ON PARTITIONS OF NONNEGATIVE INTEGERS AND REPRESENTATION FUNCTIONS

XIAO-HUI YAN

(Received 18 September 2018; accepted 9 October 2018; first published online 11 December 2018)

Abstract

Let \mathbb{N} be the set of all nonnegative integers. For any set $A \subset \mathbb{N}$, let $R(A, n)$ denote the number of representations of n as $n=a+a^{\prime}$ with $a, a^{\prime} \in A$. There is no partition $\mathbb{N}=A \cup B$ such that $R(A, n)=R(B, n)$ for all sufficiently large integers n. We prove that a partition $\mathbb{N}=A \cup B$ satisfies $|R(A, n)-R(B, n)| \leq 1$ for all nonnegative integers n if and only if, for each nonnegative integer m, exactly one of $2 m+1$ and $2 m$ is in A.

2010 Mathematics subject classification: primary 11B34.
Keywords and phrases: representation function, partition, Sárközy problem.

1. Introduction

Let \mathbb{N} be the set of all nonnegative integers. For any set $A \subset \mathbb{N}$, let

$$
\begin{aligned}
& R_{1}(A, n)=\left|\left\{\left(a, a^{\prime}\right) \in A \times A: n=a+a^{\prime}\right\}\right|, \\
& R_{2}(A, n)=\left|\left\{\left(a, a^{\prime}\right) \in A \times A: n=a+a^{\prime}, a<a^{\prime}\right\}\right|, \\
& R_{3}(A, n)=\left|\left\{\left(a, a^{\prime}\right) \in A \times A: n=a+a^{\prime}, a \leq a^{\prime}\right\}\right| .
\end{aligned}
$$

In each case $i \in\{1,2,3\}$, Sárközy asked if there exist two subsets A, B of \mathbb{N} with $|(A \cup B) \backslash(A \cap B)|=\infty$ such that $R_{i}(A, n)=R_{i}(B, n)$ for all sufficiently large integers n. Using the properties of the Thue-Morse sequence, the following results have been proved.

Theorem A [2]. The set of positive integers can be partitioned into two subsets A and B such that $R_{2}(A, n)=R_{2}(B, n)$ for all $n \geq 0$.

Theorem B [1]. The set of positive integers can be partitioned into two subsets A and B such that $R_{3}(A, n)=R_{3}(B, n)$ for all $n \geq 3$.

Hence the answer is positive for $i \in\{2,3\}$. For $i=1$, however, Dombi [2] showed that the answer is negative. It is clear that, for any integer $n, R_{1}(A, 2 n)$ is odd

[^0]if $n \in A$; otherwise, $R_{1}(A, 2 n)$ is even. Thus $R_{1}(A, 2 n) \neq R_{1}(B, 2 n)$ for all integers $n \in(A \cup B) \backslash(A \cap B)$. There are many other related results (see [3-6] and the references therein).

In this paper, we say that $\mathbb{N}=A \cup B$ is a partition if $\mathbb{N}=A \cup B$ and $A \cap B=\emptyset$ and simply write $R_{1}(A, n)=R(A, n)$. We obtain the following result.
Theorem 1.1. Let $\mathbb{N}=A \cup B$ be a partition. The inequality $|R(A, n)-R(B, n)| \leq 1$ holds for all nonnegative integers n if and only if, for each nonnegative integer m, exactly one of $2 m+1$ and $2 m$ is in A.

2. Proof of Theorem 1.1

Let $\mathbb{N}=A \cup B$ be a partition. Without loss of generality, we may assume that $0 \in A$. Define

$$
d(x)=\sum_{n=0}^{\infty}(R(A, n)-R(B, n)) x^{n}=\sum_{n=0}^{\infty} a_{n} x^{n} \in \mathbb{Z}[x] .
$$

Then $|R(A, n)-R(B, n)| \leq 1$ is equivalent to $a_{n} \in\{-1,0,1\}$. Let $\chi(n)=1$ if $n \in A$; otherwise, $\chi(n)=0$. Let

$$
\begin{equation*}
f(x)=\sum_{a \in A} x^{a}=1+\sum_{n=1}^{\infty} \chi(n) x^{n} \tag{2.1}
\end{equation*}
$$

Then

$$
\sum_{n=0}^{\infty} R(A, n) x^{n}=f^{2}(x)
$$

and

$$
\sum_{n=0}^{\infty} R(B, n) x^{n}=\left(\frac{1}{1-x}-f(x)\right)^{2}
$$

It follows that

$$
d(x)=f^{2}(x)-\left(\frac{1}{1-x}-f(x)\right)^{2}=\frac{2 f(x)}{1-x}-\frac{1}{(1-x)^{2}}
$$

Hence

$$
\begin{equation*}
f(x)=\frac{1}{2}\left(d(x)(1-x)+\frac{1}{1-x}\right)=\frac{1}{2}\left(1+a_{0}+\sum_{n=1}^{\infty}\left(a_{n}-a_{n-1}+1\right) x^{n}\right) . \tag{2.2}
\end{equation*}
$$

Comparing (2.1) and (2.2),

$$
\begin{equation*}
a_{0}=1 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi(n)=\frac{a_{n}-a_{n-1}+1}{2} \quad \text { for all } n \geq 1 \tag{2.4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
2 \nmid a_{n}-a_{n-1} \quad \text { for all } n \geq 1 . \tag{2.5}
\end{equation*}
$$

Let $a_{-1}=0$. By (2.3) and (2.4),

$$
\chi(2 m+1)+\chi(2 m)=\frac{a_{2 m+1}-a_{2 m-1}}{2}+1 \quad \text { for all } m \geq 0
$$

Hence $\chi(2 m+1)+\chi(2 m)=1$ is equivalent to $a_{2 m+1}-a_{2 m-1}=0$. Further, note that $|R(A, n)-R(B, n)| \leq 1$ is equivalent to $a_{n} \in\{-1,0,1\}$. Hence it is enough to prove that $a_{n} \in\{-1,0,1\}$ for $n \geq 0$ is equivalent to $a_{2 m+1}-a_{2 m-1}=0$ for $m \geq 0$.

Suppose that $a_{n} \in\{-1,0,1\}$ for $n \geq 0$. It follows from (2.3) and (2.5) that $a_{2 m+1}=0$ for $m \geq 0$. Then $a_{2 m+1}-a_{2 m-1}=0$ for $m \geq 0$.

Suppose that $a_{2 m+1}-a_{2 m-1}=0$ for $m \geq 0$. Since $a_{-1}=0$,

$$
\begin{equation*}
a_{2 m+1}=0 \quad \text { for all } m \geq 0 \tag{2.6}
\end{equation*}
$$

But $\chi(n) \in\{0,1\}$ and it follows from (2.4) that

$$
a_{n}-a_{n-1} \in\{-1,1\} \quad \text { for all } n \geq 1
$$

Then

$$
-a_{2 m}=a_{2 m+1}-a_{2 m} \in\{-1,1\} \quad \text { for all } m \geq 0
$$

Hence

$$
\begin{equation*}
a_{2 m} \in\{-1,1\} \quad \text { for all } m \geq 0 \tag{2.7}
\end{equation*}
$$

It follows from (2.6) and (2.7) that $a_{n} \in\{-1,0,1\}$ for $n \geq 0$. This completes the proof.

Acknowledgements

I sincerely thank my supervisor Professor Yong-Gao Chen and the referee for some valuable suggestions.

References

[1] Y.-G. Chen and B. Wang, 'On additive properties of two special sequences', Acta Arith. 110 (2003), 299-303.
[2] G. Dombi, 'Additive properties of certain sets', Acta Arith. 103 (2002), 137-146.
[3] S. Z. Kiss and C. Sándor, 'Partitions of the set of nonnegative integers with the same representation functions', Discrete Math. 340 (2017), 1154-1161.
[4] J.-W. Li and M. Tang, 'Partitions of the set of nonnegative integers with the same representation functions', Bull. Aust. Math. Soc. 97 (2018), 200-206.
[5] M. Tang and S.-Q. Chen, 'On a problem of partitions of the set of nonnegative integers with the same representation functions', Discrete Math. 341 (2018), 3075-3078.
[6] M. Tang and J.-W. Li, 'On the structure of some sets which have the same representation functions', Period. Math. Hungar. doi:10.1007/s10998-018-0240-5.

XIAO-HUI YAN, School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China
e-mail: yanxiaohui_1992@163.com

[^0]: The author is supported by the National Natural Science Foundation of China, Grant No. 11771211.
 (C) 2018 Australian Mathematical Publishing Association Inc.

