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Abstract

Let N be the set of all nonnegative integers. For any set A ⊂ N, let R(A, n) denote the number of
representations of n as n = a + a′ with a,a′ ∈ A. There is no partitionN = A ∪ B such that R(A,n) = R(B,n)
for all sufficiently large integers n. We prove that a partition N = A ∪ B satisfies |R(A, n) − R(B, n)| ≤ 1 for
all nonnegative integers n if and only if, for each nonnegative integer m, exactly one of 2m + 1 and 2m is
in A.
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1. Introduction

Let N be the set of all nonnegative integers. For any set A ⊂ N, let

R1(A, n) = |{(a, a′) ∈ A × A : n = a + a′}|,
R2(A, n) = |{(a, a′) ∈ A × A : n = a + a′, a < a′}|,
R3(A, n) = |{(a, a′) ∈ A × A : n = a + a′, a ≤ a′}|.

In each case i ∈ {1, 2, 3}, Sárközy asked if there exist two subsets A, B of N with
|(A ∪ B)\(A ∩ B)| =∞ such that Ri(A, n) = Ri(B, n) for all sufficiently large integers n.
Using the properties of the Thue–Morse sequence, the following results have been
proved.

Theorem A [2]. The set of positive integers can be partitioned into two subsets A and
B such that R2(A, n) = R2(B, n) for all n ≥ 0.

Theorem B [1]. The set of positive integers can be partitioned into two subsets A and
B such that R3(A, n) = R3(B, n) for all n ≥ 3.

Hence the answer is positive for i ∈ {2, 3}. For i = 1, however, Dombi [2] showed
that the answer is negative. It is clear that, for any integer n, R1(A, 2n) is odd
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if n ∈ A; otherwise, R1(A, 2n) is even. Thus R1(A, 2n) , R1(B, 2n) for all integers
n ∈ (A ∪ B)\(A ∩ B). There are many other related results (see [3–6] and the references
therein).

In this paper, we say that N = A ∪ B is a partition if N = A ∪ B and A ∩ B = ∅ and
simply write R1(A, n) = R(A, n). We obtain the following result.

Theorem 1.1. LetN = A ∪ B be a partition. The inequality |R(A,n) − R(B,n)| ≤ 1 holds
for all nonnegative integers n if and only if, for each nonnegative integer m, exactly
one of 2m + 1 and 2m is in A.

2. Proof of Theorem 1.1

Let N = A ∪ B be a partition. Without loss of generality, we may assume that 0 ∈ A.
Define

d(x) =

∞∑
n=0

(R(A, n) − R(B, n))xn =

∞∑
n=0

anxn ∈ Z[x].

Then |R(A, n) − R(B, n)| ≤ 1 is equivalent to an ∈ {−1, 0, 1}. Let χ(n) = 1 if n ∈ A;
otherwise, χ(n) = 0. Let

f (x) =
∑
a∈A

xa = 1 +

∞∑
n=1

χ(n)xn. (2.1)

Then
∞∑

n=0

R(A, n)xn = f 2(x)

and
∞∑

n=0

R(B, n)xn =

( 1
1 − x

− f (x)
)2
.

It follows that

d(x) = f 2(x) −
( 1
1 − x

− f (x)
)2

=
2 f (x)
1 − x

−
1

(1 − x)2 .

Hence

f (x) =
1
2

(
d(x)(1 − x) +

1
1 − x

)
=

1
2

(
1 + a0 +

∞∑
n=1

(an − an−1 + 1)xn
)
. (2.2)

Comparing (2.1) and (2.2),
a0 = 1 (2.3)

and
χ(n) =

an − an−1 + 1
2

for all n ≥ 1. (2.4)

Thus
2 - an − an−1 for all n ≥ 1. (2.5)
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Let a−1 = 0. By (2.3) and (2.4),

χ(2m + 1) + χ(2m) =
a2m+1 − a2m−1

2
+ 1 for all m ≥ 0.

Hence χ(2m + 1) + χ(2m) = 1 is equivalent to a2m+1 − a2m−1 = 0. Further, note that
|R(A, n) − R(B, n)| ≤ 1 is equivalent to an ∈ {−1, 0, 1}. Hence it is enough to prove that
an ∈ {−1, 0, 1} for n ≥ 0 is equivalent to a2m+1 − a2m−1 = 0 for m ≥ 0.

Suppose that an ∈ {−1, 0, 1} for n ≥ 0. It follows from (2.3) and (2.5) that a2m+1 = 0
for m ≥ 0. Then a2m+1 − a2m−1 = 0 for m ≥ 0.

Suppose that a2m+1 − a2m−1 = 0 for m ≥ 0. Since a−1 = 0,

a2m+1 = 0 for all m ≥ 0. (2.6)

But χ(n) ∈ {0, 1} and it follows from (2.4) that

an − an−1 ∈ {−1, 1} for all n ≥ 1.

Then
−a2m = a2m+1 − a2m ∈ {−1, 1} for all m ≥ 0.

Hence
a2m ∈ {−1, 1} for all m ≥ 0. (2.7)

It follows from (2.6) and (2.7) that an ∈ {−1, 0, 1} for n ≥ 0. This completes the proof.
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