ON PARTITIONS OF NONNEGATIVE INTEGERS AND REPRESENTATION FUNCTIONS

XIAO-HUI YAN

(Received 18 September 2018; accepted 9 October 2018; first published online 11 December 2018)

Abstract

Let \mathbb{N} be the set of all nonnegative integers. For any set $A \subset \mathbb{N}$, let R(A, n) denote the number of representations of *n* as n = a + a' with $a, a' \in A$. There is no partition $\mathbb{N} = A \cup B$ such that R(A, n) = R(B, n) for all sufficiently large integers *n*. We prove that a partition $\mathbb{N} = A \cup B$ satisfies $|R(A, n) - R(B, n)| \le 1$ for all nonnegative integers *n* if and only if, for each nonnegative integer *m*, exactly one of 2m + 1 and 2m is in *A*.

2010 *Mathematics subject classification*: primary 11B34. *Keywords and phrases*: representation function, partition, Sárközy problem.

1. Introduction

Let \mathbb{N} be the set of all nonnegative integers. For any set $A \subset \mathbb{N}$, let

$$\begin{split} R_1(A,n) &= |\{(a,a') \in A \times A : n = a + a'\}|, \\ R_2(A,n) &= |\{(a,a') \in A \times A : n = a + a', a < a'\}|, \\ R_3(A,n) &= |\{(a,a') \in A \times A : n = a + a', a \le a'\}|. \end{split}$$

In each case $i \in \{1, 2, 3\}$, Sárközy asked if there exist two subsets A, B of \mathbb{N} with $|(A \cup B) \setminus (A \cap B)| = \infty$ such that $R_i(A, n) = R_i(B, n)$ for all sufficiently large integers n. Using the properties of the Thue–Morse sequence, the following results have been proved.

THEOREM A [2]. The set of positive integers can be partitioned into two subsets A and B such that $R_2(A, n) = R_2(B, n)$ for all $n \ge 0$.

THEOREM B [1]. The set of positive integers can be partitioned into two subsets A and B such that $R_3(A, n) = R_3(B, n)$ for all $n \ge 3$.

Hence the answer is positive for $i \in \{2, 3\}$. For i = 1, however, Dombi [2] showed that the answer is negative. It is clear that, for any integer n, $R_1(A, 2n)$ is odd

The author is supported by the National Natural Science Foundation of China, Grant No. 11771211.

^{© 2018} Australian Mathematical Publishing Association Inc.

X.-H. Yan

if $n \in A$; otherwise, $R_1(A, 2n)$ is even. Thus $R_1(A, 2n) \neq R_1(B, 2n)$ for all integers $n \in (A \cup B) \setminus (A \cap B)$. There are many other related results (see [3–6] and the references therein).

In this paper, we say that $\mathbb{N} = A \cup B$ is a partition if $\mathbb{N} = A \cup B$ and $A \cap B = \emptyset$ and simply write $R_1(A, n) = R(A, n)$. We obtain the following result.

THEOREM 1.1. Let $\mathbb{N} = A \cup B$ be a partition. The inequality $|R(A, n) - R(B, n)| \le 1$ holds for all nonnegative integers n if and only if, for each nonnegative integer m, exactly one of 2m + 1 and 2m is in A.

2. Proof of Theorem 1.1

Let $\mathbb{N} = A \cup B$ be a partition. Without loss of generality, we may assume that $0 \in A$. Define

$$d(x) = \sum_{n=0}^{\infty} (R(A, n) - R(B, n))x^n = \sum_{n=0}^{\infty} a_n x^n \in \mathbb{Z}[x].$$

Then $|R(A, n) - R(B, n)| \le 1$ is equivalent to $a_n \in \{-1, 0, 1\}$. Let $\chi(n) = 1$ if $n \in A$; otherwise, $\chi(n) = 0$. Let

$$f(x) = \sum_{a \in A} x^a = 1 + \sum_{n=1}^{\infty} \chi(n) x^n.$$
 (2.1)

Then

$$\sum_{n=0}^{\infty} R(A,n) x^n = f^2(x)$$

and

$$\sum_{n=0}^{\infty} R(B, n) x^n = \left(\frac{1}{1-x} - f(x)\right)^2.$$

It follows that

$$d(x) = f^{2}(x) - \left(\frac{1}{1-x} - f(x)\right)^{2} = \frac{2f(x)}{1-x} - \frac{1}{(1-x)^{2}}$$

Hence

$$f(x) = \frac{1}{2} \left(d(x)(1-x) + \frac{1}{1-x} \right) = \frac{1}{2} \left(1 + a_0 + \sum_{n=1}^{\infty} (a_n - a_{n-1} + 1) x^n \right).$$
(2.2)

Comparing
$$(2.1)$$
 and (2.2) ,

$$a_0 = 1$$
 (2.3)

and

$$\chi(n) = \frac{a_n - a_{n-1} + 1}{2} \quad \text{for all } n \ge 1.$$
 (2.4)

Thus

$$2 \nmid a_n - a_{n-1} \quad \text{for all } n \ge 1. \tag{2.5}$$

Let $a_{-1} = 0$. By (2.3) and (2.4),

$$\chi(2m+1) + \chi(2m) = \frac{a_{2m+1} - a_{2m-1}}{2} + 1 \quad \text{for all } m \ge 0.$$

Hence $\chi(2m + 1) + \chi(2m) = 1$ is equivalent to $a_{2m+1} - a_{2m-1} = 0$. Further, note that $|R(A, n) - R(B, n)| \le 1$ is equivalent to $a_n \in \{-1, 0, 1\}$. Hence it is enough to prove that $a_n \in \{-1, 0, 1\}$ for $n \ge 0$ is equivalent to $a_{2m+1} - a_{2m-1} = 0$ for $m \ge 0$.

Suppose that $a_n \in \{-1, 0, 1\}$ for $n \ge 0$. It follows from (2.3) and (2.5) that $a_{2m+1} = 0$ for $m \ge 0$. Then $a_{2m+1} - a_{2m-1} = 0$ for $m \ge 0$.

Suppose that $a_{2m+1} - a_{2m-1} = 0$ for $m \ge 0$. Since $a_{-1} = 0$,

$$a_{2m+1} = 0$$
 for all $m \ge 0$. (2.6)

But $\chi(n) \in \{0, 1\}$ and it follows from (2.4) that

$$a_n - a_{n-1} \in \{-1, 1\}$$
 for all $n \ge 1$.

Then

$$-a_{2m} = a_{2m+1} - a_{2m} \in \{-1, 1\}$$
 for all $m \ge 0$.

Hence

$$a_{2m} \in \{-1, 1\}$$
 for all $m \ge 0$. (2.7)

It follows from (2.6) and (2.7) that $a_n \in \{-1, 0, 1\}$ for $n \ge 0$. This completes the proof.

Acknowledgements

I sincerely thank my supervisor Professor Yong-Gao Chen and the referee for some valuable suggestions.

References

- [1] Y.-G. Chen and B. Wang, 'On additive properties of two special sequences', *Acta Arith.* **110** (2003), 299–303.
- [2] G. Dombi, 'Additive properties of certain sets', Acta Arith. 103 (2002), 137–146.
- [3] S. Z. Kiss and C. Sándor, 'Partitions of the set of nonnegative integers with the same representation functions', *Discrete Math.* 340 (2017), 1154–1161.
- [4] J.-W. Li and M. Tang, 'Partitions of the set of nonnegative integers with the same representation functions', *Bull. Aust. Math. Soc.* 97 (2018), 200–206.
- [5] M. Tang and S.-Q. Chen, 'On a problem of partitions of the set of nonnegative integers with the same representation functions', *Discrete Math.* 341 (2018), 3075–3078.
- [6] M. Tang and J.-W. Li, 'On the structure of some sets which have the same representation functions', *Period. Math. Hungar.* doi:10.1007/s10998-018-0240-5.

XIAO-HUI YAN, School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China e-mail: yanxiaohui_1992@163.com