SMOOTHNESS OF CONVOLUTION PRODUCTS OF ORBITAL MEASURES ON RANK ONE COMPACT SYMMETRIC SPACES

KATHRYN E. HARE ${ }^{\boxtimes}$ and JIMMY HE

(Received 21 October 2015; accepted 29 November 2015; first published online 12 February 2016)

Abstract

We prove that all convolution products of pairs of continuous orbital measures in rank one, compact symmetric spaces are absolutely continuous and determine which convolution products are in L^{2} (meaning that their density function is in L^{2}). We characterise the pairs whose convolution product is either absolutely continuous or in L^{2} in terms of the dimensions of the corresponding double cosets. In particular, we prove that if G / K is not $\mathrm{SU}(2) / \mathrm{SO}(2)$, then the convolution of any two regular orbital measures is in L^{2}, while in $\mathrm{SU}(2) / \mathrm{SO}(2)$ there are no pairs of orbital measures whose convolution product is in L^{2}.

2010 Mathematics subject classification: primary 43A80; secondary 22E30, 53C35.
Keywords and phrases: rank one symmetric space, spherical functions, orbital measure, absolute continuity.

1. Introduction

Let G / K be an irreducible, simple, simply connected, compact symmetric space. By an orbital measure, μ_{z}, we mean the K-bi-invariant, singular measure on G supported on the double coset $K z K$. We prove that, in any rank one symmetric space, the convolution product of two orbital measures, $\mu_{z_{1}} * \mu_{z_{2}}$, is absolutely continuous if and only if

$$
\begin{equation*}
\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K \geq \operatorname{dim} G / K \tag{1.1}
\end{equation*}
$$

and if and only if $\mu_{z_{1}}$ and $\mu_{z_{2}}$ are both continuous. For short, we write $\mu_{z_{1}} * \mu_{z_{2}} \in L^{1}(G)$ because being absolutely continuous is equivalent to the density function belonging to L^{1}. Furthermore, we prove that $\mu_{z_{1}} * \mu_{z_{2}} \in L^{2}(G)$ if and only if the inequality (1.1) is strict. We show that only four of the infinite number of rank one symmetric spaces admit a pair of continuous orbital measures whose convolution is not in L^{2}.

It was previously shown in [1] that there are continuous orbital measures in the rank one symmetric space $\mathrm{SU}(2) / \mathrm{SO}(2)$ whose convolution is in L^{1}, but not in L^{2}.

[^0]This came as a surprise because, in the special case that the symmetric space is $(H \times H) / H \sim H$ for a compact Lie group H, it is known that $\mu_{z}^{p} \in L^{1}(H)$ if and only if $\mu_{z}^{p} \in L^{2}(H)$ for all integers p, where the exponent p means the p-fold convolution product [8]. One consequence of our characterisation is that there are no pairs of orbital measures for $\mathrm{SU}(2) / \mathrm{SO}(2)$ whose convolution is in L^{2}.

The continuous orbital measures on $\mathrm{SU}(2) / \mathrm{SO}(2)$ are all examples of what are called 'regular' orbital measures. (For the definition, see Section 2.) Previously, it was shown that, in any symmetric space, the convolution of two regular orbital measures is in L^{1} [7]. Here we see that, in any rank one symmetric space, the convolution of any two continuous orbital measures is in L^{1} and if G / K is any rank one symmetric space other than $\mathrm{SU}(2) / \mathrm{SO}(2)$, then the convolution of any two regular orbital measures is in $L^{2}(G)$. We also prove that, in any rank one symmetric space, the product of any three continuous orbital measures belongs to L^{2}. Previously it was known that such a threefold product was in L^{1} [9], with the sharper L^{2} result known only for $\mathrm{SU}(2) / \mathrm{SO}(2)$ [1].

The problem of establishing the absolute continuity of convolution products of orbital measures was originally studied by Ragozin in [14]. Extensive treatment of the absolute continuity problem in the noncompact case has been carried out by Graczyk and Sawyer (see [5, 6]).

2. Absolutely continuous convolution products

2.1. Notation and terminology. If G is a compact group and K is a compact connected subgroup fixed by an involution θ, then G / K is called a compact symmetric space. We will assume that G / K is an irreducible, simple, simply connected, compact symmetric space of Cartan type I. Of primary interest are the spaces of rank one; see the appendix for a complete list. Let $\mathfrak{g}=\mathfrak{f}+i p$ be the Cartan decomposition of \mathfrak{g} (the Lie algebra of G), let \mathfrak{a} denote a maximal abelian subalgebra of \mathfrak{p} and assume that t is a torus of \mathfrak{g} that contains \mathfrak{a}. Then $K=\exp (\mathfrak{f})$ and, if we let $A=\exp (i \mathfrak{a}), G=K A K$. Hence every double coset, $K z K$, contains an element z in A.

We denote the set of positive roots of $(\mathfrak{g}, \mathrm{t})$ by Σ^{+}and let

$$
\Phi^{+}=\left\{\alpha=\left.\beta\right|_{\mathfrak{a}}: \beta \in \Sigma^{+},\left.\beta\right|_{\mathfrak{a}} \neq 0\right\}
$$

be the set of (positive) restricted roots. When G / K is rank one, there is either one positive restricted root, α, or there are two, α and 2α. We write m_{β} for the multiplicity of the restricted root β, that is, the dimension of the restricted root space \mathfrak{g}_{β}. We remark that, in the rank one spaces, the dimension of $G / K=\operatorname{dim} \mathfrak{p}=m_{\alpha}+m_{2 \alpha}+1$ and it is always the case that $m_{\alpha} \geq 1+m_{2 \alpha}$. For the convenience of the reader, we list important facts about these spaces and their restricted root systems in the appendix. Further information about these spaces can be found, for example, in [2, 10, 12].

By an orbital measure on the compact symmetric space G / K, we mean the probability measure denoted by μ_{z}, for $z \in G$, defined by

$$
\int_{G} f d \mu_{z}=\int_{K} \int_{K} f\left(k_{1} z k_{2}\right) d m_{K}\left(k_{1}\right) d m_{K}\left(k_{2}\right)
$$

for all continuous functions f on G. The orbital measure is K-bi-invariant and it is singular because it is supported on the double coset $K z K$, which is a set of Haar measure zero. Since every double coset contains an element of A, there is no loss of generality in assuming that $z \in A$. The measure μ_{z} is continuous (that is, nonatomic) if and only if $z \notin N_{G}(K)$, the normaliser of K in G.

It was shown in [9], that if $r=\operatorname{rank} G / K$ and $\mu_{x_{j}}$ are continuous for $j=1, \ldots, 2 r+1$, then $\mu_{x_{1}} * \cdots * \mu_{x_{2 r+1}}$ is absolutely continuous with respect to Haar measure, meaning that its density function (or Radon-Nikodym derivative) is in $L^{1}(G)$. In particular, the convolution product of any three continuous orbital measures, on any rank one symmetric space, has density function in L^{1}. This improved upon the much earlier work of Ragozin [14] who had shown that any product of $\operatorname{dim} G / K$, continuous, orbital measures is absolutely continuous. If, instead, $x \in N_{G}(K)$, then μ_{x}^{p} (the p-fold convolution of μ_{x}) is singular with respect to Haar measure for all p since, in this case, μ_{x}^{p} is supported on the subset $(K x K)^{p}=x^{p} K$, which is a set of Haar measure zero.

Given $z \in A$, say, $z=e^{i Z}$ for $Z \in \mathfrak{a}$, we let

$$
\Phi_{z}=\left\{\alpha \in \Phi^{+}: \alpha(Z)=0(\bmod \pi)\right\}
$$

be the set of annihilating roots of z. The annihilating roots are very important in questions about orbital measures and double cosets. For instance, the dimension of $K z K$ equals $\sum_{\beta \in \Phi^{+} \backslash \Phi_{Z}} m_{\beta}$. It is known that $\Phi_{z}=\Phi^{+}$if and only if $z \in N_{G}(K)$. In particular, if $z \notin N_{G}(K)$, then $\operatorname{dim} K z K \geq m_{\alpha}$.

We call z regular if Φ_{z} is empty and then we will also call μ_{z} regular. In this case $\operatorname{dim} K z K=m_{\alpha}+m_{2 \alpha}$. If G / K has only one restricted root, then every $z \in A$ is either regular or belongs to $N_{G}(K)$, equivalently, μ_{z} is either regular or not continuous. This is the situation with $\mathrm{SU}(2) / \mathrm{SO}(2)$. If a rank one symmetric space G / K has two positive restricted roots, then a continuous orbital measure μ_{z} is not regular if and only if $2 \alpha(Z) \equiv 0(\bmod \pi)$, but $\alpha(Z) \not \equiv 0(\bmod \pi)$ and then $\operatorname{dim} K z K=m_{\alpha}$.
2.2. Absolute continuity of convolution products. In [7] it was shown that if z_{1}, z_{2} are both regular, then $\mu_{z_{1}} * \mu_{z_{2} 2}$ is absolutely continuous. Similar arguments show that the same conclusion is true if z_{1} is regular and $z_{2} \notin N_{G}(K)$ or vice versa. Our first result is to prove that the same conclusion holds for the convolution of any two continuous orbital measures in a rank one symmetric space.

Theorem 2.1. If G / K is a rank one symmetric space, then $\mu_{z_{1}} * \mu_{z_{2}}$ is absolutely continuous if $z_{1}, z_{2} \notin N_{G}(K)$.

Proof. We will write E_{β} for any restricted root vector in \mathfrak{g}_{β}. To simplify notation, we will write E_{β}^{-}for $E_{\beta}-\theta E_{\beta}$ and E_{β}^{+}for $E_{\beta}+\theta E_{\beta}$. Note that $E_{\beta}^{+} \in \mathfrak{f}$ and $E_{\beta}^{-} \in \mathfrak{p}$.

Given $z \in A$, let

$$
\mathcal{N}_{z}=\operatorname{sp}\left\{E_{\beta}^{-}: \text {restricted } \operatorname{root} \beta \notin \Phi_{z}\right\} \subseteq \mathfrak{p},
$$

where $s p$ denotes the real span. It was shown in [9] that $\mu_{z_{1}} * \mu_{z_{2}}$ is absolutely continuous if and only if there is some $k \in K$ such that

$$
\begin{equation*}
\mathfrak{p}=\operatorname{sp}\left\{\mathcal{N}_{z_{1}}, \operatorname{Ad}(k)\left(\mathcal{N}_{z_{2}}\right)\right\} . \tag{2.1}
\end{equation*}
$$

As remarked above, the result is already known if, in addition, either z_{1} or z_{2} is regular. So assume otherwise. In particular, we can assume that G / K has two positive restricted roots, $\Phi_{z_{1}}=\Phi_{z_{2}}=\{2 \alpha\}$ and $\mathcal{N}_{z_{1}}=\mathcal{N}_{z_{2}}=\operatorname{sp}\left\{E_{\alpha}^{(j)-}: E_{\alpha}^{(j)}\right.$ is a basis for $\left.\mathfrak{g}_{\alpha}\right\}$. Put $E_{\alpha}^{(1)}=E_{\alpha}$ and let $k_{t}=\exp t E_{\alpha}^{+} \in K$ for small $t>0$.

Standard facts about root vectors and the Lie bracket imply that

$$
\begin{aligned}
{\left[E_{\alpha}^{+}, E_{\alpha}^{(j)-}\right] } & =\left[E_{\alpha}, E_{\alpha}^{(j)}\right]-\theta\left[E_{\alpha}, E_{\alpha}^{(j)}\right]+\left[\theta E_{\alpha}, E_{\alpha}^{(j)}\right]-\theta\left[\theta E_{\alpha}, E_{\alpha}^{(j)}\right] \\
& =\left[E_{\alpha}, E_{\alpha}^{(j)}\right]-\theta\left[E_{\alpha}, E_{\alpha}^{(j)}\right]+H_{j},
\end{aligned}
$$

where $H_{j} \in \mathfrak{a}$. Since $\left[g_{\alpha}, g_{2 \alpha}\right]=0=\left[g_{2 \alpha}, g_{2 \alpha}\right]$ and $\left[g_{\alpha}, g_{\alpha}\right] \subseteq g_{2 \alpha}$, it follows, from [3], that there is a scalar $c>0$ such that, for every $Z \in \mathfrak{g}_{2 \alpha}$, there is some $J_{Z}=J_{Z}\left(E_{\alpha}\right) \in \mathfrak{g}_{\alpha}$ with

$$
\left[E_{\alpha}, J_{Z}\right]=c Z
$$

Temporarily fix $Z=E_{2 \alpha}^{(j)}$, and assume that $J_{Z}=\sum d_{i} E_{\alpha}^{(i)}$. With $J_{Z}^{-}=J_{Z}-\theta J_{Z}$, the observations above imply that

$$
\left[E_{\alpha}^{+}, J_{Z}^{-}\right]=\sum d_{i}\left(\left[E_{\alpha}, E_{\alpha}^{(i)}\right]-\theta\left[E_{\alpha}, E_{\alpha}^{(i)}\right]\right)+H_{Z}
$$

for some $H_{Z} \in \mathfrak{a}$. Thus

$$
\left[E_{\alpha}^{+}, J_{Z}^{-}\right]=\left[E_{\alpha}, J_{Z}\right]-\theta\left[E_{\alpha}, J_{Z}\right]+H_{Z}=c(Z-\theta Z)+H_{Z}=c E_{2 \alpha}^{(j)-}+H_{Z}
$$

Since $E_{\alpha}^{-}, J_{Z}^{-} \in \mathcal{N}_{z_{2}}$, and $\left[E_{\alpha}^{+}, E_{\alpha}^{-}\right]$is a nonzero element (and hence generator) of \mathfrak{a},

$$
\operatorname{sp}\left\{\mathcal{N}_{z_{1}}, \operatorname{ad}\left(E_{\alpha}^{+}\right)\left(\mathcal{N}_{z_{2}}\right)\right\}=\mathfrak{p}
$$

As $\exp t E_{\alpha}^{+}=\mathrm{Id}+t \cdot a d\left(E_{\alpha}^{+}\right)+P_{t}$ for some operator P_{t} with norm $O\left(t^{2}\right)$, it follows that, for small enough $t>0, \operatorname{sp}\left\{\mathcal{N}_{z_{1}}, \operatorname{Ad}\left(k_{t}\right)\left(\mathcal{N}_{z_{2}}\right)\right\}=\mathfrak{p}$. (We refer the reader to [7] for the details of a similar argument.) This completes the proof.

Remark 2.2. Observe that $\operatorname{dim} K z K=\operatorname{dim} \mathcal{N}_{z}$.
Corollary 2.3. For a rank one symmetric space G / K, the following are equivalent:
(1) $\mu_{z_{1}} * \mu_{z_{2}}$ is absolutely continuous;
(2) $\mu_{z_{1}}$ and $\mu_{z_{2}}$ are continuous measures; and
(3) $\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K \geq G / K$.

Proof. Theorem 2.1 gives that (2) implies (1) since μ_{z} is continuous if and only if $z \notin N_{G}(K)$.

Since $\operatorname{dim} \operatorname{sp}\left\{\mathcal{N}_{z_{1}}, \operatorname{Ad}(k)\left(\mathcal{N}_{z_{2}}\right)\right\} \leq \operatorname{dim} \mathcal{N}_{z_{1}}+\operatorname{dim} \mathcal{N}_{z_{2}}$, it is immediate from (2.1) and Remark 2.2 that if $\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K<\operatorname{dim} \mathfrak{p}=\operatorname{dim} G / K$, then $\mu_{z_{1}} * \mu_{z_{2}}$ is not absolutely continuous. Thus (1) implies (3).

Lastly, we observe that if, say, $\mu_{z_{1}}$ is not continuous, then $\operatorname{dim} K z_{1} K=0$. Thus $\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K<\operatorname{dim} G / K$, so (3) implies (2).
Remark 2.4. It follows, from [14], that the absolute continuity of $\mu_{z_{1}} * \mu_{z_{2}}$ is also equivalent to $K z_{1} K z_{2} K$ having nonempty interior.

3. Convolution products that are in $L^{\mathbf{2}}$

In the remainder of this paper, we study when the convolution product of orbital measures belongs to the smaller space $L^{2}(G)$. We will do this by estimating the decay in the Fourier transform of orbital measures. For this, we introduce further notation.

Notation 3.1. An irreducible, unitary representation $\left(\pi, V_{\pi}\right)$ of G is called spherical if there exists a K-invariant vector in V_{π}. It is known that the dimension of the K-invariant subspace, V_{π}^{K}, is one (see [1]). We will let $X_{1}=X_{\pi}, X_{2}, \ldots, X_{\operatorname{dim} V_{\pi}}$ be an orthonormal basis for V_{π}, where we suppose that V_{π}^{K} is spanned by X_{π}.

The following facts can essentially be found in [1] (and are valid in any compact symmetric space, not just those of rank one).

Lemma 3.2. For any $x, y \in G,\left\langle\widehat{\mu_{x}}(\pi) \widehat{\mu_{y}}(\pi) X_{i}, X_{j}\right\rangle=0$ if $(i, j) \neq(1,1)$ and

$$
\left\langle\widehat{\mu_{x}}(\pi) \widehat{\mu_{y}}(\pi) X_{\pi}, X_{\pi}\right\rangle=\left\langle\pi\left(x^{-1}\right) X_{\pi}, X_{\pi}\right\rangle\left\langle\pi\left(y^{-1}\right) X_{\pi}, X_{\pi}\right\rangle .
$$

Proof. It is shown in [1] that, for all $i, \widehat{\mu_{x}}(\pi) X_{i} \in V_{\pi}^{K}=\operatorname{sp} X_{\pi}, \widehat{\mu_{x}}(\pi) X_{i}=0$ for all $i \neq 1$ and $\left\langle\widehat{\mu_{x}}(\pi) X_{\pi}, X_{\pi}\right\rangle=\left\langle\pi\left(x^{-1}\right) X_{\pi}, X_{\pi}\right\rangle$.

Proposition 3.3. For all $x, y \in G$,

$$
\left\|\mu_{x} * \mu_{y}\right\|_{2}^{2}=\left\|\mu_{x} * \mu_{y}\right\|_{2}^{2}=\sum_{\pi \text { spherical }} \operatorname{dim} V_{\pi}\left|\left\langle\pi(x) X_{\pi}, X_{\pi}\right\rangle\left\langle\pi(y) X_{\pi}, X_{\pi}\right\rangle\right|^{2}
$$

Proof. By the Peter-Weyl theorem,

$$
\left\|\mu_{x} * \mu_{y}\right\|_{2}^{2}=\sum_{\pi \text { spherical }} \operatorname{dim} V_{\pi}\left\|\widehat{\mu_{x} * \mu_{y}}(\pi)\right\|_{H S}^{2} .
$$

The previous lemma and orthogonality give

$$
\begin{aligned}
\left\|\mu_{x} * \mu_{y}(\pi)\right\|_{H S}^{2} & =\sum_{1 \leq i \leq \operatorname{dim} V_{\pi}}\left\|\widehat{\mu_{x} * \mu_{y}}(\pi) X_{i}\right\|^{2}=\sum_{i} \sum_{j}\left|\left\langle\widehat{\mu_{x}}(\pi) \widehat{\mu_{y}}(\pi) X_{i}, X_{j}\right\rangle\right|^{2} \\
& =\left|\left\langle\widehat{\mu_{x}}(\pi) \widehat{\mu_{y}}(\pi) X_{\pi}, X_{\pi}\right\rangle\right|^{2}=\left|\left\langle\pi(x) X_{\pi}, X_{\pi}\right\rangle\left\langle\pi(y) X_{\pi}, X_{\pi}\right\rangle\right|^{2} .
\end{aligned}
$$

We will let

$$
\phi_{\pi}(x)=\left\langle\pi(x) X_{\pi}, X_{\pi}\right\rangle .
$$

These are called spherical functions and have been well studied (see [11, Ch. IV, V], [12, Ch. III]), particularly in the rank one case which we will assume for the remainder of this section. The following result is critical for us.

Theorem 3.4 [11, Ch. V, Theorem 4.5]. Let G / K be a simply connected, compact symmetric space of rank one and let β denote the larger element in Φ^{+}. Let π be a spherical representation of G and let λ denote the restriction of the highest weight of π to \mathfrak{a}. Then $\lambda=n \beta$, where n is a positive integer. The spherical function, ϕ_{π}, is given by the hypergeometric function,

$$
\phi_{\pi}(x)={ }_{2} F_{1}\left(\frac{1}{2} m_{\beta / 2}+m_{\beta}+n,-n ; \frac{1}{2}\left(m_{\beta / 2}+m_{\beta}+1\right) ; \sin ^{2}(\beta(X) / 2)\right),
$$

where $x=\exp i X, X \in \mathfrak{a}$. Moreover, there is such a spherical representation for each positive integer n.

By β the 'larger element', we mean $\beta=2 \alpha$ if there are two restricted roots and $\beta=\alpha$ otherwise. Here $m_{\beta / 2}$ should be understood as zero if Φ^{+}has only one element.

Using the symmetry of the first two arguments of the hypergeometric function and the relationship between the hypergeometric functions and the Jacobi polynomials $P_{n}^{(a, b)}(x)$, namely,

$$
\frac{\Gamma(n+1) \Gamma(a+1)}{\Gamma(a+n+1)} P_{n}^{(a, b)}(x)={ }_{2} F_{1}\left(-n, n+a+b+1, a+1 ; \frac{1}{2}(1-x)\right),
$$

(see [13]), we obtain the following expression for the spherical functions.
Proposition 3.5. Let π_{n} be the spherical representation of G with highest weight restricted to a equal to $n \beta$. Assume that $z=e^{i Z}$ with $Z \in \mathfrak{a}$. Then

$$
\phi_{\pi_{n}}(z)=\frac{\Gamma(n+1) \Gamma(a+1)}{\Gamma(a+n+1)} P_{n}^{(a, b)}(\cos \beta(Z)),
$$

where

$$
a=\frac{1}{2}\left(m_{\beta / 2}+m_{\beta}-1\right), \quad b=\frac{1}{2}\left(m_{\beta}-1\right) .
$$

For the remainder of the paper, π_{n} will denote the spherical representation of G with highest weight restricted to \mathfrak{a} equal to $n \beta$, where $\beta=2 \alpha$ if there are two positive restricted roots and $\beta=\alpha$ otherwise.

The asymptotic dimension formula for the spherical representations π_{n} can be derived using the Weyl dimension formula. Complicated explicit formulas are also known (see [4]).

Proposition 3.6. There are constants $c_{1}, c_{2}>0$ such that, for any n, the spherical representation π_{n} has dimension bounded by

$$
c_{1} n^{m_{\alpha}+m_{2 \alpha}} \leq \operatorname{dim} V_{\pi_{n}} \leq c_{2} n^{m_{\alpha}+m_{2 \alpha}}
$$

Proof. Suppose that π_{n} has highest weight λ_{n}, where $\left.\lambda_{n}\right|_{a}=n \beta$ with β the largest restricted root. As shown in [11, Ch. V, Theorem 4.1], λ_{n} vanishes on $\mathrm{t} \cap \mathfrak{f}$, and thus

$$
\left\langle\lambda_{n}, \gamma\right\rangle=n\left\langle\beta,\left.\gamma\right|_{\mathrm{a}}\right\rangle .
$$

It follows that the Weyl dimension formula implies that

$$
\operatorname{dim} V_{\pi_{n}}=\prod_{\gamma \in \Sigma^{+}} \frac{\left\langle\lambda_{n}+\rho, \gamma\right\rangle}{\langle\rho, \gamma\rangle}=\prod_{\gamma \in \Sigma^{+}}\left(\frac{n\left\langle\beta,\left.\gamma\right|_{\mathrm{a}}\right\rangle}{\langle\rho, \gamma\rangle}+1\right) .
$$

This expression is polynomial in n, with each factor being either linear or one depending on whether $\left\langle\beta,\left.\gamma\right|_{\mathfrak{a}}\right\rangle$ is nonzero. As \mathfrak{a} is one-dimensional, $\left.\gamma\right|_{\mathfrak{a}}=c \beta$ for some scalar c and thus $n\left\langle\beta,\left.\gamma\right|_{a}\right\rangle \neq 0$ if and only if $\left.\gamma\right|_{a} \neq 0$. Hence the degree of the polynomial is the number of $\gamma \in \Sigma^{+}$with $\left.\gamma\right|_{a} \neq 0$, namely, $m_{\alpha}+m_{2 \alpha}$.

We next recall the well-known asymptotic estimate for the Jacobi polynomials which can be found, for example, in [15]. With these we can easily obtain asymptotic estimates on the size of the spherical functions.

Lemma 3.7. Let $a, b \in \mathbb{R}$. Then

$$
P_{n}^{(a, b)}(-1)=\binom{n+b}{n}(-1)^{n} \quad \text { and } \quad P_{n}^{(a, b)}(1)=\binom{n+a}{n}
$$

while, if $\theta \in(0, \pi)$,

$$
P_{n}^{(a, b)}(\cos \theta)=k(\theta) n^{-1 / 2} \cos (N \theta+\gamma)+O\left(n^{-3 / 2}\right),
$$

where

$$
N=n+\frac{1}{2}(a+b+1), \quad \gamma=-\frac{1}{2} \pi\left(a+\frac{1}{2}\right)
$$

and

$$
k(\theta)=\pi^{-1 / 2}\left(\sin \left(\frac{1}{2} \theta\right)\right)^{-a-1 / 2}\left(\cos \left(\frac{1}{2} \theta\right)\right)^{-b-1 / 2}>0 .
$$

Corollary 3.8.
(a) If $z \in A$ is regular, then

$$
\left|\phi_{\pi_{n}}(z)\right| \leq C n^{-\left(m_{\alpha}+m_{2 \alpha}\right) / 2} .
$$

(Here $m_{2 \alpha}$ should be understood as zero in the single root case.)
(b) If $z \in A \backslash N_{G}(K)$, but is not regular, there are positive constants C_{1}, C_{2} such that

$$
C_{1} n^{-m_{\alpha} / 2} \leq\left|\phi_{\pi_{n}}(z)\right| \leq C_{2} n^{-m_{\alpha} / 2}
$$

Proof. These estimates follow directly from the previous result since the gamma function is known to satisfy

$$
\frac{\Gamma(n+1)}{\Gamma(a+n+1)}=O\left(n^{-a}\right) \quad \text { and } \quad\binom{n+s}{n}=O\left(n^{s}\right) \quad \text { for } s>0 .
$$

We are now ready to prove our main result. Note that, throughout the proof, C will denote a constant that can vary from one line to the next.

Theorem 3.9. Assume that G / K is a rank one, simple, simply connected, compact symmetric space not isomorphic to $\mathrm{SU}(2) / \mathrm{SO}(2)$. Assume that $z_{1}, z_{2} \in A \backslash N_{G}(K)$.
(a) If either z_{1} or z_{2} is regular, then $\mu_{z_{1}} * \mu_{z_{2}} \in L^{2}(G)$.
(b) If G / K is not type AIII or CII with $q=2$, or type FII, then $\mu_{z_{1}} * \mu_{z_{2}} \in L^{2}(G)$.
(c) If G / K is type AIII or CII with $q=2$, or type FII, and neither z_{1} nor z_{2} is regular, then $\mu_{z_{1}} * \mu_{z_{2}} \notin L^{2}(G)$.

Remark 3.10. The compact symmetric spaces of type AIII or CII with $q=2$ are those isomorphic to $\mathrm{SU}(3) /(S(U(2) \times U(1)))$ or $\mathrm{Sp}(6) /(\mathrm{Sp}(4) \times \mathrm{Sp}(2))$, and those of type FII are $F_{4} / \mathrm{SO}(9)$. The significance of these is that they are the rank one spaces with two positive restricted roots that satisfy $m_{\alpha}=m_{2 \alpha}+1$.

Proof. (a) From Proposition 3.3,

$$
\left\|\mu_{z 1} * \mu_{z 2}\right\|_{2}^{2}=\sum_{n} \operatorname{dim} V_{\pi_{n}}\left|\phi_{\pi_{n}}\left(z_{1}\right) \phi_{\pi_{n}}\left(z_{2}\right)\right|^{2}
$$

If both z_{1} and z_{2} are regular, then Corollary 3.8(i) gives

$$
\left|\phi_{\pi_{n}}\left(z_{j}\right)\right| \leq C n^{-\left(m_{\alpha}+m_{2 \alpha}\right) / 2}
$$

for both $j=1$, 2 . Combining this with $\operatorname{dim} V_{\pi_{n}} \leq O\left(n^{m_{\alpha}+m_{2 \alpha}}\right)$ yields the bound

$$
\left\|\mu_{z_{1}} * \mu_{z_{2}}\right\|_{2}^{2} \leq C \sum_{n} \operatorname{dim} V_{\pi_{n}} n^{-2\left(m_{\alpha}+m_{2 \alpha}\right)} \leq C \sum_{n} n^{-\left(m_{\alpha}+m_{2 \alpha}\right)} .
$$

For all rank one symmetric spaces other than $\mathrm{SU}(2) / \mathrm{SO}(2), m_{\alpha}+m_{2 \alpha} \geq 2$ (see the appendix) and hence this sum converges. Thus $\mu_{z_{1}} * \mu_{z_{2}} \in L^{2}$.

Next, suppose z_{1}, but not z_{2}, is regular. Then $\left|\phi_{\pi_{n}}\left(z_{2}\right)\right| \leq C n^{-m_{\alpha} / 2}$, by Corollary 3.8(ii), and similar arguments to the first case show that

$$
\left\|\mu_{z_{1}} * \mu_{z_{2}}\right\|_{2}^{2} \leq C \sum_{n} \operatorname{dim} V_{\pi_{n}} n^{-\left(m_{\alpha}+m_{2 \alpha}\right)} n^{-m_{\alpha}} \leq C \sum_{n} n^{-m_{\alpha}} .
$$

This sum is finite since $m_{\alpha} \geq 2$ whenever there are two positive restricted roots, as must be the case if there is such an element z_{2}.
(b) We can assume that neither z_{1} nor z_{2} are regular for otherwise we could simply apply (a). Arguing as above gives

$$
\left\|\mu_{z_{1}} * \mu_{z 2}\right\|_{2}^{2} \leq C \sum_{n} n^{m_{\alpha}+m_{2 \alpha}} n^{-2 m_{\alpha}} \leq C \sum_{n} n^{-m_{\alpha}+m_{2 \alpha}} .
$$

But $m_{\alpha}-m_{2 \alpha} \geq 2$ in all the rank one symmetric spaces other than those we have listed.
(c) If neither z_{1} nor z_{2} are regular, then the lower bounds of Proposition 3.6 and Corollary 3.8(b) give

$$
\left\|\mu_{z_{1}} * \mu_{z_{2}}\right\|_{2}^{2} \geq C^{\prime} \sum_{n} n^{-m_{\alpha}+m_{2 \alpha}}
$$

for some constant $C^{\prime}>0$. Thus $\mu_{z_{1}} * \mu_{z_{2}} \notin L^{2}$ whenever $m_{\alpha}-m_{2 \alpha}=1$, as is the case for these symmetric spaces.

The final result of this section shows that any three-fold convolution of continuous orbital measures is in L^{2}.

Proposition 3.11. If G / K is any rank one compact symmetric space and $z_{j} \notin N_{G}(K)$, $j=1,2,3$, then $\mu_{z_{1}} * \mu_{z_{2}} * \mu_{z_{3}} \in L^{2}$.

Proof. First, assume that G / K is not $\mathrm{SU}(2) / \mathrm{SO}(2)$. By (a) of the previous theorem we can assume that none of $z_{j}, j=1,2,3$, are regular. Then, as above,

$$
\left\|\mu_{z_{1}} * \mu_{z_{2}} * \mu_{z_{3}}\right\|_{2}^{2} \leq C \sum_{n} n^{m_{\alpha}+m_{2 \alpha}} n^{-3 m_{\alpha}} \leq C \sum_{n} n^{-2 m_{\alpha}+m_{2 \alpha}}
$$

and this is finite for all these symmetric spaces.
A proof of this result for $\mathrm{SU}(2) / \mathrm{SO}(2)$ is given in [1]. It can also be shown by a similar argument to the above, noting that all $z_{j} \notin N_{\mathrm{SU}(2)}(\mathrm{SO}(2))$ are regular and using the asymptotic formula from Corollary 3.8(a).

4. Convolution products in $\mathrm{SU}(2) / \mathbf{S O}(2)$

In this section we will show that no product of two orbital measures in $\mathrm{SU}(2) / \mathrm{SO}(2)$ has an L^{2} density function. We will make use of the following well-known facts.

Lemma 4.1. Consider the trigonometric series for $x \in[0, \pi]$

$$
\sum_{n=1}^{\infty} \frac{\sin n x}{n} \text { and } \sum_{n=1}^{\infty} \frac{\cos n x}{n} .
$$

The first converges pointwise to the odd, 2π-periodic extension of $(\pi-x) / 2$. The second converges pointwise to the even, 2π-periodic extension of $-\log (2 \sin (x / 2))$, except at $x=0$.

We note that every double coset of $\mathrm{SU}(2) / \mathrm{SO}(2)$ contains an element $z \in A$ of the form $\left[\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right]$, where $\theta \in[0, \pi / 2]$. We will abuse notation and let z also denote the angle θ. There is only one restricted root, α, of multiplicity $m_{\alpha}=1$ and $\alpha(z)=2 z$.

Theorem 4.2. If $z_{1}, z_{2} \in \mathrm{SU}(2)$, then $\mu_{z_{1}} * \mu_{z_{2}} \notin L^{2}$.
Proof. Throughout the proof, C will denote a (strictly) positive constant that can change from line to another.

Without loss of generality, we can assume $z_{j} \in A$. Furthermore, we can assume both (the angles) $z_{j} \in(0, \pi / 2)$, because if $z_{j}=0$ or $\pi / 2$, then $\alpha\left(z_{j}\right)=2 z_{j}=0(\bmod \pi)$ so $z_{j} \in N_{G}(K)$ and, in this case, even $\mu_{z_{1}} * \mu_{z_{2}} \notin L^{1}$.

The spherical representation π_{n} of $\mathrm{SU}(n)$, with highest weight restricted to a equal to $n \alpha$, is known to have dimension $2 n+1$ (see [1] or [12, page 322]). From Proposition 3.5,

$$
\phi_{\pi_{n}}(z)=P_{n}^{(0,0)}(\cos \alpha(z))=P_{n}^{(0,0)}(\cos 2 z) .
$$

The asymptotic estimates for Jacobi polynomials give

$$
\phi_{\pi_{n}}(z)=C n^{-1 / 2}\left(\cos ((n+1 / 2) 2 z-\pi / 4)+O\left(n^{-1}\right)\right) .
$$

Squaring gives

$$
\begin{aligned}
\left(\phi_{\pi_{n}}(z)\right)^{2} & =C n^{-1}\left(\cos ^{2}((2 n+1) z-\pi / 4)+O\left(n^{-1}\right)\right) \\
& =C n^{-1}\left(\frac{1}{2}(\cos (2 z(2 n+1)-\pi / 2)+1)+O\left(n^{-1}\right)\right) \\
& =C n^{-1}\left(\sin (2 z(2 n+1))+1+O\left(n^{-1}\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\|\mu_{z_{1}} * \mu_{z_{2}}\right\|_{2}^{2}=\sum_{n} \operatorname{dim} V_{\pi_{n}}\left(\phi_{\pi_{2 n}}\left(z_{1}\right)\right)^{2}\left(\phi_{\pi_{2 m}}\left(z_{2}\right)\right)^{2} \\
& \quad=\sum_{n} C \frac{(2 n+1)}{n^{2}}\left(\sin \left(2 z_{1}(2 n+1)\right)+1+O\left(n^{-1}\right)\right)\left(\sin \left(2 z_{2}(2 n+1)\right)+1+O\left(n^{-1}\right)\right) \\
& \quad=\sum_{n} \frac{C}{n}\left(\left(\sin \left(2 z_{1}(2 n+1)\right)+1\right)\left(\sin \left(2 z_{2}(2 n+1)\right)+1\right)+O\left(n^{-1}\right)\right) .
\end{aligned}
$$

We claim that this sum diverges. Of course, the convergence or divergence of the sum depends only on the convergence or divergence of

$$
\sum_{n} \frac{1}{n}\left(\sin \left(2 z_{1}(2 n+1)\right)+1\right)\left(\sin \left(2 z_{2}(2 n+1)\right)+1\right)
$$

and therefore upon the sum

$$
\begin{equation*}
\sum_{n} \frac{1}{n}\left(\sin \left(2 z_{1}(2 n+1)\right) \sin \left(2 z_{2}(2 n+1)\right)+\sin \left(2 z_{1}(2 n+1)\right)+\sin \left(2 z_{2}(2 n+1)\right)+1\right) \tag{4.1}
\end{equation*}
$$

As $\sin ((2 n+1) \theta)=\sin 2 n \theta \cos \theta+\sin \theta \cos 2 n \theta$, Lemma 4.1 implies that

$$
\sum_{n} \frac{\sin ((2 n+1) \theta)}{n}
$$

converges for any $\theta=2 z_{1}, 2 z_{2}$ as $4 z_{j} \neq 0(\bmod 2 \pi)$. Thus (4.1) converges if and only if

$$
\begin{equation*}
\sum_{n} \frac{1}{n}\left(\sin \left(2 z_{1}(2 n+1)\right) \sin \left(2 z_{2}(2 n+1)\right)+1\right)<\infty \tag{4.2}
\end{equation*}
$$

Another application of basic trigonometric identities shows that there are scalars $c_{j}=c_{j}\left(z_{1}, z_{2}\right)$ such that

$$
\begin{aligned}
\sin \left(2 z_{1}(2 n+1)\right) \sin \left(2 z_{2}(2 n+1)\right)= & \cos \left(4 n\left(z_{1}-z_{2}\right)\right) c_{1}-\sin \left(4 n\left(z_{1}-z_{2}\right)\right) c_{2} \\
& -\cos \left(4 n\left(z_{1}+z_{2}\right)\right) c_{3}+\sin \left(4 n\left(z_{1}+z_{2}\right)\right) c_{4}
\end{aligned}
$$

It follows, from the above lemma, that

$$
\sum_{n} \frac{1}{n} \sin \left(2 z_{1}(2 n+1)\right) \sin \left(2 z_{2}(2 n+1)\right)
$$

converges if $4\left(z_{1} \pm z_{2}\right) \neq 0(\bmod 2 \pi)$. Of course, in this case (4.2) diverges.

It remains to consider the two possibilities $z_{1} \pm z_{2} \equiv 0(\bmod \pi / 2)$.
Case 1. $z_{1}-z_{2} \equiv 0(\bmod \pi / 2)$. As $z_{1}, z_{2} \in(0, \pi / 2)$, this can only happen if $z_{1}=z_{2}$. Then

$$
\begin{aligned}
& 1+\sin \left(2 z_{1}(2 n+1)\right) \sin \left(2 z_{2}(2 n+1)\right)=1+\sin ^{2}\left(2 z_{1}(2 n+1)\right) \\
& \quad=\frac{1}{2}\left(3-\left(\cos 8 n z_{1} \cos 4 z_{1}-\sin 8 n z_{1} \sin 4 z_{1}\right)\right) .
\end{aligned}
$$

If $z_{1} \neq \pi / 4$, then $\sum\left(\cos 8 n z_{1}\right) / n$ converges and hence (4.2) diverges. If $z_{1}=z_{2}=\pi / 4$, then direct substitution shows that (4.2) diverges.

Case 2. $z_{1}+z_{2} \equiv 0(\bmod \pi / 2)$. As $z_{1}, z_{2} \in(0, \pi / 2)$, we must have $z_{1}+z_{2}=\pi / 2$ and so $\sin \left(2 z_{2}(2 n+1)\right)=\sin \left(2 z_{1}(2 n+1)\right)$ and hence the arguments are the same.

To conclude, we summarise our results. We will say that G / K satisfies the $L^{1} \longleftrightarrow L^{2}$ dichotomy if $\mu_{x} * \mu_{y} \in L^{1}$ implies that $\mu_{x} * \mu_{y} \in L^{2}$. The following is an immediate consequence of Theorems 3.9 and 4.2.

Corollary 4.3. The rank one symmetric space G / K satisfies the $L^{1} \longleftrightarrow L^{2}$ dichotomy if and only if $m_{\alpha}-m_{2 \alpha}>1$. More specifically:
(i) when $G / K=\mathrm{SU}(2) / \mathrm{SO}(2)\left(m_{\alpha}=1, m_{2 \alpha}=0\right)$, then $\mu_{x} * \mu_{y} \notin L^{2}$ for any x, y; and
(ii) if G / K is type AIII or CII with $q=2$, or type FII (the other symmetric spaces with $\left.m_{\alpha}=m_{2 \alpha}+1\right)$ and $\mu_{x} * \mu_{y} \in L^{1}$, then $\mu_{x} * \mu_{y} \notin L^{2}$ if and only if neither x nor y is regular.

Corollary 4.4. If G / K is a rank one symmetric space, then $\mu_{z 1} * \mu_{z 2} \in L^{2}$ if and only if $\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K>G / K$.

Proof. First, suppose that G / K is not type AIII or CII with $q=2$, not type FII or (isomorphic to) $\mathrm{SU}(2) / \mathrm{SO}(2)$. Then Theorem 3.9 says $\mu_{z_{1}} * \mu_{z_{2}} \in L^{2}$ if and only if $\mu_{z_{1}}, \mu_{z_{2}}$ are continuous. In this case, $\operatorname{dim} K z_{j} K \geq m_{\alpha}$ and, as $m_{\alpha} \geq 2+m_{2 \alpha}$ for these symmetric spaces, it follows that $\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K \geq m_{\alpha}+2+m_{2 \alpha}>\operatorname{dim} G / K$.

If, instead, $\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K \leq \operatorname{dim} G / K$, then $\operatorname{dim} K z_{j} K<m_{\alpha}$ for some j. But that means that $\mu_{z_{j}}$ is not continuous, and hence $\mu_{z_{1}} * \mu_{z_{2}}$ is not even in L^{1}.

If G / K is type AIII or CII with $q=2$ or type FII, then $\mu_{z_{1}} * \mu_{z_{2}} \in L^{2}$ if and only if both $\mu_{z_{1}}$ and $\mu_{z_{2}}$ are continuous and at least one is regular. But then, since $m_{\alpha} \geq 2$, $\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K \geq m_{\alpha}+m_{\alpha}+m_{2 \alpha}>\operatorname{dim} G / K$. On the other hand, if neither $\mu_{z_{1}}$ nor $\mu_{z_{2}}$ is regular, then $\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K \leq 2 m_{\alpha}=m_{\alpha}+1+m_{2 \alpha}=\operatorname{dim} G / K$.

Finally, if G / K is isomorphic to $\mathrm{SU}(2) / \mathrm{SO}(2)$, then $\mu_{z_{1}} * \mu_{z_{2}} \notin L^{2}$ for any z_{1}, z_{2}, while $\operatorname{dim} K z_{1} K+\operatorname{dim} K z_{2} K \leq 2=\operatorname{dim} G / K$ for all z_{1}, z_{2}.

Acknowledgement

We thank F. Ricci for helpful conversations.

Appendix

We list here the families of compact symmetric spaces of rank one, along with the multiplicities of $\alpha, 2 \alpha$ and restricted root system Φ^{+}.

Type	G / K	Φ^{+}	m_{α}	$m_{2 \alpha}$
$A I$	$\mathrm{SU}(2) / \mathrm{SO}(2)$	A_{1}	1	-
$A I I$	$\mathrm{SU}(4) / \mathrm{Sp}(4)$	A_{1}	4	-
AIII	$\mathrm{SU}(q+1) / S(U(q) \times U(1))$	$B C_{1}$	$2(q-1)$	1
	$q>1$			
BII	$\mathrm{SO}(q+1) / S(O(q) \times O(1))$	A_{1}	$q-1$	-
	$q>2$			
CII	$\mathrm{Sp}(2 q+2) / \mathrm{Sp}(2 q) \times \mathrm{Sp}(2)$	$B C_{1}$	$4(q-1)$	3
FII	$q>1$	$F_{4} / \mathrm{SO}(9)$	$B C_{1}$	8

These facts can be found in [10, Ch. X]. We have excluded BII with $q=2$ as this is isomorphic to $\mathrm{SU}(2) / \mathrm{SO}(2)$. Similarly, the only simple, rank one symmetric space of type DIII is isomorphic to $\mathrm{SU}(4) / S(U(3) \times U(1))$, that is, type AIII with $q=3$.

References

[1] B. Anchouche, S. K. Gupta and A. Plagne, 'Orbital measures on SU(2)/SO(2)', Monatsh. Math. 178 (2015), 493-520.
[2] D. Bump, Lie Groups, Graduate Texts in Mathematics, 225 (Springer, New York, 2004).
[3] M. Cowling, A. Dooley, A. Koranyi and F. Ricci, 'An approach to symmetric spaces of rank one via groups of Heisenberg type', J. Geom. Anal. 8 (1998), 199-237.
[4] S. Gindikin and R. Goodman, 'Restricted roots and restricted form of Weyl dimension formula for spherical varieties', J. Lie Theory 23 (2013), 257-311.
[5] P. Gratczyk and P. Sawyer, 'Absolute continuity of convolutions of orbital measures on Riemannian symmetric spaces', J. Funct. Anal. 259 (2010), 1759-1770.
[6] P. Gratczyk and P. Sawyer, 'A sharp criterion for the existence of the density in the product formula on symmetric spaces of type $A_{n}{ }^{\prime}$, J. Lie Theory 20 (2010), 751-766.
[7] S. K. Gupta and K. E. Hare, 'Convolutions of generic orbital measures in compact symmetric spaces', Bull. Aust. Math. Soc. 79 (2009), 513-522.
[8] S. K. Gupta and K. E. Hare, ' L^{2}-singular dichotomy for orbital measures of classical compact Lie groups', Adv. Math. 222 (2009), 1521-1573.
[9] S. K. Gupta and K. E. Hare, 'The smoothness of convolutions of zonal measures on compact symmetric spaces’, J. Math. Anal. Appl. 402 (2013), 668-678.
[10] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces (Academic Press, New York, 1978).
[11] S. Helgason, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators and Spherical Functions, Mathematical Surveys and Monographs, 83 (American Mathematical Society, Providence, RI, 2000).
[12] S. Helgason, Geometric Analysis of Symmetric Spaces, Mathematical Surveys and Monographs, 39 (American Mathematical Society, Providence, RI, 2008).
[13] F. Olver, D. Lozier, R. Boisvert and C. Clark (eds), NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010).
[14] D. Ragozin, 'Zonal measure algebras on isotropy irreducible homogeneous spaces', J. Funct. Anal. 17 (1974), 355-376.
[15] G. Szego, Orthogonal Polynomials, Colloquium Publications, 23 (American Mathematical Society, New York, 1939).

KATHRYN E. HARE, Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
e-mail: kehare@uwaterloo.ca
JIMMY HE, Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
e-mail: jimmy.he@uwaterloo.ca

[^0]: This work was supported in part by NSERC grant 2011-44597.
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

