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In recent years, various unique properties of microswimmer suspensions have been
revealed. Some microswimmers are deformable; however, the influence of the swimmer’s
deformability has been overlooked. The present study examined the impact of soft
microswimmers’ membrane deformations in a mono-dispersed dense suspension on
microstructure formation. Due to the small size of the microswimmers, the flow field is
described by the Stokes equation. The soft microswimmer was modelled as a capsule with
a two-dimensional hyperelastic membrane enclosing a Newtonian fluid that is driven by
propulsion torques distributed slightly above the membrane surface. Changes to the torque
distribution caused the soft swimmer to exhibit different swimming modes as a pusher or
puller. Similar to rigid squirmers, soft swimmers displayed self-organised local clusters in
the suspension. Membrane deformation changed the mutual interference among swimmers
in the cluster, bringing the interactions closer together than those of rigid squirmers.
Especially among soft pushers, rotational diffusion due to hydrodynamic interference was
reduced and the swimming trajectory became relatively straight. As a result, polar order
was less likely to form, especially in regions of high Ca. On the other hand, pullers
showed strong interactions due to retraction flow and an increase in mean membrane
tension. For pushers (pullers), the rear (side) interaction produced the greatest change in
tension. These findings are expected to be useful for effort to understand the propulsion
mechanisms of medical and industrial soft microrobots, as well as the biological responses
of microorganisms induced by mechanical stimuli.
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1. Introduction
Suspensions consisting of particles dispersed in a liquid are evident throughout nature
and daily life; they are critical for industrial purposes in various fields and environments.
Theoretical and experimental studies have been conducted in attempts to better understand
and predict the rheological properties, microstructures and transport phenomena in such
multiphase flows. In early theoretical studies, the analysis was limited to a dilute regime
with a low Reynolds number. Where single- or two-particle interactions are dominant,
the macroscopic suspension properties are commonly determined by the expansion of the
volume fraction. For example, Einstein (1906) derived the effective viscosity of a dilute
suspension of non-Brownian spheres, resulting in the first-order term of the viscosity
as 2.5φ, where φ is the volume fraction. Batchelor (1970) derived a stress system of
force-free particle suspensions by introducing the particle stress tensor, and Batchelor &
Green (1972) calculated the bulk stress in the second-order term of the volume fraction
from the two-body particle interactions. Particle deformability leads to deviation from the
streamline during two-body interactions (Lac, Morel & Barthes-Biesel 2007). The shear-
induced self-diffusion of droplets and red blood cells in the semi-dilute regime has been
quantified from two-body hydrodynamic interactions (Loewenberg & Hinch 1997; Omori
et al. 2013). The theory of dilute suspensions is well organised, and there are several
relevant review articles (Brenner 1974; Jeffery & Acrivos 1976; Russel 1980; Davis &
Acrivos 1985).

For suspensions with higher volume fractions, many-body interactions play a role.
With respect to concentrated suspensions of rigid particles, it is necessary to accurately
determine the lubrication forces acting between particles in near contact. Moreover,
particle interactions at an infinite distance may be considered due to the long-range
nature of Stokes flow. Stokesian dynamics that accurately compute both the short-range
lubrication forces and long-range particle interactions has been developed and reviewed
by Brady & Bossis (1988). For example, the shear-induced diffusion of Brownian particles
in concentrated suspensions (Bossis & Brady 1987) and the rheological properties of
concentrated suspensions of spheres (Brady & Bossis 1985) have been analysed using
Stokesian dynamics. In a highly concentrated state, jamming phenomena can be observed
at a critical volume fraction (≈0.64 for non-Brownian particles, Mari et al. (2014)),
with the viscosity rapidly increasing when the volume fraction exceeds the critical
threshold. Krieger & Dougherty (1959) derived an empirical equation of the viscosity
from the dilute to the jamming regime. Blanc et al. (2013) reported the shear-induced
anisotropic microstructure of non-Brownian particles in dense suspensions. Reviews about
the rheology and microstructures of dense suspensions of rigid particles are presented in
works by Ness, Seto & Mari (2022) and Guazzelli & Pouliquen (2018).

The suspension dynamics of microswimmers has received considerable interest in
recent years, particularly in the fields of active fluids and active matter (Zöttl & Stark
2016; Saintillan 2018). The squirmer model, developed by Lighthill (1952) and Blake
(1971), is widely used to describe the fluid dynamics of microswimmers (Ishikawa 2024).
By varying the surface velocity distribution of the squirmer, it is possible to represent
a range of velocity fields around the particle. This leads to various hydrodynamic
interactions between the self-propelled particles, as reported in a number of interesting
phenomena. Ishikawa, Simmonds & Pedley (2006) successfully introduced the squirmer
model in analyses of the two-body interference problem. The model was extended
to a Stokesian dynamics framework for concentrated monolayer suspensions (Ishikawa
and Pedley 2008); they demonstrated that clustering and collective swimming of non-
bottom-heavy strong pullers occurs, whereas for the weak puller and weak pusher,
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a global coherent polar order was formed. Similar results have been demonstrated in
the fully three-dimensional suspension (Ishikawa et al. 2008), where the global coherent
structure of weak pullers was the result of short-range interactions between squirmers. The
aggregation of pusher-type swimmers generates strong elongational flows, which may lead
to instabilities in the particle structure (Ishikawa, Dang & Lauga 2022). Hydrodynamic
interactions of ellipsoid squirmers were analysed using a boundary element method (Kyoya
et al. 2015), and it was concluded that the nearest-neighbour two-body interference leads
to collective swimming of the squirmers. The importance of the near-field interaction has
also been reported by Yoshinaga & Liverpool (2008). After application of a lubrication
force, a phase change is observed, whereby the gel-like cell aggregation transforms into
a polar order with an aligned swimming direction. This is achieved by alteration of the
swimming mode. The formation of a neutral-type coordinated swimming pattern is not
observed in the absence of short-range interactions.

Some microswimmers are deformable, as evidenced by the behaviour of a ciliate
in close proximity to a wall (Ishikawa & Kikuchi 2018). For example, the ciliate
Paramecium exhibits a physiological response, termed the avoiding reaction, when its cell
membrane is mechanically stimulated (Jennings 1904). The cell initially exhibits backward
swimming motion, followed by rotational movement about its posterior end, before
resuming normal forward locomotion. Membrane deformation and tension are important
for understanding this microbial behaviour. Swimmer deformability may also influence
short-range interactions. Menzel & Ohta (2012) developed a model of a soft self-propelled
particle capable of deformation due to local pairwise interactions; they demonstrated
that deformation could facilitate alignment effects between colliding particles, resulting
in a rapid transition to a global ordered state with increasing deformability. A ring
polymer model (Wen et al. 2022) and migrating cell model on a substrate (Coburn
et al. 2013; Löber et al. 2015) have been proposed. These models showed that a
swimmer’s elastic behaviour alters migration and interparticle collisions, leading to
changes in mean cluster diameter and degree of orientational order; notably, these
models do not consider hydrodynamic interactions. Matsui, Omori & Ishikawa (2020a)
analysed the impact of elastohydrodynamic interactions of capsule-type microswimmers
using a boundary element–finite-element coupling method. The ciliary flow near the
cell membrane was modelled as an external torque, in accordance with Ishikawa et al.
(2016), utilising a two-dimensional hyperelastic constitutive law. Particle deformation
reduces orbital displacement during two-body interference, suggesting that the self-
diffusion of self-propelled particles could be suppressed by their deformability. Under
shear flow, orientation in the vorticity direction has been observed (Matsui, Omori &
Ishikawa 2020b), which was not observed for the rigid squirmer. Although these findings
demonstrate the importance of particle deformation under hydrodynamic interaction, they
are limited to the dilute regime. Thus, the impact of deformation in the dense regime
includingthe effect of three or more body interferences remains unclear.

The objective of this study was to investigate the hydrodynamic interactions of soft
microswimmers in a dense suspension. A hyperelastic capsule with a thrust torque was
utilised as a soft swimmer (Matsui et al. 2020a,b). In this paper the basic equations and
numerical method are presented in § 2. The effects of the membrane deformability and the
swimming mode on the microstructure formation are investigated in § 3. The membrane
tension induced by cell–cell interactions is discussed in § 4, and a summary of our findings
and concluding remarks are presented in § 5.
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(a) (b)

(c) (d) (e)
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ε

Figure 1. Problem settings and the soft microswimmer model. (a) Soft swimmer is modelled by a capsule
with a hyperelastic thin membrane with the shear elastic modulus Gs and the bending modulus Eb. Propulsion
torque is generated on the torque surface At (slightly above the membrane surface A). (b–d) Flow fields created
by the soft swimmer. In this study, β is set to −0.9 for pushers, 0 for neutral swimmers and 0.9 for pullers. The
white arrow indicates the swimming direction and blue arrow is the streamline. (e) Here 27 swimmers (depicted
by green in the figure) are freely suspended in the computational unit and the triply periodic boundary condition
is applied to the domain.

2. Basic equations and numerical methods
This section outlines the fundamental equations and the numerical model used in the
present study. A torque-induced soft microswimmer developed by Ishikawa et al. (2016)
was utilised. The methodology is briefly outlined here. For further details, please refer to
Ishikawa et al. (2016) and Matsui et al. (2020a,b).

2.1. Soft microswimmer and problem settings
Consider microswimmers with a radius of a swimming freely in an incompressible
Newtonian liquid with a viscosity of μ and a density of ρ. Due to the small size of
the microswimmers, the particle Reynolds number is much smaller than unity, as such
the inertial effect of the fluid flow can be neglected. The flow field is then governed
by the Stokes equation. The microswimmer consists of a two-dimensional hyperelastic
thin membrane enclosing a Newtonian liquid with the same viscosity and density as the
external liquid. A torque swimmer model (Ishikawa et al. 2016) was originally developed
to represent a ciliate. The model expresses the thrust force at the tip of a cilium and the
reaction force at the root of the cilium as a torque on the surface At at a distance of ε from
the membrane (cf. figure 1a). The magnitude of the propulsive torque density per unit area
in the reference state Lr is given by

Lr = L0 + κ
(
θ − π

2

)
, (2.1)
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where κ determines the torque strength of the asymmetry and θ is the polar angle with
respect to the orientation vector e.

The torque density L0 is defined as the value at which the swimming speed of the rigid
body is equal to U0. The swimmer in the reference state satisfies the torque-free
condition on the overall torque surface due to the axisymmetric torque distribution. The
instantaneous torque density per unit area in the deformed state L is given by

L = Lr
dAt,r

dAt
, (2.2)

where dAt,r and dAt are the local torque surface area in the reference and deformed
states, respectively. This correction means that the number of cilia does not change with
deformation. The propulsive torque in vector form is given by L = Ln × t , where n is
the unit outward normal vector and t is the unit tangential vector inthe θ direction on
the membrane surface. The soft swimmer is deformed from its reference shape by the
propulsive torque distribution, resulting in a swimming-induced stresslet S (Matsui et al.
2020b):

S =
∫ [

1
2 (qx + xq) − 1

3 q · xI
]
dA, (2.3)

where q is the traction at the point x on the membrane A and I is the identity matrix.
By changing κ in (2.1), various swimming modes can be expressed as puller, neutral and
pusher types (figure 1b–d), respectively. In the rigid squirmer (Blake 1971), the swimming
mode is often expressed by positive and negative values of the second mode β:

vθ = U0

(
3
2 sin θ + 3

2β sin θ cos θ
)

. (2.4)

Here vθ is the squirming velocity on the squirmer surface. In this study the swimming
mode is also defined using β obtained from S with reference to the rigid squirmer model,
i.e.

See = 4πμa2β, (2.5)

where See is the stresslet component in the swimming direction.Here κ is adjusted to
ensure that, under the same β, the stresslet produced by the rigid squirmer and the soft
swimmer are the same. The correspondences between κ and β are almost linear as shown
in figure 2. In this study, β is set to −0.9 for pushers, 0 for neutral swimmers and 0.9 for
pullers.

Assuming an infinite suspension, triply periodic boundary conditions were applied, as
shown in figure 1(e). Twenty-seven soft swimmers with random orientations were placed
in random initial positions in the computational unit domain. The volume fraction φ

was varied from 0.03 to 0.2 by changing the domain size. According to the scaling by
Batchelor & Green (1972), the frequency of n-body interference is proportional to φn .
Thus, for φ = 0.2, the influence of three-body interference is expected to be 20 % of
two-body interference.

2.2. Membrane mechanics
The coupling of thin-shell theory of capsules with fluid mech anics has been developed by
the work of Barthès-Biesel, Pozrikidis and their co-workers. Therefore, we briefly explain
the outline of thin-shell theory in the main text. For further details, please refer to Barthès-
Biesel et al. (2002), Lac et al. (2004), Walter et al. (2010) and Pozrikidis (2010). The
swimmer’s membrane is modelled as a hyperelastic thin material. A material point of
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Figure 2. The relationship between the asymmetry of torque strength κ , the stresslet component in the
swimming direction See and the swimming mode β of the soft swimmer with each Ca. Here Ca is the ratio
between the viscous force due to swimming and the elastic force of the membrane defined by (2.22).

the membrane in the reference state is represented by X ; x(X, t) expresses the deformed
state. Using a surface deformation gradient tensor Fs , reference and deformed states have
the following relationship (Pozrikidis 2010):

dx = Fs · dX, (2.6)

where Fs = ∂x/∂X. The Green–Lagrange strain tensor E describing local deformation of
the membrane is as follows:

E = 1
2

(
FT

s Fs − I
)
. (2.7)

The first and second invariants of the strain tensor are given by the principal extension
ratios λ1 and λ2 as

I1 = λ2
1 + λ2

2 − 2 (2.8)

and

I2 = λ2
1λ

2
2 − 1 = J 2

s − 1, (2.9)

where Js = det(Fs) = λ1λ2 is the Jacobian expressing the area dilatation. Because the
membrane is modelled as a two-dimensional hyperelastic material, the Cauchy tension
Ts and the strain energy function ws(I1, I2) have the following relationship:

Ts = 1
Js

Fs · ∂ws

∂E
· FT

s . (2.10)

In order to express strain hardening behaviour and the incompressible areal dilatation of a
biological membrane, we utilise the constitutive law proposed by Skalak et al. (1973). The
strain energy function of the Skalak model is given by

ws = Gs

4

(
I 2
1 + 2I1 − 2I2 + C I 2

2
)
, (2.11)

where Gs is the surface shear elastic modulus and C is the non-dimensional areal dilatation
constant. The Poisson ratio of the Skalak law is νs = C/(1 + C). The value of C is set to
10 with reference to the erythrocyte model (Omori et al. 2013).
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The bending energy of the biological membrane, derived by Helfrich (1973), is

wb = Eb

2

∫
(2H − c0) dA, (2.12)

where H is the mean curvature of the membrane, c0 is the spontaneous curvature and Eb
is the bending modulus. By assuming a symmetric membrane property (i.e. c0 = 0), the
energy can be converted to the force density qb as (Matsui et al. 2020a)

qb = −2Eb
[
�s H + 2H(H2 − K )

]
n, (2.13)

where �s is the Laplace–Beltrami operator and K is the Gaussian curvature on the
membrane surface.

2.3. Fluid mechanics
Due to the small size of the swimmer, the inertial effect of fluid flow is negligible.
Therefore, the flow field is governed by the Stokes equation, and the fluid velocity v at
an arbitrary point y is given by the boundary integral equation (Pozrikidis 1992) as

v( y) = − 1
8πμ

N∑
i

[∫
A
J(x, y) · q(x)dAi +

∫
At

R(x, y) · L(x)d Ai
t

]
, (2.14)

where N is the number of microswimmers in the fluid domain. Here, J and R are the
Green’s function of the Stokeslet and torque in the triply periodic boundaries, respectively
(Beenakker 1986):

J = J1 + J2, (2.15)

R = R1 + R2, (2.16)[
J1

i j

J 2
i j

]
= (δi j∇2 − ∇i∇ j )

[
r erfc(ξr)

r erf(ξr)

]
, (2.17)

[
R1

i j

R 2
i j

]
= 1

4εlk j (∇k − ∇l)

[
J1

il

J 2
ik

]
, (2.18)

where δ is the Kronecker delta, ε is the Levi-Civita epsilon and ξ is an arbitrary positive
constant with dimensions of inverse length for controlling the convergence rate of the error
function and complementary error function. For a simple cubic lattice, the optimal value
of the convergence rate that minimises the computational cost for the periodic expansion
is given by

√
π/V 1/3 (Pozrikidis 1992), where V is the volume of the computational

domain. The traction q is given by the stress jump across the thin membrane as

q(x) = [σ out (x) − σ in(x)] · n(x), (2.19)

where σ in and σ out represent viscous stress on the surface from inside and outside of the
membrane, respectively.

2.4. Numerical methods
In this section we briefly explain the numerical method. The swimmer’s membrane
and torque surface are respectively discretised by 1280 triangular elements, with 642
vertices, as shown in figure 1(a). Each material point is tracked in terms of its associated
Lagrangian, and the strain at any time t is determined. The tension is calculated based
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on Skalak’s constitutive law, and the load q acting on the membrane is obtained from the
weak-form equilibrium equation, given as∫

A
û · qsdA =

∫
A

ε̂ : Ts dA, (2.20)

where û is the virtual displacement and ε̂ = (1/2)(∇s û + ∇s ûT
) is the virtual strain. The

above equation is solved using a finite-element method (Walter et al. 2010) with respect to
unknown qs . Assuming a linear sum of the loads due to in-plane deformation and the loads
due to bending deformation, the load on the membrane surface is determined by q = qs +
qb. When q is obtained, it is substituted into the boundary integral equation; the velocity
v is computed using a Gaussian quadrature method with six numerical integration points
in each element. A material point on the torque surface xt is given by xt = x + εn(x),
and the flow due to the torque L is calculated in the same manner. In order to coincide
with the half-length of the cilia, ε is set to 0.05a, where a is the radius of the swimmer.
Assuming a no-slip boundary at the membrane, dx/dt = v, the material point x is updated
by a second-order Runge–Kutta method. The above cycles are iteratively calculated to
simulate hydrodynamic interactions in the suspension.

A multipole expansion technique is introduced to accelerate the computation
(Pozrikidis 1992). Depending on the distance between swimmers’ centres, three regions
corresponding to (i) short-range, (ii) middle-range and (iii) long-range interactions are
considered in the calculation. For the short-range interaction (r � rsm), the boundary
integral equations are numerically integrated using all 1280 elements. In the middle-range
interaction (rsm < r � rml ), a coarse-grained 20 triangle mesh is used for the calculation;
the point stresslet and torque defined at each mass centre are utilised for long-range
interactions (r > rml ). Threshold values rsm = 4a and rml = V 1/3 were set to preserve
computational accuracy.

The overlap between meshes becomes problematic when the swimmers are very close
together (i.e. of the order of the mesh size). Assuming repulsion between cilia, the
repulsive force at very short distances is defined as

Frep(r ′) =
{

k(2.4ε − |r ′|) r ′
|r ′| (|r ′|� 2.4ε),

0 (|r ′| > 2.4ε),
(2.21)

where r ′ is the distance between node points on the torque surface of each swimmer and
k represents the magnitude of the repulsion. In this study, k/μU0 = 500 was set to be
consistent with the ciliary elasticity estimated from the bending stiffness of the cilia (Katoh
et al. 2023).

Membrane deformability is normalised by the capillary number Ca:

Ca = μU0

Gs
. (2.22)

This dimensionless number represents the ratio between the viscous force due to
swimming and the elastic force of the membrane. All computations were normalised by
using the radius a, swimming speed U0 and surface shear elastic modulus Gs . Here φ was
changed by varying the length, whereas the number of swimmers remained fixed at 27.

3. Microstructure
We first show hydrodynamic interactions of puller-type swimmers in figure 3. Swimmers
were initially assigned random positions and orientations. Here φ was set to 0.1 and the
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Figure 3. Puller swimmers with Ca = 0.1 and φ = 0.1. (a) Instantaneous snapshot of 27 pullers. Red and blue
markers indicate the head and tail points, respectively. (b) Trajectories of 27 swimmers. Red markers indicate
each final position of the mass centres.

capillary number was Ca = 0.1. In the suspension the pullers repeatedly interacted with
large deformations, forming small clusters. The trajectories slightly changed during the
interaction, as shown in figure 3(b). When the pullers passed each other, they swam in
relatively straight lines.

3.1. Orientational correlations
For a more quantitative analysis, we define self-correlation of the swimming direction
from the initial direction as

Ie0(t) = 〈ei (t) · ei (0)〉N , (3.1)

where the bracket 〈〉N represents an ensemble average over the number of swimmers N ,
ei is the orientation vector of the i th swimmer defined from the posterior and anterior
node points. The result is shown in figure 4(c), in which the correlation gradually
decreases over time. The relaxation time, corresponding to the time when Ie0 = 1/e
(e is Napier’s constant), was approximately estimated in the range of 100 � tU0/a � 200
for Ca = 0.03, 0.1 and 0.2, whereas that of the rigid puller (Ishikawa & Pedley 2007) was
approximately tU0/a � 50. With respect to soft swimmers, the scattering angles after face-
to-face interaction are reduced according to deformability (Matsui et al. 2020a). Thus,
the self-correlation to the initial swimming direction persists for a longer duration as
Ca increases, and the swimmers retain their initial orientations longer compared with
rigid swimmers. We also investigated the self-correlation of pusher and neutral swimmers
(cf. figures 4a and 4b). Pusher and neutral soft swimmers tend to have longer relaxation
times relative to rigid squirmers, as do pullers.

In order to investigate the time scale for microstructure development in the suspension,
the global order correlation is defined as

Ie(t) = 〈
ei (t) · e j (t)

〉
N . (3.2)

To ensure that they would not affect the final structure, two initial conditions were set:
(i) an initial polar order and (ii) an initial random configuration. The global correlation
of the swimming directions reached a developed state when tU0/a > 100 for pushers
(cf. figure 5a) and tU0/a > 200 for pullers (cf. figure 5b). These times were close to
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Figure 4. Self-correlations of swimmers’ orientations Ie0 (t)(= 〈ei (t) · ei (0)〉) in the suspension with φ = 0.1.
Here ei is the swimming direction of the i th swimmer. The coloured lines and area shows the averaged values
and standard deviations for the three independent cases throughout the paper. The black lines show the result
of rigid squirmmers reported by Ishikawa & Pedley (2007).

the relaxation times of the self-correlation; the converged values of Ie were almost 0 for
pushers and 0.2 for pullers. These results suggest that pullers achieve collective swimming,
in which the swimmers are more aligned with each other’s swimming direction relative to
pushers, similar to the behaviour of rigid squirmers (Ishikawa & Pedley 2007).

We then investigated the spatial correlations of the swimmers in the developed state.
Based on the results in figure 5, the criterion for determining a sufficiently developed
microstructure was set to tU0/a = 200, and the spatial correlation considered the time
average between tU0/a = 200 and 400. For neutral swimmers, structural development was
very slow and convergence values could not be obtained beyond tU0/a = 1000. Thus, in
the following sections we focus on the comparison between pushers and pullers; the results
for neutral swimmers can be found in the Appendix. The spatial correlation function of
the swimmers’ orientations within the radial interval rg − �r to rg is defined as
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Figure 5. Time change of the global correlation of swimmers’ orientations I e(t)(= 〈ei (t) · e j (t)〉) with
φ = 0.1 and Ca = 0.1.
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Figure 6. Correlations of swimmers’ orientations as a function of relative distance Ie(t)(= 〈ei (ri ) · e j (r j 〉)
with the φ = 0.1 in the developed state. The black lines show the result of rigid squirmers.

Ie(rg) = 〈ei (r i ) · e j (r j )〉N ,t , (3.3)

where rg is the relative centre–centre distance of the swimmers, r i is the mass centre of
the i th swimmer and the mass centre of the j th swimmer within the interval is given
by r j ∈ (rg − �r)� |r j − r i |� rg . In this study, �r is defined as a constant that divides
the domain length into 60 sampling points. The results are shown in figure 6. For the
comparison, the results of rigid squirmers (Ishikawa et al. 2008) are also presented.
Ishikawa et al. (2008) simulated three-dimensional suspensions with 64 rigid squirmers
applied with periodic boundary conditions and then reported that hydrodynamic inter-
actions form long-ranged orientational correlations of the domain size level (rg/a ≈ 7).
Negatively correlated interactions were not observed among rigid swimmers, whereas
high Ca swimmers showed negative correlations. Negative areas extended to the long
range, especially among pushers. The correlations of soft swimmers maintain up to the
domain size level, similar to the rigid swimmers. Since it is difficult to increase the domain
size further due to computational constraints, innovations in computers and computational
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Figure 7. Swimmers’ aggregations in the suspension with φ = 0.1. The black broken line indicates g = 1.0,
where the local number density is equivalent to the global number density. The black sold lines show the result
of rigid squirmers (Ishikawa et al. 2008).

methods are needed to discuss larger scales. These results suggest that deformability
enables swimmers to easily pass each other (e.g. during face-to-face interactions). The
effects of membrane deformation are therefore expected to weaken the swimming-induced
microstructure formation.

3.2. Swimmer aggregation
In order to quantify swimmer aggregation, the radial distribution function g(rg) is
introduced as

g(rg) = 〈n(rg)〉N ,t

nmean
, (3.4)

where nmean = N/V is the global mean of the number density. The local number density
n(rg) is defined by the number of swimmers within the spherical shell domain of radius
rg − �r to rg .

The aggregation ratio g of pushers and pullers is shown in figure 7. Both pushers
and pullers tended to aggregate within rg ≈ 3a in all cases, a tendency similar to the
rigid squirmers (Ishikawa et al. 2008). However, due to the membrane deformability, soft
swimmers aggregated closer than rg = 2a, which is equivalent to the contact distance of
rigid swimmers. Higher capillary numbers allowed swimmers to aggregate more closely,
but the peak value of g was considerably reduced. Concerning rigid swimmers, the values
were high very close to swimmers with rg � 2a and converged to an average value of 1 at a
distance of rg � 3a. The number of swimmers forming a cluster is estimated by integrating〈
n(rg)

〉
in the region where the swimmer density is grater than the mean. The results are

summarised in table 1; in all cases, the clusters were formed by approximately two to three
swimmers.

3.3. Swimming speed
The ensemble average of the swimming speed 〈|U i |〉N (t) was computed from 200 �
tU0/a � 400. The time-averaged value is represented by ¯〈U 〉. Figure 8 shows ¯〈U 〉
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Ca Pusher type Pusher type

0.2 1.89 2.53
0.1 2.39 2.03
0.03 1.98 2.51
Rigid∗ 2.49 2.63

Table 1. Average number of swimmers in a unit cluster. The marker ‘∗’ shows reference to the previous results
of rigid squirmer models provided by Ishikawa et al. (2008).
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Figure 8. Time-averaged swimming speeds of the swimmers with various Ca. The error bar indicates the
standard deviations computed from independent three initial conditions.

as a function of φ, with Ca = 0.03, 0.1 and 0.2. For both pushers and pullers, ¯〈U 〉
monotonically decreased according to φ. For the same number density and Ca, the
average swimming speed of pushers exceeded that of pullers. This is because pushers can
more easily pass each other. Among pusher swimmers, a higher Ca value leads to faster
swimming under the same number density conditions.

Translational dispersion is a measure of microswimmer spreading. The mean square
displacement R2 was used to determine the swimmer’s self-dispersion, as given by

R2(�t) = 〈|r i (t + �t) − r i (t)|2
〉
N , (3.5)

where r is the swimmer’s displacement, �t is the time interval and R2 is a function of
�t with φ = 0.20, as shown in figure 9. We observed the different effects of Ca between
pushers and pullers. Among pushers, the value was higher for larger Ca in the high �t
regime, whereas it was almost invariant for Ca among pullers. In the double logarithmic
axes (cf. inset graph in figure 9), both pushers and pullers had a slope of 2. Thus, the
swimmers’ movement was ballistic, rather than diffusive, in the range of �tU0/a � 100.
A longer �t analysis may ultimately lead to a transition to diffusion; however, the
computational time interval �tU0/a � 100 is not sufficient to confirm this transition.
Since the time scale of the relaxation time for orientational self-correlation is estimated
as O(102), a time scale of O(103) may be required to observe a diffusion phenomenon,
which is difficult to achieve due to the long computational time. The converged values
could not be confirmed in this study.
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Figure 9. Mean square displacements R2 in the suspension with φ = 0.2 during the time interval �t .
The inserted graph is drawn to a double logarithmic scale.

3.4. Rotational diffusivity
Rotational diffusivity DR is defined as follows to describe scattering in the swimming
direction:

DR(�t) = lim
�t→∞

〈(ω(t + �t) − ω(t)) ⊗ (ω(t + �t) − ω(t))〉N

2�t
, (3.6)

ω(t + �t) − ω(t) =
∫ �t

t
Ωdt. (3.7)

Here Ω is the swimmer’s rotational velocity and ω is the rotational displacement. The
average of the diagonal components of DR represents the isotropic contribution:

DR = (DR,xx + DR,yy + DR,zz)/3. (3.8)

The time change of DR with φ = 0.10 and 0.20 is shown in figure 10. Here DR linearly
increases in the small �t regime (�tU0/a < 1) and then gradually converges to a specific
value at �tU0/a � 10. This tendency is similar to that of rigid swimmers (Ishikawa
& Pedley 2007). Regarding soft pushers, the converged value was slightly smaller with
increasing Ca, which suggests that softer pushers can maintain their swimming direction
during the interaction, (i.e. the softer pusher has highly direct swimmability). Among
pullers, DR was slightly higher with Ca. In addition, we observed long and stable
two-body clusters during face-to-face collisions, and DR convergence became worse
(cf. figure 10 b).

To further analyse the short-range interactions, the effects of swimming mode on the
nearby swimmer distribution were examined. Because most clusters were formed by two
or three swimmers (cf. table 1), we focused on the closest two-body interaction. The
distributions of the closest swimmers during the short-range interaction were quantified,
and the probability density P was derived as a function of α. Here α is the relative angle
between the closest swimmers i and j , (i.e. the angle in which the closest swimmer j is
from the direction of ei ):
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Figure 10. (a–d) Time change of swimmers’ rotational diffusivities during the time interval �t ; (a,b) φ = 0.1
and (c,d) φ = 0.2. Converged values of DR in the suspension with (e) φ = 0.1 and (f ) φ = 0.2. (Note that the
result of the puller type with Ca = 0.2 is excluded because the convergent value has not been obtained during
the time scale that has been simulated.)

α = cos−1
(

ei · (r j − r i )

|r j − r i |
)

. (3.9)

As shown in figure 11, pushers with low Ca exhibited asymmetric distributions of P(α),
and the peak appeared in the range of π/3 < α < π/2. As Ca increases, the peak shifted
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Figure 11. Probability density of the nearest neighbours as a function of relative angle α from the swimming
direction (φ = 0.1).

to π/2 and the distribution became almost symmetric. With respect to pullers with high
Ca, a large peak was observed at α < π/12, indicating that a soft puller is likely to collide
with the head. Among pullers, structures with heads coalesced due to the retracted flow
have also been reported for the ellipsoidal squirmers (Kyoya et al. 2015); the results of the
present study are consistent with this finding.

4. Deformation and tension
Membrane tension is important for the analysis of capsule dynamics in a suspension
(Walter et al. 2011; Omori et al. 2012). For example, Walter et al. (2011) reported
that membrane wrinkling and buckling occurs due to local compression in the low Ca
regime, whereas the capsule is extremely elongated at the tip in the high Ca regime.
Membrane tension is also associated with mechanosensing mechanisms in swimming
microorganisms (Matsui et al. 2020a). How does the cellular microstructure presented
in the previous section relate to the membrane tension of the microswimmer? In this
section we investigate the deformation and membrane tension of the microswimmer during
many-body hydrodynamic interactions.

4.1. Strain
In order to quantify membrane deformation, we utilised the second invariant of the strain
tensor I2 within the short-range interaction (r < 3a). The second invariant represents
the area dilatation of the membrane, which controls the mechanosensitive channel of
prokaryotes during severe osmotic challenges (Sukharev et al. 1997; Perozo et al. 2002).
The time- and ensemble-averaged strain increment �I2 relative to the solitary swimming is
presented in figure 12. As indicated in figure 12(a), �I2 was nearly proportional to Ca for
both pushers and pullers. This phenomenon represents a direct consequence of an increase
in Ca, resulting in reduced membrane rigidity. Here �I2 was greater for pullers than for
pushers, due to the pulling effect in the swimming direction. We also investigated the effect
of the volume fraction φ on deformation (cf. figure 12b). A linear trend was observed
for the volume fraction. A greater volume fraction led to more frequent microswimmer
collisions, resulting in larger deformation.
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Figure 12. Difference of the second strain invariant from the solitary swimming: (a) effect of Ca (φ = 0.1)
and (b) effect of φ (Ca = 0.1).

4.2. Tension
We evaluated the principal tension during the interaction. The principal tension τ1 of the
Skalak law is given by

τ1 = Gsλ1

λ2
(λ2

1 − 1 + Cλ2
2 I2) (4.1)

and τ2 is obtained by switching λ1 and λ2. Because the in-plane isotropic tension T ,
defined as T = (τ1 + τ2)/2, could be relevant for activation of the mechanosensing ion
channel (Matsui et al. 2020a), we focused on the in-plane isotropic tension T .

In this study the reference shape of the elastic membrane was assumed to be a sphere.
Membrane tension was then generated, even in dilute suspensions without interparticle
interactions. The mean value of T in the solitary swimming, T sol

mean = ∫
(T dA)/A, is shown

in figure 13(a), where A is the membrane surface area of the swimmer. Here T sol
mean/μU0

increased according to Ca. The tension of pushers was always higher than that of pullers
because pusher swimmers displayed a dented shape in the back (cf. figure 1), and tended
to have a higher T sol

mean compared with other swimmer types.
Considering variation in the tension due to the hydrodynamic interactions within

the suspension, the averaged incremental tension from the solitary swimming
〈Tmean〉N ,t/T sol

mean was lower for pushers (cf. figure 13b) because they are more likely to
pass each other. As shown in figure 13(c), the slip-through effect of pushers was effective
even at higher number densities; among the pullers, tension increased according to
number density. Regarding pullers, tensions were strongly influenced by Ca. When Ca =
0.03, 〈Tmean〉N ,t/T sol

mean was approximately 3.2, and the value monotonically decreased
according to Ca.

The instantaneous maximum tension in the suspension was determined; the time
averages are shown in figure 13. Both swimmers showed similar trends in Ca and φ. As Ca
increased with fixed φ, the maximum tension slightly decreased. Softer swimmers were
able to avoid hard collisions, potentially explaining why the maximum tension was reduced
by Ca, whereas the maximum tension linearly increased according to φ. The frequency of
many-body interferences increased according to number density. Accordingly, the capsular
membrane experienced greater tension.

The tension distribution changed with pushing and pulling hydrodynamic interactions.
The incremental tension during the short-range interaction was evaluated as a function
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of the azimuth angle θ relative to the orientation vector, as defined by �T (θ) in the
following:

�T (θ) = 〈
T (θ) − T sol(θ)

〉
N ,t . (4.2)

Here T (θ) is the circumferentially averaged isotropic tension at θ in the suspension and
T sol(θ) is that of solitary swimming. The result is shown in figure 14. In all cases,
incremental tension �T (θ) decreases according to Ca (cf. figures 14a and 14b). Pushers
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Figure 14. Incremental tension �T as a function of the polar angle on a swimmer surface θ (φ = 0.1). (a,b)
Distributions of local incremental tension �T from the solitary swimming. (c,d) Distributions of the ratio
�T/Tsol .

showed a relatively flat distribution of �T (θ), except at the θ = π pole, whereas pullers
tended to have a decreasing �T (θ) in the θ � π/2 region.

Upon further examination of directional distributions that caused the largest tension
fluctuations, the incremental tension was normalised according to the value used for
solitary swimming. The results are shown in figures 14(c) and 14(d). Among pushers,
the ratio of increase was high for 3π/4 < θ < π ; among pullers, the ratio of increase was
high around θ = π/2. These tendencies were more pronounced at low capillary numbers.
These results indicate that for pushers (pullers), the greatest change in tension occurs in
the posterior (side) during the interaction.

5. Conclusion
In this study we investigated the elastohydrodynamic interactions of deformable
soft microswimmers. Membrane deformation altered the mutual interference between
swimmers in the cluster, causing closer interactions compared with rigid squirmers.
This deformation enables swimmers to more easily slip through each other, weakening
the formation of orientation order through short-range interactions. Especially among
soft pushers, rotational diffusion due to hydrodynamic interference was reduced, and
swimming in the suspension was relatively straight. This ability, induced by membrane
deformability, is useful for the propulsion of cells, such as medical microrobots, and
it may play an important role in the transport phenomena for high-concentration cell
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Figure 15. Orientational correlation of the neutral swimmers with φ = 0.1. Each line indicates three different
initial conditions with (a,c,e) showing initially random configurations and (b,d,f ) initially polar order
configurations.

suspensions. On the other hand, pullers showed more proximity interactions with head
collisions due to their retraction flow, and an increase in mean membrane tension.
However, high deformability led to loosened contacts and smaller increases in tension.
These proximity interaction differences resulted in the positional dependence of the
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tension in each swimmer mode. For pushers (pullers), the rear (side) interaction produced
the greatest change in tension. These findings based on membrane dynamics is expected
to contribute to a better understanding of microbial physiological reactions via their
mechanotransduction, and to the control of membrane deformation and rupture in medical
microrobots for drug delivery. In conclusion, membrane deformability can significantly
alter the short-range interactions of the swimmers, such that pushers gain straightness in
their trajectories and pullers generate high membrane tension.
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Appendix. Microstructure of soft neutral swimmers
In this appendix we discuss the global order correlation Ie for soft neutral swimmers.
A characteristic property of neutral swimmers is the emergence of a coherent polar order,
as shown in figure 15(a–d). Polar structures are well developed, especially in low Ca,
and they are asymptotic to the rigid squirmers (Yoshinaga and Liverpool, 2008). As
Ca increases, the time to the order alignment increases, such that it is approximately
tU0/a > 600 for Ca = 0.03 and tU0/a > 1000 for Ca = 0.1. The development of polar
order was not observed at Ca = 0.2; however, the structure was maintained for a long
duration when the initial conditions were polar. These results indicate that membrane
deformation for neutral swimmers changes their short-range interactions with respect to
the orientational alignments after the interference. Thus, the time scale concerning the
appearance of the collective swimming tends to be slower for soft neutral swimmers than
that for stiff swimmers.
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