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On the Radius of Comparison of a
Commutative C*-algebra
George A. Elliott and Zhuang Niu

Abstract. Let X be a compact metric space. A lower bound for the radius of comparison of the
C∗-algebra C(X) is given in terms of dimQ X, where dimQ X is the cohomological dimension with
rational coefficients. If dimQ X = dim X = d, then the radius of comparison of the C∗-algebra C(X)
is max{0, (d− 1)/2− 1} if d is odd, and must be either d/2− 1 or d/2− 2 if d is even (the possibility
d/2− 1 does occur, but we do not know if the possibility d/2− 2 can also occur).

1 Introduction

The radius of comparison of a C∗-algebra A, denoted by rc(A), was introduced by
Andrew Toms in [11] in order to measure the perforations in the Cuntz semigroup
of A. Let X be a compact metric space and consider the C∗-algebra C(X). It is known
that the radius of comparison of C(X) is always dominated by one half of the covering
dimension of X (see [1, 4.1] or (2.1)). Moreover, if X is a finite CW-complex, the
radius of comparison is approximately equal to one half of the covering dimension
of X (see [11, Theorem 6.6]).

In this note, we shall show that when X is a general compact metric space, there
is a lower bound for the radius of comparison which can be expressed in terms of
the cohomological dimension with coefficients in Q . More precisely, we have the
following theorem.

Theorem 1.1 Consider A = C(X), where X is a compact metrizable space. Then

rc(A) ≥


(dimQ X − 1)/2− 1 if dimQ X is odd,

dimQ X/2− 2 if dimQ X is even,

∞ if dimQ X =∞,

where dimQ is the cohomological dimension with coefficients in Q .

If, in addition, dimQ X = dim X (as in [11] in the finite CW-complex case), then,
as in the finite CW-complex case, the radius of comparison is again approximately
one half of the covering dimension. More precisely, applying the known upper bound
of rc(A) (see (2.1)), one has the following corollary.
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Corollary 1.2 With the assumptions of Theorem 1.1, if dimQ X = dim X, then

(i) if dim X is odd, one has rc(A) = max{0, (dim X − 1)/2− 1};
(ii) if dim X is even, one has dim X/2− 2 ≤ rc(A) ≤ dim X/2− 1.

2 Preliminaries and the Proof of the Main Result

Let τ be a lower semicontinuous 2-quasitrace on a unital C∗-algebra A. Then the
formula

dτ (a) := sup τ (a
1
n ), 0 ≤ a ≤ 1,

defines a functional on Cu(A) in the sense of [5], where Cu(A) is the stabilized Cuntz
semigroup of A (see [2]). (In fact, by [5, Proposition 4.2], this map induces a bijec-
tion between functionals on Cu(A) and lower semicontinuous 2-quasitraces on A.)

Definition 2.1 ([11, Definition 6.1]; see [1, Section 3.1]) The radius of comparison
of A, denoted by rc(A), is the infimum of the set of real numbers r > 0 with the
property that a, b ∈

⋃
Mn(A) satisfy a � b whenever

dτ (a) + r < dτ (b), τ ∈ QT1
2(A),

where QT1
2(A) denotes the set of normalized 2-quasitraces on A, and � denotes the

Cuntz pre-order relation.

Remark 2.2 In Definition 2.1, the radius of comparison is defined in the context
of the original definition of the Cuntz semigroup. If one considers the radius of
comparison in the context of the modified definition of the Cuntz semigroup Cu(A)
introduced in [2] (in which one first passes to the stabilization of the C∗-algebra),
then, as follows from [1, Proposition 3.2.3], these two notions of radius of compari-
son agree with each other for commutative C∗-algebras.

In fact, for exact C∗-algebras, one only has to consider extremal tracial states.

Lemma 2.3 Assume that A is a unital exact C∗-algebra. Denote by ∂T(A) the set of
extremal tracial states. Then the radius of comparison of A can be obtained as

inf{r > 0; dτ (a) + r < dτ (b), τ ∈ ∂T(A), implies a � b}.

Proof Set

S0 := {r > 0; dτ (a) + r < dτ (b), τ ∈ T(A), implies a � b},

and

S1 := {r > 0; dτ (a) + r < dτ (b), τ ∈ ∂T(A), implies a � b}.

Note that rc(A) = inf S0.
It is clear that S1 ⊆ S0, and hence inf S0 ≤ inf S1. Let r ∈ S0, and let ε > 0 be

arbitrary. Consider r + ε. Then, if

dτ (a) + r + ε < dτ (b), τ ∈ ∂T(A),
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by the Krein–Milman theorem, which is applicable to T(A) because it is a compact
convex subset of a locally convex topological vector space, one has (as can be seen be
replacing dτ by τ and a by a

1
n , and using that the map τ 7→ τ (a) is continuous, and

that (hence) the map τ 7→ dτ (b) is lower semicontinuous)

dτ (a) + r + ε ≤ dτ (b), τ ∈ T(A),

and therefore (by the definition of S0) a � b. This shows that in fact r + ε ∈ S1. Since
ε is arbitrary, one has inf S0 ≥ inf S1, and so

rc(A) = inf S0 = inf S1,

as desired.

Corollary 2.4 The radius of comparison of a commutative C∗-algebra is always either
an integer or∞.

Proof Any extremal tracial state τ on a commutative C∗-algebra is induced by a
Dirac measure δx. It follows that dτ (a) is the rank of a(x), which is an integer. There-
fore, the real numbers r in S1 may be chosen to be integers (they can be chosen as
the integer parts of real numbers in the set S1), and hence their infimum must be an
integer or (in the case of the empty set)∞.

For commutative C∗-algebras, as a special case of [13, Theorem 4.6], one has the
following theorem. (An early result was obtained in [12] with (dim X−1)/1 replaced
by 9 dim X.)

Theorem 2.5 Let a and b be positive elements of a matrix algebra over C(X) with X a
compact metric space. If

Rank(a(x)) +
dim X − 1

2
≤ Rank(b(x)), x ∈ X,

then a � b.

Since the radius of comparison of a commutative C∗-algebra must be an integer,
one has as a consequence (this formula also appears in [1, 4.1])

(2.1) rc(C(X)) ≤

{
max{0, (dim X − 1)/2− 1} if dim X is odd,

dim X/2− 1 if dim X is even.

To get the lower bound asserted in Theorem 1.1, we need to recall some facts
from dimension theory and homotopy theory. Let G be an abelian group. Denote by
K(n,G) for each n = 0, 1, 2, . . . the Eilenberg–MacLane space satisfying

πk(K(n,G), ∗) =

{
G, k = n,

{0}, k 6= n.

The spaces K(n,G) are the classifying spaces for Čech cohomology with coefficients
in G; that is, Ȟn(X; G) is isomorphic to [X,K(n,G)] naturally for any compact
metrizable space X.
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Remark 2.6 The spaces K(n,G) are unique up to homotopy equivalence. They may
be chosen to be CW-complexes, and then are absolute neighbourhood extensors for
metric spaces ([9]). Moreover, the skeletons of K(n,G) may be chosen so that every
cell has dimension at least n.

Theorem 2.7 (Homotopy Extension Theorem) Let A be a closed subset of a space
X, and let L be an absolute neighbourhood extensor. Then any map H : (A × I) ∪
(X × {0})→ L extends to a homotopy H̃ : X × I → L.

Definition 2.8 A compact metrizable space X has cohomological dimension at most
n with coefficients in G, written as dimG X ≤ n, provided that for each closed subset
A, every continuous map α : A → K(n,G) extends to a continuous map α̃ : X →
K(n,G).

In fact, as stated in the following theorem, if dimG(X) ≤ n, then dimG X ≤ m for
any m ≥ n. A proof can be found in [3, Theorem 1.1].

Theorem 2.9 A compact metrizable space X has cohomological dimension at most n
with coefficients in G if and only if for each closed subset A and each m ≥ n, every
continuous map α : A → K(m,G) extends to a continuous map α̃ : X → K(m,G).
In particular, for any natural number d < dimG X, there exist a closed subset A and a
continuous map α : A→ K(d,G) that cannot be extended to X.

It is interesting to compare the definition of cohomological dimension to the fol-
lowing characterization of covering dimension for a normal space (see [10, 9-9]),
which is also formulated in terms of extensions.

Theorem 2.10 A normal space X has (covering) dimension at most n, written as
dim X ≤ n, provided that for any closed subset A, any map α : A → Sn extends to a
map α̃ : X → Sn.

The cohomological dimension and the covering dimension are closely related (a
proof may be found in [10]):

Theorem 2.11 For any compact metrizable space X, one has

dimQ X ≤ dimZ X ≤ dim X.

If dim X <∞, then dimZ X = dim X.

Remark 2.12 Since K(1,Z) ∼= S1, one has that dim X ≤ 1 if and only if dimZ X ≤ 1.
However, there exists a compact metric space X that is an inverse limit of finite CW-
complexes with dim X = ∞, but dimZ X = 2 and dimQ X = 1. See [4] for more
details.

For a real number x, denote by 〈x〉 the smallest integer n with x ≤ n.

Lemma 2.13 Let n be an even number, and let A be a compact metrizable space with
covering dimension at most n + d. Assume that there is a continuous map

α : A −→ K(n,Q)
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that is not homotopic to a constant map. Then there is a complex vector bundle E on A
with rank at least n/2 such that E does not contain any trivial sub-bundle of rank strictly
greater than rank(E)− n/2.

Moreover, if d <∞, the vector bundle E can be chosen to have rank n/2+〈(d−1)/2〉
and not to contain any trivial sub-bundle of rank strictly greater than 〈(d− 1)/2〉.

Proof Since α(A) is compact, there is a finite sub-complex K ′ ⊆ K(n,Q) such that
α(A) ⊆ K ′ (see, for instance, [6, Proposition A.1]). In particular, K ′ is compact as a
topological space. Note that every cell of K ′ has dimension at least n.

Denote by g ∈ Ȟn(K ′; Q) ∼= Ȟn(K ′) ⊗ Q the element corresponding to the
embedding

ι : K ′ ↪→ K(n,Q),

and note that
α∗(g) = [α] ∈ Ȟn(A,Q).

Since α is not homotopic to a constant map, one has that [α] 6= 0. (Recall that
K(n,Q) is the classifying space for Ȟn( · ,Q).)

Since the rationalized Chern character Ch: KC(K ′)⊗Q →
⊕∞

i=0 Ȟ2i(K ′,Q) is a
vector space isomorphism (see [8, Theorem V.3.25]), there are complex vector bun-
dles E ′1, . . . , E

′
s and F ′1, . . . , Fs on K ′ such that

Chn/2

(
r1

(
[E ′1]− [F ′1]

)
+ · · · + rs

(
[E ′s ]− [F ′s ]

))
= g ∈ Ȟn(K ′; Q)

for some r1, . . . , rs ∈ Q .
Since the finite CW-complex K ′ has no cell with dimension strictly less than n,

one has that Ȟi(K ′,Z) = {0} for i = 1, . . . , n− 1. In particular,

c1(E ′i ) = c2(E ′i ) = · · · = cn/2−1(E ′i ) = 0, 1 ≤ i ≤ s,

and

c1(F ′i ) = c2(F ′i ) = · · · = cn/2−1(F ′i ) = 0, 1 ≤ i ≤ s.

Consider the pull-backs of E ′i and F ′i on A, and denote them by Ei and Fi respec-
tively. One has

(2.2) Chn/2

(
r1

(
[E1]− [F1]

)
+ · · · + rs

(
[Es]− [Fs]

))
= α∗(g) = [α] 6= 0,

and

c1(Ei) = c2(Ei) = · · · = cn/2−1(Ei) = 0, 1 ≤ i ≤ s,

c1(Fi) = c2(Fi) = · · · = cn/2−1(Fi) = 0, 1 ≤ i ≤ s.

It is then clear that if Ei or Fi has rank at most n/2 − 1, one has that ck(Ei) = 0,
k ∈ N, or ck(Fi) = 0, k ∈ N. If all of Ei and Fi with rank at least n/2 had trivial sub-
bundles of rank strictly larger than rank(Ei) − n/2 and rank(Fi) − n/2 respectively,
one would have

crank(Ei )(Ei) = · · · = cn/2+1(Ei) = cn/2(Ei) = · · · = 0,
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and

crank(Fi )(Fi) = · · · = cn/2+1(Fi) = cn/2(Fi) = · · · = 0.

Hence (by definition of Ch) Chn/2([Ei]) = 0 and Chn/2([Fi]) = 0, which contradicts
(2.2). Hence at least one of the vector bundles in {Ei , Fi , i = 1, . . . , s}, say E, does
not contain a trivial sub-bundle with rank strictly larger than rank(E)− n/2.

If A has covering dimension at most n + d with d <∞, by factoring out or adding
trivial sub-bundles, one may then assume that the rank of E is n/2 + 〈(d− 1)/2〉, and
this proves the additional statement of the lemma in the case that d <∞.

Lemma 2.14 Let X be a compact metrizable space.

(i) If dimQ X is odd, there exist a closed subset A ⊆ X and a complex vector bundle E
on A with rank at least (dimQ X − 1)/2 such that E does not contain any trivial
sub-bundle of rank strictly greater than rank(E)− (dimQ X − 1)/2.

(ii) If dimQ X is even, there exist a closed subset A ⊆ X and a complex vector bundle
E on A with rank at least (dimQ X − 2)/2 such that E does not contain any trivial
sub-bundle of rank strictly greater than rank(E)− (dimQ X − 2)/2.

(iii) If dimQ X = ∞, then, for any even number m, there exist a closed subset A ⊆ X
and a complex vector bundle E on A with rank at least m/2 such that E does not
contain any trivial sub-bundle of rank strictly greater than rank(E)−m/2.

Proof Assume that dimQ X is odd. By definition, there is a closed subset A ⊆ X and
a map

α : A −→ K(dimQ X − 1,Q)

that cannot be extended to X. In particular, the map α is not homotopic to a constant
map; otherwise, since the constant maps are always extendible, the map α must be
extendible from A to X by the Homotopy Extension Theorem (Theorem 2.7). Then
Lemma 2.13 applies.

If dimQ X is even, by Theorem 2.9, there is a closed subset A ⊆ X and a map

α : A −→ K(dimQ X − 2,Q)

that cannot be extended to X. Applying the result above to the even number
dimQ X − 2, one shows the statement (ii).

If dimQ X = ∞, then, by Theorem 2.9 again, for any even number m, there is
a closed subset A ⊆ X and a map α : A → K(m,Q) that cannot be extended to
X. Thus, applying the result above to the even number m, one obtains the desired
conclusion.

We are now ready to prove the main theorem.

Proof of Theorem 1.1 Let m ∈ N be an arbitrary even number. Let A denote the
closed subset of X and E the complex vector bundle over A assured by Lemma 2.14.
Choose a projection p ∈ Mk(C(A)) (for a suitable k) representing E. Lift p to a
positive element p ′ of Mk(C(X)). Choose a continuous positive function h ∈ C(X)
such that h(x) = 0 if and only if x ∈ A.
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Set

C =


rank(E)− (dimQ X − 1)/2 + 1 if dimQ X is odd,

rank(E)− dimQ X/2 + 2 if dimQ X is even,

rank(E)−m/2 + 1 if dimQ X =∞.

Choose a constant projection a of rank C in Mk(C(X)) and set

b := p ′ + h1 ∈ M+
k (C(X)).

It is clear that

Rank(b(x))− Rank(a(x)) >


(dimQ X − 1)/2− 2 if dimQ X is odd,

dimQ X/2− 3 if dimQ X is even,

m/2− 2 if dimQ X =∞,

for any x ∈ X. It follows (as for any extreme tracial state τ concentrated at x ∈ X, the
value dτx ( f ) is exactly the rank of f (x) for any positive element f ∈ Mk(C(X))) that

(2.3) dτ (b)− dτ (a) >


(dimQ X − 1)/2− 2 if dimQ X is odd,

dimQ X/2− 3 if dimQ X is even,

m/2− 2 if dimQ X =∞,

for any extremal tracial state τ on C(X).
However, a is not Cuntz dominated by b. If it were, then the restriction of a to A

would be dominated by the restriction of b to A, which is the projection p. Then p
(i.e., E) would contain a trivial sub-projection of rank C , which contradicts Lemma
2.14.

Therefore, by Lemma 2.3, the radius of comparison of C(X) is strictly larger than
the integer on the right-hand side of (2.3). Using the facts that rc(C(X)) is an integer
(Corollary 2.4) and m is arbitrary, one has

rc(C(X)) ≥


(dimQ X − 1)/2− 1 if dimQ X is odd,

dimQ X/2− 2 if dimQ X is even,

∞ if dimQ X =∞,

as asserted.

Remark 2.15 When dimQ X = dim X = d is even, the integer d/2 − 1 can be the
radius of comparison of the C∗-algebra C(X). The following is such an example.

Consider the canonical line bundle E ′ over S2. Then E := π∗1 (E ′) ⊕ π∗2 (E ′) is a
rank-two vector bundle over S2 × S2, where π1 and π2 are the coordinate projections
of S2 × S2. Then the Euler class of E is nonzero, and hence E does not contain any
nonzero trivial sub-bundles. Now let p be a projection corresponding to E in a matrix
algebra over A = C(S2×S2), and put e = 1A; then e � p. However, for any τ ∈ T(A),
one has

dτ (e) = 1 < 2 = dτ (p),
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and therefore, rc(A) = 1 (since rc(A) is either 0 or 1 by Theorem 1.1).
But we do not know whether d/2 − 2 can be the radius of comparison of the

C∗-algebra C(X).

Remark 2.16 It would be interesting to determine whether the statement of Theo-
rem 1.1 is still true if one replaces dimQ X by dimZ X (or dim X). Moreover, consider
a space with infinite covering dimension but only finite cohomological dimension
(with coefficients in Z or Q). It is even unclear to us whether the radius of compari-
son of this space should be infinite or finite; or, if the radius of comparison is finite,
whether it should be roughly equal to one half of the cohomological dimension or
not.
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