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A NOTE ON THE WIMAN-VALIRON METHOD

by P. C. FENTON

(Received 19th June 1992)

Without prior assumptions about growth, fundamental inequalities for the Taylor series of an entire function
are obtained, valid outside a certain exceptional set. The results are vacuous or not depending on the estimate
for the exceptional set. Only then does the growth of the function enter.

1991 Mathematics subject classification: 30D20.

1. Introduction

W. K. Hayman [3] has given a comprehensive survey of what might be called the
"comparison" version of the Wiman-Valiron theory of entire functions, an approach
originally made systematic by Kovari [4]. Having established certain fundamental
estimates for the terms in the Taylor series, Hayman gave illustrations of the method in
various applications to local growth, behaviour of derivatives and so on. Subsequent
work by the author [1,2] extended the estimates, and by implication the applications,
to entire functions about which something is known of the lower growth: in general
Hayman's results are applicable only when the upper growth, however it is measured, is
finite. The purpose of this note is to free the method from any prior assumption about
growth. Thus the fundamental estimates are established for an entire function outside a
certain exceptional set. To obtain non-vacuous conclusions for any given function the
exceptional set must not be too large and it is at that point, but only then, that the
growth of the function figures. The details are essentially the same as in the author's
earlier versions, but in suppressing preliminary considerations of growth there is a
considerable gain in clarity and simplicity.

In the Wiman-Valiron method the main parts are played by fj(r), the maximum term
of the Taylor series, and N(r), the central index, which is the largest index of those terms
(should there be more than one) whose modulus is fiij). We have /i(r) = |aN|rw.

We shall prove:

Theorem. Suppose that f(z)=Y,onz
n is an entire function and that a(t) is a negative-

valued, strictly decreasing function on [0, oo). Suppose that

An=expn<x(t)dt\pn=exp(-a(n)). (1)
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Given R>0 and K>1, we have

|an |rnSMr)^pJ"w for 0^n£KNo (2)

and

-ZZ-) for n>KN0, (3)
PKNJ

for all r in the interval (0,R) outsidf a subset of logarithmic measure at most
-a(KNo)+a(0), where N = N(r) and NO=N(R).

The dependence of (2) and (3) on No can be eliminated if necessary. For the
inequality in (2) certainly holds for O^n^KN, since N^N0, and for n>KN we have,
taking (2) and (3) together,

m a x \ ( ^ - Y , ^ pJT»l, (4)
1\PKNJ AN J

which is an alternative to (3).

2. Estimate of the terms

Suppose that K> 1 and R>0 are given, and that N0 = N{R), as in the Theorem. For t
satisfying 0<t^R/pKNo, let M = M(t) be the index of the largest element in the set
{\an\t"/An:0^n^KNo}, or the largest among the indices of such largest elements, in
case there are several.

We have M^N0. For if N0<n^KN0 then

and the first factor on the right-hand side is less than 1 since N0 = N(R), the second is
also less than 1—this follows for n^N0 from (1) and the fact that a is strictly
decreasing—and the third is no greater than 1 since, for these values of n, pn^pKN0-
Thus the Noth element in the set exceeds subsequent elements and therefore the index of
the largest element is no greater than No.

It follows from the definition of M that, with r=tpM,

— P « " f o r 0^n^KNo. (5)
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The right-hand side of (5) is less than 1 for n#M, as we observed. Moreover
r=tpM^tpNo^R, and therefore N(r)£N(R) = N0. Thus M=N(r). With this substitution
(5) becomes (2).

It remains to establish (3). For n>KN0 we have, with r=tpM and 0<t^R/pKNo,

n-Wo / „ \n-So / „ \<l-K-')n

since M = N£N0. This gives (3).

3. Estimate of the exceptional set

The set of r for which the estimates of (2) and (3) apply is S = {rpm):0<t£T}, where
T=R/pKNo, which is, as we saw in the previous section, a subset of (0, A].

Suppose that M(t) has jumps at points T,, j = 1 to q, where 0< 7\ < T2< •• • < Tq^ T.
Then S is the union of the intervals

(0, Tlpm0+)~\, [TiPi,nTly, T2pM(r i )], . . . ,[TqpM(Tq),

and thus the exceptional values lie in the complementary intervals

the sum of whose logarithmic measures is evidently

log (R/TpMl0+,) = log (pKNo/pmo+,) ^ log (pKNJp0) = - «(KN(R)) + o(0).
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