=−2g+4

Li[dimΣ−2i].

By Proposition 3.8.(2) there exists a commutative square

I2g−3 D◦
2

(C∗)2g,◦ Σ◦,

q′

p2 π◦
T |D◦

2

q

where the horizontal arrows are étale double covers, p2 is a Zariski locally trivial fibration
with fibre I2g−3 and (C∗)2g,◦ is the complement in (C∗)2g of the locus fixed by the
involution v �→ v−1. Taking cohomology, we write

R(π◦
T |D◦

2

)∗Q=R(π◦
T |D◦

2

)∗ ◦ (Rq′∗Q)+ = (R(π◦
T |D◦

2

◦ q′)∗Q)+ = (R(q ◦p2)∗Q)+

=

(
q∗

4g−7⊕
i=0

(Q(C∗)2g,◦ ⊗H2i(I2g−3))[−2i]

)+

=

2g−4⊕
i=0

Q
� i+1

2 �
Σ◦ [−2i](−i)⊕

2g−4⊕
i=0

L � i
2 �[−2i](−i)

⊕
4g−7⊕

i=2g−3

Q
�2g−3− i

2 �
Σ◦ [−2i](−i)⊕

4g−7⊕
i=2g−3

L �2g−3− i+1
2 �[−2i](−i),

where L is the rank-1 local system defined in Definition 3.3. Together with Proposition
3.11, we obtain

Rπ◦
T,∗Q[dimT ] = ICM◦ ⊕

2g−4⊕
i=−2g+4

(Q
� 2g−3−|i|

2 �
Σ◦ ⊕L � 2g−3−|i|

2 �)[dimΣ−2i](−2g+3− i).

This splitting holds on M◦, and we now extend it through Ω. Note that the defect of
semismallness of πT is

r(πT ) = dimπ−1
T (M)×M π−1

T (M)−dimM

= 2dimD1−dimΩ−dimM = 6g−8.

Since Σ is a rational homology manifold, ICΣ(QΣ◦)�QΣ[dimΣ]. Further, the definition
of L yields ICΣ(L ) = iΣ◦,∗L [dimΣ]. Therefore, there exists integers b(j) such that
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RπT,∗Q[dimT ] = ICM ⊕
2g−4⊕

i=−2g+4

Q
� 2g−3−|i|

2 �
Σ [dimΣ−2i](−2g+3− i)

⊕
2g−4⊕

i=−2g+4

iΣ◦,∗L
� 2g−3−|i|

2 �[dimΣ−2i](−2g+3− i)

⊕
3g−4⊕

j=−3g+4

Q
b(j)
Ω [dimΩ−2j](−3g+3− j).

Localising at x ∈ Ω, we obtain

dimH2d(π−1
T (x)) =

{
dimIH2d(NΩ)+

⌈
2g−3−|d−2g+3|

2

⌉
+ b(d−3g+3) for 0≤ d < 4g−6,

dimIH2d(NΩ)+ b(d−3g+3) otherwise.

Therefore, b(j) is the coefficient of qd−3g+3 of the polynomial

E(π−1
T (x))− IE(NΩ)−

2g−3∑
i=−2g+3

⌈
2g−3−|i|

2

⌉
q2g−3+i

=
1

E(Ω)
(E(D1)+E(D3)−E(D13))− IE(NΩ)−

q(1− q2g−3)(1− q2g−2)

(1− q)(1− q2)

=

(
1− q2g−2

)(
1− q2g

)(
1− q4− q2g−3− q2g−1+2q2g

)
(1− q)

3
(1− q2)

− 1− q2g

1− q2

− q(1− q2g−3)(1− q2g−2)

(1− q)(1− q2)
.

4.1. Applications of the decomposition theorem

Proof of Theorem 1.3. Taking cohomology with compact support, Theorem 1.2 gives

IE(M) = E(T )−E(Σι)
+ ·

⎛⎝ 2g−3∑
i=−2g+3

⌈
2g−3−|i|

2

⌉
q2g−3+i

⎞⎠
−E(Σι)

− ·

⎛⎝ 2g−3∑
i=−2g+3

⌊
2g−3−|i|

2

⌋
q2g−3+i

⎞⎠
−E(π−1

T (Ω))+E(Ω) · IE(NΩ)+E(Ω) ·
2g−3∑

i=−2g+3

⌈
2g−3−|i|

2

⌉
q2g−3+i

= E(M)−E(Σ)+E(D◦
2)

− (E(Σι)
+−E(Ω)) · q (1− q2g−3)(1− q2g−2)

(1− q)(1− q2)
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−E(Σι)
− · q2 (1− q2g−4)(1− q2g−3)

(1− q)(1− q2)
+E(Ω) · IE(NΩ).

Now Proposition 3.8.(2) gives

E(D◦
2) = E(I2g−3)

+ · (E(Σι)
+−E(Ω))+E(I2g−3)

− ·E(Σι)
−. (22)

Therefore, we obtain

IE(M) = E(M)−E(Σ)+(E(Σι)
+−E(Ω)) · 1− q2g−2

1− q2

+E(Σι)
− · q 1− q2g−4

1− q2
+E(Ω) · 1− q2g

1− q2

= E(M)+(q2E(Σι)
++ qE(Σι)

−) · 1− q2g−4

1− q2
+E(Ω) · q2g−2. �

The variant and anti-invariant E-polynomials of (C∗)2g and T ∗ Jac(C) with respect to
the involution ι defined in Definition 3.3 are

E((C∗)2g)+ =

g∑
d=0

dim(Λ2dV )q2d =
1

2
((1− q)2g +(1+ q)2g), (23)

E((C∗)2g)− =−
g−1∑
d=0

dim(Λ2d+1V )q2d+1 =
1

2
((1− q)2g − (1+ q)2g), (24)

E(T ∗ Jac(C))+ =
1

2
(uv)g ((1−u)g(1−v)g +(1+u)g(1+v)g), (25)

E(T ∗ Jac(C))− =
1

2
(uv)g ((1−u)g(1−v)g − (1+u)g(1+v)g) . (26)

Proof of Theorem 1.4. We compute IE(MB(C, SL2)) and IE(MB(C,GL2)) from (2)
by substitution. To this end, recall that E(MB(C, SL2)) and E(MB(C,GL2)) have been
computed in [4, Theorem 1.3] (equivalently, [48, Theorem 2]). The E-polynomials of Σι,B

and ΩB instead can be determined by using the description of these loci in Proposition
3.2, together with (23) and (24). Further, by (6) we have IE(MB(C,PGL2)) = (1−q)−2g ·
IE(MB(C,GL2)). �

Proof of Theorem 1.8. In view of

E(M) = E(M sm)+E(Σ) = E(M sm)+E(Σι)
+,

we obtain Theorem 1.8 simply by substituting (25) and (26) in (2). �

Proof of Theorem 1.9. The purity of IH∗(MDol) (Proposition 2.4) and the Poincaré
duality give

IPt(M) = t2dimMIE(MDol;−t−1,− t−1).

Theorem 1.9 then follows from Theorem 1.8 and elementary algebraic manipulations. �
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Proof of Theorem 1.12. By the additivity of the E-polynomial, we have

E(T ) = E(M sm)+E(D1)+E(D◦
2)+E(D3)−E(D13).

The formula (22), together with (23), (24), (25) and (26), yields

E(D◦
2,B) =

1− q2g−2

2(1− q)

(
(1− q2g−3)(1− q)2g−1+(1+ q2g−3)(1+ q)2g−1

)
−22g

(1− q2g−2)2

(1− q2)(1− q)
,

E(D◦
2,Dol) =

1

2
(uv)g

1− (uv)2g−2

1−uv

(
(1−u)g(1−v)g(1− (uv)2g−3)

1−uv

+
(1+u)g(1+v)g(1+(uv)2g−3)

1+uv

)
−22g

(1− (uv)2g−2)2

(1− (uv)2)(1−uv)
,

and Proposition 3.9 gives

E(D1)+E(D3)−E(D13) = 22g
(
1− q2g−2

)(
1− q2g

)(
1− q4− q2g−3− q2g−1+2q2g

)
(1− q)

3
(1− q2)

. �

4.2. From SL2 to PGL2 or GL2

In order to compute IE(MDol(C,G)) or IPt(M(C,G)) for G=PGL2 ,GL2, one can repeat
the arguments for SL2 and realise that in practise one can obtain the polynomials for
PGL2 by replacing the coefficients 22g with 1 in the corresponding polynomials for SL2,
as explained below. Further, one can use (5) and (6) to write the polynomials for GL2

from the PGL2 counterparts.

Definition 4.1. VarΓ is the category of algebraic varieties endowed with a Γ-action, with
Γ-equivariant morphisms as morphisms.
Γ−mHs is the abelian category whose objects are Γ-modules over Q endowed with

a mixed Hodge structure and whose morphisms are Γ-equivariant morphisms of mixed
Hodge structures.

Definition 4.2. Let X be an algebraic variety endowed with an algebraic Γ-action.
The virtual Hodge realisation of (X;Γ�X) is the element in the Groethendieck ring
K0(Γ−mHs) defined by the formula

χHdg;Γ(X) =
∑
k

(−1)k[Hk
c (T (C, SL2));ρM : Γ→Aut(Hk

c (X))].

The morphism χHdg;Γ(·) : K0(Var
Γ)→K0(Γ−mHs) is additive.

The same Hodge realisation was considered in [35, §4], when Hausel and Thaddeus
defined E-polynomials with coefficient in the characters of the finite abelian group Γ.
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Now consider the Γ-invariant stratification of TDol(C, SL2) whose strata are

1. S0 � {(E,φ) ∈MDol(C, SL2)|E is stable};
2. S1 � {(E,φ) ∈MDol(C, SL2)|E � L⊕L−1, L ∈ Jac(C), L �= L−1};
3. S2 � {(E,φ) ∈MDol(C, SL2)|E is a nontrivial extension of L−1 by L for L ∈ Jac(C)

with L �= L−1};
4. S3 � {(E,φ) ∈MDol(C, SL2)|E � L⊕L, L ∈ Jac(C)};
5. S4 � {(E,φ) ∈MDol(C, SL2)|E is a nontrivial extension of L by L for L ∈ Jac(C)};
6. S5 � {(E,φ) ∈MDol(C, SL2)|E is unstable};
7. S6 =D◦

2 , S7 =D3 \D13 and S8 =D1.

This is indeed a stratification of TDol(C, SL2), since MDol(C, SL2)
sm =

⊔5
i=0Si �

TDol(C, SL2)\ (D1∪D2∪D3) by [37, Example 3.13] and Proposition 3.2. The additivity
of the virtual realisation implies that

χHdg;Γ(TDol(C, SL2)) =

8∑
i=0

χHdg;Γ(Si).

By direct inspection (see [41, §3]) one can check that there exist algebraic varieties Zij

endowed with a Γ-action such that

1. the Γ-module Hk
c (Zij) is isomorphic to the direct sum of copies of the trivial and of

the regular representation of Γ; that is, there exist integers lijk and mijk such that
there exists a Γ-equivariant isomorphism

Hk
c (Zij)� V

⊕nijk

tr ⊕V
⊕mijk
reg ,

where Γ acts trivially on Vtr �Q and via the regular representation on Vreg �Q22g .
We call V ⊕mijk

reg the regular part of Hk
c (Zij).

2. we have

χHdg;Γ(Si) =
∑
j,k

εij(−1)k[Hk
c (Zij);ρij : Γ→Aut(Hk

c (Zij))],

where εij is ±1, and ρij is a direct sum of copies of the trivial and/or of the regular
representation.

Denote by Ereg(Zij) the E-polynomial of the regular part of H∗
c (Zij), and let Etr(Zij) :=

E(Zij)−Ereg(Zij). Then we have

E(TDol(C, SL2)) =
∑
i,j

εijEtr(Zij)+
∑
ij

εijEreg(Zij) (27)

=
∑
ij

εijEtr(Zij)+22g
∑
ij

εijEreg(Zij)
Γ

E(TDol(C, SL2))
Γ =

∑
ij

εijEtr(Zij)+
∑
ij

εijEreg(Zij)
Γ.
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Via the decomposition theorem, the same holds for IE(MDol(C, SL2)), and so for
IPt(M(C, SL2)), by the purity of IH∗(M(C, SL2)), as explained in the proof of
Theorem 1.9.

Remark 4.3. Since in our case the varieties Zij are completely explicit, we can check
that all of the coefficients 22g in Theorem 1.8 come from the E-polynomial of the
regular part. So we obtain IE(MDol(C, SL2))

Γ by replacing 22g by 1. By (5) and (6)
this gives IE(MDol(C,G)) with G= PGL2 ,GL2. Analogously, knowing IPt(M(C, SL2)),
E(TDol(C, SL2)) and Pt(T (C, SL2)), we can write their invariant counterparts, as well as
their variants for G= PGL2 ,GL2.

Remark 4.4. By the vanishing of the odd part of IH∗
var(M(C, SL2)) (cf. Corollary

1.11), every nontrivial (GrWr+s IH
d
var(M(C, SL2))

r,s will contribute with nonnegative
coefficient to IEvar(M(C, SL2)). Therefore, there is no cancellation, and the Γ-modules
IH∗(M(C, SL2)) and H∗(T (C, SL2)) are direct sums of copies of the trivial and of the
regular representation of Γ by (27). Comparing with [12], one can check that the same
holds for H∗(M(C, SL2)).

5. P=W conjectures

5.1. P=W conjecture for twisted character varieties
The computation of E-polynomials of character varieties was initiated in [33] for twisted
character varieties M tw

B =M tw
B (C,G,d),

M tw
B (C,G,d) :=

{
(A1,B1, . . . ,Ag,Bg) ∈G2g

∣∣ g∏
j=1

[Aj,Bj ] = e2πi/d ·1G
}

�G

with G=GLn , SLn or PGLn and gcd(n,d) = 1; see also [52].
As in the untwisted case, a nonabelian Hodge correspondence holds for M tw

B : there exists
a diffeomorphism Ψ: M tw

Dol →M tw
B , from the Dolbeault moduli space M tw

Dol =M tw
Dol(C,G,d)

of semistable G-Higgs bundles over C of degree d ; see [36]. However, contrary to the
general untwisted character variety, M tw

B is smooth (a significant advantage!).
Surprisingly, Hausel and Rodriguez-Villegas [33] in rank 2, and Mellit [51] for GLn,

observed that the cohomology of M tw
B enjoys symmetries typical of smooth projective

varieties, despite the fact that M tw
B is not projective. They called these symmetries curious

hard Lefschetz theorem: there exists a class α ∈H2(M tw
B ) which induces the isomorphism

∪αk : GrWdimMB−2kH
∗(M tw

B )
�−→GrWdimMB+2kH

∗+2k(M tw
B ).

Note that, as an immediate consequence of the curious hard Lefschetz theorem, the
E-polynomial of M tw

B is palindromic.
In the attempt to explain the curious hard Lefschetz theorem, de Cataldo, Hausel and

Migliorini conjectured the P=W conjecture, and they verified it for rank 2; see [13]. This
conjecture posits that the nonabelian Hodge correspondence exchanges two filtrations on
the cohomology of M tw

Dol and M tw
B of very different origin, respectively the perverse Leray
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filtration (10) associated to the Hitchin fibration χ on M tw
Dol (the analogue of the map

defined in (11)) and the weight filtration on M tw
B .

Conjecture 5.1 (P=W conjecture for twisted moduli spaces).

PkH
∗(M tw

Dol(C,G,d)) = Ψ∗W2kH
∗(M tw

B (C,G,d)).

This suggests that the symmetries of the mixed Hodge structure of the cohomology of
twisted character varieties, noted by Hausel and Rodriguez-Villegas, should be understood
as a manifestation of the standard relative hard Lefschetz symmetries for the proper
map χ on the Dolbeault side. The latter is an isomorphism between graded pieces of
the perverse Leray filtration induced by cup product with a relative χ-ample class α ∈
H2(M tw

Dol(C,G,d)):

∪αk : GrPdimMDol/2−kH
∗(M tw

Dol)
�−→GrWdimMDol/2+2H

∗+2k(M tw
Dol);

see, for instance, [18, Theorem 2.1.1.(a)].

5.2. PI=WI and the intersection curious hard Lefschetz
In the untwisted (singular) case, curious hard Lefschetz fails in general; for example, [26,
Remark 7.6], and the E-polynomial of MB(C,G) is not palindromic; see, for instance, [46,
Theorem 1.2], [48, Theorem 2] or [4, Theorem 1.3]. In order to restore the symmetries,
de Cataldo and Maulik suggested considering the intersection cohomology of MB(C,G),
and in [15, Question 4.1.7] they conjectured the following.

Conjecture 5.2 (PI=WI conjecture).

PkIH
∗(MDol(C,G)) = Ψ∗W2kIH

∗(MB(C,G)).

As in the twisted case, the PI=WI conjecture and the relative hard Lefschetz theorem
for χ would imply the intersection curious hard Lefschetz theorem.

Conjecture 5.3 (intersection curious hard Lefschetz). There exists a class α ∈
H2(MB(C,G)) which induces the isomorphisms

∪αk : GrWdimMB−2k IH
∗(MB(C,G))

�−→GrWdimMB+2k IH
∗+2k(MB(C,G)).

In particular, the intersection E-polynomial of MB(C,G) is palindromic.

In this article we provide some numerical evidence for Conjecture 5.3.

Theorem 5.4 (Corollary 1.5). The intersection E-polynomial IE(MB(C,G)) is palin-
dromic for G=GL2 , SL2 ,PGL2.

5.3. PI=WI for SL2 is equivalent to PI=WI for GL2

The P=W conjecture for SLn implies the P=W conjectures for PGLn and GLn; see [26,
§3.3]. The converse holds true in the twisted case for n prime by [17]. By (5) and (6),
this reduction boils down to prove the P=W conjecture for the variant cohomology. The
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proof in Theorem 5.5 does not rely on the smoothness of twisted character varieties, and
it extends to the singular case verbatim.

Theorem 5.5 ([17]). Suppose that

1. q(1−n2)(2g−2)IEvar(MDol(C, SLn);q,q) =: q(1−n2)(2g−2)E(q) is palindromic;
2. IEvar(MB(C, SLn);

√
q,
√
q) = q(2−n−n2)(g−1)E(q).

Set cn := n(n−1)(g−1). Then we have

IHd
var(M(C, SLn))�GrPd−cn IH

d
var(MDol(C, SLn))�GrW2(d−cn) IH

d
var(MB(C, SLn)).

Unfortunately, in the untwisted case the variant intersection E-polynomials are available
only in rank 2; see Corollary 1.11.

Corollary 5.6. The PI=WI conjecture for M(C, SL2) is equivalent to the PI=WI
conjecture for M(C,GL2).

5.4. Tautological classes
In [35] Hausel and Thaddeus proved that H∗(M tw(C, SL2))

Γ is generated by tautological
classes.8 This is an essential ingredient of the proof of the P=W conjecture in the twisted
case [13] and [16] and a missing desirable piece of information in the untwisted case. Here
we provide a partial result: we show that tautological classes do generate the low-degree
intersection cohomology of M.

Let B(C, SL2) be the (infinite-dimensional and contractible) space of SL2-Higgs bundles
on C of degree zero and Bss(C, SL2) be the corresponding locus of semistable Higgs
bundles. Let G be the group of real gauge transformations with fixed determinant acting
on this spaces by precomposition and GC its complexification.

We can identify the classifying space BG � B(C, SL2) with the space of continuous
maps Map(C, SU2). The second Chern class of the tautological (flat) SU2-bundle T on
C×Map(C, SU2) admits the Künneth decomposition

c2(T ) = σ⊗α+

2g∑
j=1

ej ⊗ψj +1⊗β,

where σ ∈ H2(C) is the fundamental cohomology class, and e1, . . . ,e2g is a standard
symplectic basis of H1(C). Atiyah and Bott showed in [3] that the rational cohomology
of BG is freely generated by the tautological classes α, ψj and β. That is, H∗(BG) is the
tensor product of the polynomial algebra on the classes α and β of degree 2 and 4 with
an exterior algebra on the classes ψj of degree 3,

H∗(BG)�Q[α,β]⊗Λ(ψj). (28)

In particular, the Poincaré polynomial of the classifying space BG is

Pt(BG) = (t3+1)2g

(t2−1)(t4−1)
. (29)

8The result have been generalised to arbitrary rank in [47].
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Now the nonabelian Hodge correspondence induces the following isomorphism in
equivariant cohomology:

H∗
G(B

ss(C, SL2))�H∗
SL2

(Hom(π1(C), SL2)); (30)

see [12, Theorem 1.2]. Together with Kirwan surjectivity, [10, Theorem 1.4]

H∗(BG)�H∗
G(B(C, SL2))�H∗

G(B
ss(C, SL2))

Γ, (31)

this implies that the Γ-invariant SL2-equivariant cohomology of Hom(π1(C), SL2) is
generated by tautological classes.

Theorem 5.7. IH<4g−6(M(C, SL2)) has a canonical structure of graded ring freely
generated by the tautological classes α, ψj, β of degree 2, 3, 4, respectively, and weight 4.
Among the tautological classes, only α is a cohomology class; that is, it is in the image
of the natural map H∗(M(C, SL2))→ IH∗(M(C, SL2)).

Proof. Since Σ has codimension 4g−6 in M, we have

IH<4g−6(M(C, SL2))�H<4g−6(M sm(C, SL2)); (32)

see, for instance, [23, Lemma 1]. In particular, IH<4g−6(M(C, SL2)) has a natural
structure of graded ring. The open subset of simple representations Homs(π1(C), SL2)

in Hom(π1(C), SL2) is a PGL2-principal bundle over the smooth locus M sm
B (C, SL2), and

so

H∗(M sm(C, SL2))�H∗
SL2

(Homs(π1(C), SL2)). (33)

We claim that the composition of (31), (30), (34), the inverse of (33) and (32),

H<4g−6(BG) a−→H<4g−6
SL2

(Hom(π1(C), SL2))

b−→H<4g−6
SL2

(Homs(π1(C), SL2))� IH<4g−6(M(C, SL2)),

is an isomorphism. Indeed, a is surjective by (31) (and Corollary 1.11) and actually
bijective since by [11, Corollary 1.3] we have

P SL2
t (Hom(π1(C), SL2)) :=

∑
d

dimHd
SL2

(Hom(π1(C), SL2))t
d = Pt(BG)+O(t4g−4).

Further, b is injective by Lemma 5.9 and actually bijective due to (3) and (29). The free
generation of IH<4g−6(M(C, SL2)) now follows from (28). See [64] for the weight of the
tautological classes. Finally, ψi and β are not cohomology classes by Corollary 1.10 and
preceding lines.

Remark 5.8. Theorem 5.7 holds for PGL2, as

IH<4g−6(M(C, SL2)) = IH<4g−6(M(C, SL2))
Γ � IH<4g−6(M(C,PGL2))

by Corollary 1.11, and so for GL2, too. In the latter case, however, mind that there
are additional generators εj which are pullback via the map (4) of a standard basis of
H1(M(C,GL1))�H1(C).
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As a final remark, note that the proof of Theorem 5.7 shows the more general statement
that Kirwan surjectivity implies the tautological generation of the low-degree intersection
cohomology for M(C, SLn). However, this surjectivity is an open problem for n> 2; cf. [9].

We prove the lemma used in the proof of Theorem 5.7.

Lemma 5.9. The natural restriction map

Hd
SL2

(Hom(π1(C), SL2))→Hd
SL2

(Homs(π1(C), SL2)) (34)

is bijective for d < 4g−7 and injective for d= 4g−7.

Proof. Set c := codimSingHom(π1(C), SL2) = dimM−dimΣ+dimStabΣ =4g−5, where
StabΣ � Gm is the stabiliser of a closed orbit over Σ. Since Hom(π1(C), SL2) is a
complete intersection (adapt [24, Theorem 1.2] or [66, Proposition 11.3]), there exists
an isomorphism

Hd
SL2

(Hom(π1(C), SL2))�Hd
SL2

(Homsm(π1(C), SL2)) for d < c−1. (35)

Indeed, take an approximation Ek of the universal SL2-bundle ESL2; that is, a smooth
variety Ek with a free SL2-action and such that H<k(X×SL2

Ek)�H<k
SL2

(X×SL2
ESL2)=:

H<k
SL2

(X); see [1, Lemma 1.3]. By Luna slice theorem X ×SL2 Ek is a local complete
intersection, and the singular locus has again codimension c. Then (35) follows from [31,
p.199].

Further, the complement of Homs(π1(C), SL2) in the smooth locus has codimension
2g− 3; see, for instance, [29, §7.2] where the complement is denoted Xρ

g. Therefore, by
the equivariant Thom isomorphism, the restriction map

Hd
SL2

(Homsm(π1(C), SL2))→Hd
SL2

(Homs(π1(C), SL2))

is bijective for d < 4g−7 and injective for d= 4g−7.

5.5. P=W vs PI=WI: nonpurity of H∗(MB)

Despite the failure of curious hard Lefschetz, it still makes sense to conjecture P = W
phenomena for the ordinary cohomology of MB.

Conjecture 5.10 (P=W conjecture for untwisted character varieties).

PkH
∗(MDol(C,G)) = Ψ∗W2kH

∗(MB(C,G)).

It was proved in [26, Theorem 6.1] that the PI=WI conjecture for genus 2 and rank
2 implies the P=W conjecture simply by restriction, since H∗(MB(C, SL2)) injects into
IH∗(MB(C, SL2)) or, equivalently, by the purity of H∗(MB(C, SL2)); see Proposition 2.4.
In higher genus the situation is more subtle, as the following theorem shows.

Theorem 5.11. Let C be a curve of genus g > 3. Then the natural map H∗(M) →
IH∗(M) is not injective. Equivalently, MDol has no pure cohomology.

Proof. Otherwise, the polynomial IPt(M)−Pt(M) would have only positive coefficients,
but this is not the case by Corollary 1.10 and preceding lines.
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Remark 5.12 (Torelli group). We propose an alternative proof of Theorem 5.11.
The Torelli group is the subgroup of the mapping class group acting trivially on the
cohomology of the curve C. The Torelli group acts nontrivially on H∗(M) by [12,
Proposition 4.7] (already in degree 6 by [7, Theorem 1.1]), but IH<4g−6(M) is generated
by tautological classes due to Theorem 5.7, and so the Torelli group acts trivially on
IH<4g−6(M) as in [7, Theorem 2.1.(c)]. Since the natural map H∗(M) → IH∗(M) is
equivariant with respect to the Torelli group, we conclude that it has nontrivial kernel
for g > 3.

5.6. P=W for resolution fails when no symplectic resolution exists
In [26] Camilla Felisetti and the author proposed a strong version of PI=WI conjecture,
called P=W for resolution, and proved it for character varieties which admit a symplectic
resolution.

Conjecture 5.13 (P=W conjecture for resolution). There exist resolutions of singulari-
ties fDol : M̃Dol(C,G)→MDol(C,G) and fB : M̃B(C,G)→MB(C,G) and a diffeomorphism
Ψ̃ : M̃Dol(C,G)→ M̃B(C,G), such that the following square commutes:

H∗(M̃Dol(C,G),Q) H∗(M̃B(C,G),Q)

H∗(MDol(C,G),Q) H∗(MB(C,G),Q),

f∗
Dol f∗

B

Ψ̃∗

Ψ∗

(36)

and the lift Ψ̃∗ of the nonabelian Hodge correspondence Ψ∗ satisfies the property

PkH
∗(M̃Dol(C,G),Q) = Ψ̃∗W2kH

∗(M̃B(C,G),Q). (37)

In [26, Theorem 3.4] Camilla Felisetti and the author proved that resolutions of
singularities satisfying (36) do exist; for instance, the Kirwan–O’Grady desingularisations
are such.

In Theorem 5.14 we show, however, that if M(C,GLn) does not admit a symplectic
resolution, no resolution of M(C,GLn) satisfies (37), despite the palindromicity of the
E-polynomial of TB ; see Theorem 1.12. A fortiori, the same negative result holds for
G= SLn.

This means that the hypotheses of [25, Main Theorem, 3] were optimal for G =

GLn , SLn: the proof of Theorem 5.14 suggests that the semismallness of the desingu-
larisation may be a necessary requirement for the P=W conjecture for resolutions to hold
for a G-character variety with G arbitrary reductive group. This is compatible with the
expectation of [14, §4.4].

Theorem 5.14. Let M(C,GLn) be an untwisted GLn-character variety with no symplec-
tic resolution; that is, for g,n > 1 and (g,n) �= (2,2). Then the P=W conjecture for any
resolution of M(C,GLn) does not hold.

Proof. Let f : M̃ →M(C,GLn) be a resolution of singularities of M(C,GLn) as in (36)
and E be an f -exceptional divisor whose image is contained in the singular locus Σ :=

https://doi.org/10.1017/S1474748021000487 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000487


Intersection Cohomology of Rank 2 Character Varieties of Surface Groups 1651

SingM(C,GLn). Recall that χ : MDol(C,GLn) → Λ :=
⊕n

i=1H
0(C,K⊗i

C ) is the Hitchin
fibration (11).

The locus χ(Σ) consists of reducible characteristic polynomials, and it has codimension

1

2
(dimM(C,GLn)−max{dimM(C,GLn1

)+dimM(C,GLn2
) : n= n1+n2})≥ 2.

The last inequality follows, for instance, from [6, Lemma 2.2.(2)]. In particular, the general
affine line in Λ avoids χ◦f(E) ⊆ χ(Σ). Then by (10) the Poincaré dual of E belongs to
P0H

2(M̃). However, since M̃B is smooth, H2(M̃B) has weight not smaller than 2. This
contradicts (37).
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