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Cambridge University Press and Assessment would like to apologise for the following error in the
above article (Annenkov, 2023). The abstract was not updated correctly. The correct version of the
abstract is provided below.

The article has been corrected.

Abstract
We define and develop two-level type theory (2LTT), a version of Martin-Löf type theory which combines
two different type theories. We refer to them as the ‘inner’ and the ‘outer’ type theory. In our case of inter-
est, the inner theory is homotopy type theory (HoTT) which may include univalent universes and higher
inductive types. The outer theory is a traditional form of type theory validating uniqueness of identity proofs
(UIP). One point of view on it is as internalised meta-theory of the inner type theory. There are two moti-
vations for 2LTT. Firstly, there are certain results about HoTT which are of meta-theoretic nature, such as
the statement that semisimplicial types up to level n can be constructed in HoTT for any externally fixed
natural number n. Such results cannot be expressed in HoTT itself, but they can be formalised and proved
in 2LTT, where n will be a variable in the outer theory. This point of view is inspired by observations about
conservativity of presheaf models. Secondly, 2LTT is a framework which is suitable for formulating addi-
tional axioms that one might want to add to HoTT. This idea is heavily inspired by Voevodsky’sHomotopy
Type System (HTS), which constitutes one specific instance of a 2LTT. HTS has an axiom ensuring that the
type of natural numbers behaves like the external natural numbers, which allows the construction of a uni-
verse of semisimplicial types. In 2LTT, this axiom can be assumed by postulating that the inner and outer
natural numbers types are isomorphic. After defining 2LTT, we set up a collection of tools with the goal
of making 2LTT a convenient language for future developments. As a first such application, we develop
the theory of Reedy fibrant diagrams in the style of Shulman. Continuing this line of thought, we suggest
a definition of (∞, 1)-category and give some examples.
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