NON-ISOMORPHIC NON-HYPERFINITE FACTORS

Wair-Mee CHING

Introduction. A von Neumann algebra is called hyperfinite if it is the weak
closure of an increasing sequence of finite-dimensional von Neumann sub-
algebras. For a separable infinite-dimensional Hilbert space the following is
known: there exist hyperfinite and non-hyperfinite factors of type II,
(4, Theorem 16"), and of type III (8, Theorem 1);all hyperfinite factors of type
II, are isomorphic (4, Theorem 14); there exist uncountably many non-iso-
morphic hyperfinite factors of type III (7, Theorem 4.8); there exist two non-
isomorphic non-hyperfinite factors of type II; (10), and of type IIT (11).
In this paper we will show that on a separable infinite-dimensional Hilbert
space there exist three non-isomorphic non-hyperfinite factors of type II,
(Theorem 2), and of type III (Theorem 3).

Section 1 contains an exposition of crossed product, which is developed
mainly for the construction of factors of type III in § 3. The second half of
§ 1 contains a “‘cutting’”’ lemma, important for our final result.

In § 2 we introduce a new algebraic property of von Neumann algebra:
property C. We construct a non-hyperfinite factor of type II; which has
properties C and I' (4, Definition 6.1.1). Then we establish the non-isomorph-
ism of three non-hyperfinite factors of type 1I; by showing that C does not
hold (T does) for a non-hyperfinite factor of type II; used by Schwartz
(10, Corollary 12).

Section 3 contains a similar but more complicated construction of three
non-isomorphic non-hyperfinite factors of type III.

In this paper, all Hilbert spaces are complex and we use the following nota-
tion: B(H) denotes the algebra of all bounded linear operators on a Hilbert
space H, I the identity operator, S’ the von Neumann algebra of operators
which are permutable with the elementsin .S C B(H), T'; — T strong operator
convergence, ||T||; = (tr(T*T))'/? the trace norm of an operator in a factor
of type II;. Isomorphism (automorphism) of von Neumann algebras will mean
*_isomorphism (*-automorphism). R denotes a von Neumann algebra on H,
a vector x in H is called separating for R if ¢t € R, ix = 0 implies ¢t = 0, cyclic
for R (equivalently, separating for R’) if the closed linear subspace generated
by Rx is H. G denotes a group with identity e. G is called ICC (infinite class
of conjugates) if {hgh~i|h € G} is infinite for each e # g € G; H ® G the
Hilbert space of all functions x on G with all x(g) € H and

[l = 2 ollx (@] < o0
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u: G — B(H) a unitary representation such that
u(@Ru(g') =R, P, HRG—H

the partial isometry with P,x = x(g), o/ (for any vector or operator ) the
function on G with value « at g and value 0 elsewhere. Each T € B(H ® G)
has a matrix representation: 7" = (T,.), Ty = P,TP, € B(H) forg,h € G
such that

(Tx)(g) = Zh Ty (h).

Sections 1 and 2 of this paper are contained in my Ph.D. thesis, submitted to
the University of Toronto in May, 1968. I express my deep gratitude to my
supervisor, Professor I. Halperin, for the problem he suggested, for his en-
couragement, and for the painstaking care with which he supervised the work
of this thesis.

1. The crossed product R ® «. Suppose that H, R, G, u, and H ® G are
as described in the Introduction.

Definition 1. A bounded linear operator on H ® G, to be denoted L(1), is
called an R-shifter if it is determined by the formula

(L)) (g) = ; t(h)u(h)x(gh)

for some ¢: G — B(H) with the property that the sum >, t(h)u(h)x(gh)
converges in the strong topology of H for all x € H @ G, g € G (it is easily
verified that s? is such a function ¢ for all s € R, g € G, and |[L(s%)]| = [|s|]).

Definition 2. The set of all R-shifters, to be denoted R ® u, is called the
crossed product of R by u.

LEmMMA 1. T € B(H) is of the form L(t) (with t necessarily unique) if and
only if: Ty = Teg-1nand Ty ,u(g™") € R for all g, b (then t(g) = T, u(g™?)).

Proof. This is easily verified.

CoroLLARY 1. If L(t) and L(s) are R-shifters and c is a complex number, then
L(I°) is the identity operator on H ® G and

¢L(t) = L(ct),  L(t) + L(s) = L(t + 3),
LOL(s) = L(txs),  (L))* = L(#),

where

(ct)(g) = ct(g), (¢t + ) () = tlg) + s(g),
(1) (txs)(g) = Zh: LY (h)s (B Qu (™),
2) t*(g) = u(g) t(g™1))*u(g™).

Proof. This is easily verified (use Lemma 1 and matrix representations).
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COROLLARY 2. Suppose that x € H s separating for R. Then x° € H Q G s
separating for R @ u.
Proof. Suppose that T € R ® u and Tx° = 0. Then we have:
Tywx = Th-19,x = (Tx°)(h'g) =0,
and hence T, = 0 for all g, . Thus T = 0.

THEOREM 1. R ® u is a von Neumann algebra on H @ G.

Proof. R ® u is a *-subalgebra of B(H ® G) containing the identity oper-
ator by Corollary 1 to Lemma 1. To show that R ® u is strongly closed, we let
(T;) beanetin R ® u with T';— T. Then

(T)gn = P,T:Py—P,TP,=T,, and (T).,u(gt) — T, u(g");

since R is strongly closed, Lemma 1 shows that 7 € R ® u. Thus R ® u is
strongly closed and hence it is a von Neumann algebra.

Corollary 1 to Lemma 1 shows that (R ® u)o = {L(#)|¢ of finite support} is
a *-subalgebra of R ® u. As in (3, Lemma 12.3.4),

(RQu) ={L)|t€ R, g€G)
and (R ® u), is strongly (and weakly) dense in R ® u.

LEMMA 2. Suppose that R is a factor, and G is ICC. Then R ® u s also a
factor.

Proof. Let L(t) be in the centre of R ® u. Then:
L{)L(I*) = L(I*)L(¢) forall h € G;
L(t)L(s®) = L(s®)L(¢t) foralls € R.
By (1), we have
(3) t(g)u(g)
(4) t(g)s
Suppose that £(g) # 0 for some g # e. Then for every x € H:
&) Lo« = Z,, (L On,ex|* = ; e Du™ x| * = ; |1 ()] |”.

In this sum there are infinitely many summands equal to ||¢(g)x||? ¥ O since
G is ICC. Hence t(g)x = 0 for all x € H. Thus t(g) = 0 for all g # ¢, or
L(t) = t(e)®. Since R is a factor, (4) implies that ¢(e), hence L(¢t), is a scalar
multiple of the identity operator.

u(g)t(h—'gh) forall h, g € G;
si(g) foralls € R, g € G.

I

Remark 1. In the special case that H (hence R) is the complex field, u
the identity representation of G, R ® u is just the group algebra associated
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with G, which we shall denote by 4 (G). A (G) is a factor of type I, if Gis ICC.
I*is a trace vector of A (G), and |[L(#)||]. = (T,lt(g)]2) /2

LEMMA 3. R ® u is purely infinite if R is purely infinite (in the case that
R ® u is a factor on a separable Hilbert space, this is equivalent to R @ u is of
type I111).

Proof. First we show, assuming 0 # L(¢) = 0, that 0 = ¢(¢) = 0. We have
L(t) = L(s)(L(s))* for some s,

te) = (s @ s*)(e) = 2 s(Bu®)s* B Hu ™)

h

= 2}; syumyu(i™) (s () *u(Ryu (k™) = Zh: s(h)(s())* 2 0

and t(e) = 0 would imply: s(k) = 0 for all b, s = 0, L(s) = 0, L(¢t) = 0.

Now we use an argument of Sakai (9, § 3). Suppose, if possible, that there
exists a non-zero finite projection L(p). Then p(e) € R and 0 5= p(e) = 0.
Hence, for some non-zero projection ¢ € R: Ap(e) = ¢ = 0 for some A > 0,
thus ¢ = gi1p(e) for some g1 € R. To complete the proof, it is sufficient to show
that ¢ is finite. By Sakai’s proposition (9, Proposition 2’), we may suppose that
l, € qRg, t, — 0, and we need only to show that ¢,* — 0.

LetL, = L(4°). Then L, — 0 since sup,||L,|| = sup,||t|| < % and L, (x?) =
(twx)? — O for allx € H, g € G. Hence L,L(p) — 0. Then by Sakai’s proposi-
tion (9, Proposition 2): L(p)L,* — 0, hence p(e)t,* = (L(p)L,*),,— 0. Thus
¥ = gt.* = qp(e)t,* — 0 as required, and the proof is complete.

Let #;: K — B(H ® K) be a unitary representation of a group K such that
u1 (k) (R @ u)ui (k1) = R @ u for all € K. We make the convention that
ROu®@u,HQ®GQ®K, and a?* shall mean (R ® u) @ u;, (H ® G) ® K,
and (a%)F, respectively. We still write L(¢) for an element of R @ u ® u;, but
where ¢ is an R-valued function on the Cartesian product G X K such that
L((, k) € R® u for each £ € K. Let x be a separating vector for R, then
by Corollary 2 to Lemma 1, £ = x%° is a separating vector for R ® u ® u;.

Suppose that ||Tui(k)x|| = ||Tx°|| for all 7€ R ® u. Then applying (5)
twice, we have
(6) HL@E" = 2 22 e, Bu @)=l ™

g9

For any function ¢t on G ® K, let f denote the function: (e, &) = t(e, k), if
k€A i(g, k) =0if g=£eork ¢ A, where A is a subgroup of K. Let R; be
the set of all elements of R ® u ® u; of the form L(f). R, is certainly a vector
space. Suppose, further, that ui(k)Ru,(k™!) = R® for all k € K, where
Re = {L(s°)|s € R}. Then a computation based on (1) shows that R; is a
*_subalgebra of R ® # ® u;1. Now suppose L(Z,) — L(t). By (6), we have

|| (a(g, R)u(t) — t(g, k)u(g))x[| >0 for each (g, k) € G X K.
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Hence t(g, k) = 0if g # e or k ¢ A. This shows that R, is strongly closed, i.e.
a von Neumann subalgebra of R ® # ® ;. We note that the set Ry of all
finite sums of s®* s € R, k € A, form a strongly dense *-subalgebra of R;.

LEMMA 4. Let Ra=RQu Q@ u;,, HRGQ® K, x, ¢, A CK, R, be as de-
scribed in the preceding discussion, i.e. ||Toui(k)x¢|| = ||Tox®|| for all To € R ® u,
k € K, and ui(R)Ru,(k~1) = R for all k € K. Suppose that the positive linear
Sfunctional f(S) = (S£[£) on R is such that f(TS) = f(ST) for all T € R,,
S € Ry. Then there exists a projection P of norm one from the Banach space Ry
(with the operator norm) onto its subspace Ry such that

) P(L(t)) = L(@#) for all L(t) € R,.

Proof. Let A+ denote the positive part of an operator algebra A. For each
T € R,*, define f7(S) = f(T'S), S € Ry. Then fr is a positive linear functional
on Ry satisfying: f+(S) = [|T]|f(S) for all S € Ry*. Also, the trace f (S) = (S¢[¢)
on R;is regular in the sense that if E is a projection, f (E) = 0 implies E = 0.
In fact, ||E¢||? = (Et|¢) = 0 implies E = 0, since £ is a separating vector for
R,. By (12, Lemma 14.1), there exists a unique positive operator 7" in R;
such that £ (7'S) = f(I"S) for all S € Ry. This mapping 71— 7" of R,* to R+
can be uniquely extended (via the canonical decomposition of an operator) to
a linear mapping P: T +— T from R, onto R; such that f(7'S) = f (1"S) for all
S € Ri.

It is clear that P is a projection. Now, for any Ty, T2 € R.,

FUTYT)'S = f(IV'TS) = f(TY'STY) = f(IY'TY'S) = f((T1TY')'S)
for all S € Ry. Hence, (TW/Ty) = TV/T,y = (I\Ty) for Ti, Ty € R,.
(T*)' = (T")* since T" = 0 implies 77 = 0. Moreover, for any T" € R,,
0 (T —THX(T —T1")) = (T*T) — T¥T1,
ie. T*T' £ (I*T). Forany T € R,, 0 < T*T < ||T*T||I. Thus we have

0 =TT < (T*T) £ ||T*T||1,
NIl = (IT*T'[)r> = (|T*T 7> = [|T7]].
Hence the projection P from the Banach space R, onto its subspace R; is of
norm one.

We know that P satisfies (7). Let R, denote the dense (weakly, strongly)
*_subalgebra of R, consisting of all operators L(¢) with ¢ of finite support on
G X K. For an arbitrary L(to) € Ro, L(f0) = X xea L(t(e, k)¥) is a finite sum
of bounded operators, hence a well-defined element in R;. We have

(L(to) L(s**)E|E) = (to(e, Bxolx0) = (L (%)L (s**)E|£)
for all 2 € K. Since Ry is dense in R;, we conclude that
(L (t0)St|E) = (L(f0)St|g) forall S € Ry

Hence P(L(t)) = L) for all L(t) € R,.
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Now, let " = L(t) be an arbitrary operator in Ry. And let T'; = L(¢;) — T,
where T'; € Ry, ||T4|| = ||T]|, 7 =1,2,... (such a sequence exists because of
Kaplansky’s density theorem and the metrizability of the unit ball in strong
operator topology (1, § 3)). For each S € Ry,

(TE[St) = (T&[SE) — (TE|SE) = (T7E[S%).

Consequently, (T'/¢ly) — (T'tly) forally € H ® G ® K. Since £ is cyclic for
Ry, we have (T/zly) — (T'/2ly) for all 2,y € H ® G ® K. Hence P is con-
tinuous from the unit ball of R, with strong operator topology to the unit ball
of R, with weak operator topology. ||[(T" — T;)£||? — 0 and (6) imply that

[1(t(g, B)u(t) — ti(g, B)u(g))x|| — 0
for each (g, k) € G X K. Since the norms of all
t(gr k)r ti(gv k)» l= 1)2)"'v (g, k) 6 GXKy

are bounded by ||T]|, this implies that ¢,(g, k)u(g) — t(g, k)u(g) for each
(g, k) € G X K. In particular,

(8) t:(e, k) — t(e, ) weakly for each & € A.
On the other hand, suppose that P(7") = L(5) € Ry. Then
L() = P(T") = weak lim P(T";,) = weak lim L(£,);
((s(e, k) — ti(e, k))xls'x) = ((L(5) — L{E)E (s%)** ") — 0

foreachk € A, s’ € R'. Hence ¢;(e, k) — s(e, k) weakly for each & € A, since x
is cyclic for R’. In view of (8), we have s(e, k) = i(e, k) for all & € A. Thus,
P(L(t)) = L(Z). This completes the proof of the lemma.

Remark 2. For the special case that R is the complex field, G = {e}, A C K
then P: L(¢) — L(t|a), where ¢|a(k) = t(R) if & € A, t|a(k) = 0,ifk ¢ A. T
case has already been proved in (4, Appendix).

LeEmMA 5 (Pukanszky (8, Lemma 10)). Let G be a group and B a subset of G.
Suppose that there exists a subset S C B and two elements g1, gs € G such that
(1) S\U h1Sgy = B and (ii) the sets S, go—1Sgs, g2Sg2~1 C B are pairwise disjoint.
Let f(g) be a complex-valued function on G such that 3 ,cq |f (g)|2 < ©, and

(‘;G If(gigg™) —f(g)lz) <e (i=1,2).

Then (Xges |f (2)]?) < 14e.

2. Non-isomorphic factors of type II,. The following definitions describe
the properties we shall use to distinguish between factors.

Definition 3 (4, Definition 6.1.1). A factor R, of type II;, is said to have
property I'if for any given finite set of elements 74, T, ..., T, € R and any

https://doi.org/10.4153/CJM-1969-142-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-142-6

FACTORS 1299

€ > 0, there exists a unitary U € R with tr(U) = Oand ||U*T,U — Til|. < ¢,
1=1,2...,n

Definition 4. A von Neumann algebra R is said to have property C, if for
each sequence Uy (B = 1,2,...) of unitary operators in R with the property
that stronglim Uy*T'Uy = T for each T € R there exists a sequence
Ve (B =1,2,...) of mutually commuting operators in R such that

strong lim (U — V) = 0.

Since algebraic isomorphism between two von Neumann algebras preserves
the strong convergence of sequences of operators (6), it preserves property C
as well as property TI'.

Let II denote the group of all finite permutations on the set of all natural
numbers, &, the free group with two generators, and II X &, their direct
product. Then it is known that 4 (IT) is hyperfinite, but 4 (®;) and 4 (IT X &,)
are non-hyperfinite; 4 (II) and A4 (IT X &,) have property T, but 4 (®;) does
not (10).

We construct below a factor 4 (® @ A) of type II; for which we shall prove
the following lemmata.

LemMA 6. A(® ® A) has property T.

LEmMma 7. A(® ® A) has property C.

LEMMA 8. Neither A (I1) nor A (I X ®,) has property C.

In view of the above lemmata, we have the following theorem.

THEOREM 2. A(II), A(®s), A(II X ®,), and A(P ® A) are four pairwise
non-isomorphic factors of type 11;.

Construction of A(® ® A). Let ® be a free group with an infinite system of
generators {ao, bo, @1, b1, @2, s, .. .}. Let p? be the permutation on the set of
free generators of ® which permutes a; with &;, and leave all other generators
fixed, 2 =1, 2,.... Let A be the group of permutations on the set of free
generators of ® which is generated by p;, 72 = 1,2, ... . Aisabelian. It is clear
that each A € A induces an automorphism g — A\g of ® in an obvious way,
i.e. via the word representation of g € ®. Hence, A can be regarded as an
abelian group of automorphisms of ®.

Let @ ® A= {(g,\)| g€ ® \€ A}. Define (g, \)(h, u) = (g\h, \u) for
(g, \), (h,u) € ® ® A. Then, it is easy to check that & ® A under this
multiplication is a countable ICC group. Therefore, 4(® ® A) is a factor of
type I1; on a separable Hilbert space.

Proof of Lemma 6. Let S be a finite subset of ® ® A. Let g be the largest
natural number j such that a, or b, appears in the reduced word representation
of the first coordinate of some element in S. Then, (e, e) # (e, peyr1) € P @ A
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clearly satisfies (e, p,+1)k = k(e, pgs1) for all k € S. By (4, Lemma 6.1.1), we
conclude that 4(® @ A) has property T.

Proof of Lemma 7. Let u, = L(t;) (B = 1,2,...) be a sequence of unitary
operators in 4(® ® A) with the property that lim||U*T U, — T||; = 0 for
each T € A(® ® A) (this is equivalent to strong lim U*T'U, = T). Let A
denote the subgroup (e, A) of ® ® A. We claim that

Vi=L(tla) € A(d) CA(@®4) (k=1,2,...)

is a bounded (by Lemma 4 and Remark 2, ||V|| < ||Uil| = 1) sequence of
mutually commuting operators (since A is abelian) required for having
property C.

Let T, = L(I%) (¢ = 1,2), where g1 = (ao, €), g2 = (bo, €). Let S be the
subset {(g, \)| A € A, g € ¥, g in reduced word representation ends in a non-
zero power of ao} of ® X A. Put B= & ® A\l (¢, A). We note that
B = SU g1Sg:i7Y, and S, g2Sg271, go~1Sg, are pairwise disjoint subsets of B.
Given any € > 0, there is an N = N(e) such that & > N implies

||Uk*T1Uk - Ti||2 = HTi*UlcTi - Uk||2

1/2
= ( > la(ggg™ — tk(g)lz> <e (G=12).
gE(P®A)

By Lemma 5, we have
\ 1/2

10 = Will = 1126 = 26l = (5 o) < 14
for all & > N. Hence strong lim(U; — V) = 0.

Proof of Lemma 8. Let g; be the element in II which permutes ¢ with 7 4 1
and leaves all other natural numbers fixed, for each i = 1, 2, ... . Given any
operator " = L(¢) in A(Il), let 77 = L(') € A(II) be such that #(g) = 0
for all g € II except on a finite subset S of I, and ||T" — T”||» < €¢/2. Let N be
the largest natural number which is permuted by some element in S. It is
easy to see that U; commutes with 77 for all ¢ > N. Thus, ¢ > N implies

NUXTU; — Tl £ ||UXT = TOU|: + ||T — T'||: < e

Hence lim||U*TU; — T||: = 0, or equivalently, strong lim U*TU,; = T for
each T" € A (II).

Suppose that A(II) has property C. Then there exists a sequence
V, ¢=1,2,...) of mutually commuting operators in A (II) such that
strong lim(U; — V;) = 0. Now, since g;g;41 7 gip1g:forz = 1,2,. .., we have

\/2 = ||L([oiu+1 — I”i+1"i)[¢“ — “UiUH—l _ Ui+lU1'”2
S (Ui = VUil + ViU — Vigd)lle + [|(Vigr — Usr) Vil |2
F | Usa(Vi — Uz = 2||Us — Villo + 2| Vil[ | Uspr = Vigalla,
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the last step follows since the trace is unitary invariant and
e (STH] < (S]] - [er (D).

By the uniform boundedness principle, the strong convergence of (U; — V)
implies that {||V,— U]}, 1=1,2,..., and {||V]}, i =1,2,..., are
bounded by some positive number M. Hence, each term in the last expression
of the above inequality approaches 0 as ¢ — co. This contradiction shows that
A (II) does not have property C. Replace all I by II X &; and g; by (g4, €) in
the preceding proof, we also conclude that 4 (Il X ®,) does not have property
C.

3. Non-isomorphic factors of type III. The following algebraic property
of von Neumann algebras was introduced by Pukanszky (8) to distinguish a
pair of factors of type III.

Definition 5. A von Neumann algebra is said to have property L, if there
exists a sequence Uy (=1, 2, ...) of unitary operators in R such that
weak lim Uy = 0 and strong lim U;TU* = T foreach T € R.

Our construction of non-isomorphic factors of type III follows the construc-
tion in Pukanszky (8) and the construction of the new factor of type II; in
§ 2. R; is the factor M; in (8) and R, is the factor M, in (8).

Construction of Ry. Let G be an infinite group and let xo = {0, 1}. Let uo
be the measure on Xo with uo({0}) = p,po = ({1}) = ¢, p+¢=1,0<p < q.
Let X = Il ¢ X, be the Cartesian product of {X,}, g € G, where all X, = X,
and let u be the completion of the product measure u’ = Il,¢¢ 1, on X, where
all u, = po. Let H = L%(X, u) be the Hilbert space of all u-square-integrable
functions f on X. Let M (X, u) be the abelian von Neumann algebra consisting
of all multiplication operators on H, ie. M(X,u) = {m|fo a bounded
p-measurable function on X and (my,) (x) = fo(x)f (x) for all f € H}. We shall
simply write f, for my, hereafter. The function f(x) = 1 on X is a separating
cyclic vector for M (X, u) and we denote it by I.

Next, let K be the subset of X consisting of those elements of X which take
the value 1 only at finitely many points of G. Define (x + v) (g) = x(g) + y(g)
(mod 2) for all x, y € X. Then K is an abelian group with identity e(g) = 0.
Each a € K defines a transformation a: x — x + « on X ; and the measure u is
quasi-invariant under K (8, Corollary to Lemma 3). Define u.(E) = u(E + «)
for each p-measurable subset E of X, and let (du./du)(x) be the Radon-
Nikodym derivative of u, for each o € K. Define

1/2

@@ - (%) Fe + o

for all f € H. Then u: o — u(e) is a faithful unitary representation of K on H
such that u(a)f (x)u(a™) = f(x + @) € M(X, p) for all f(x) € M(X, p). By
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(8, Lemma 7), the transformation group K is (i) free, (ii) ergodic, (iii) non-
measurable on X ; hence the crossed product Ry = M (X, u) ® won H1=H @ K
is a factor of type II1 with I¢ as a separating vector (5, Lemmas 3.6.5, 4.3.5).
Glimm (2, § 2) has shown that R; is hyperfinite. An arbitrary element in R; is
denoted by L(f (x, a)), where for each a € K, f (x, @) is a bounded measurable
function on X.

Construction of R,. Let the group G in the construction of Ry be &,, the free
group with two generators. For each g € &,, define

9) (u1(g)f) (x, @) = f(gx, ga) forall f(x,a) € Hy,

where gx(h) = x(hg) for x € X D K. ui: g — uy(g) is a faithful unitary
representation of ®; on Hy, and u;(g)Riui1(g7Y) = Ryforall g € ®,. Also, it is
easily verified that for each g € &,, we have

1/2
ruwr = (5 [ vwora)” = iz

for all T'= L(f(x,a)) € R;. Since ®; is an ICC group, the crossed product
Ry = Ry @ u; on the Hilbert space H, = H; @ ¥, is a factor by Lemma 2.
By Lemma 3, R, is a factor of type III since R, is purely infinite. Indeed, R,
can be identified with M, in (8) by the isomorphism %: Rs — M. such that
i(f**) = Ly, i(I*°) = U@, @ € K (Ain (8)), i(I*%) = Uy g € ®2. As
shown in (5, Theorem VIII), Ry = WR,W, where W is an involuntary on H;
defined by

_ d#g-la 1z —1 —1 -1
Wf)(x, e, g) = dn x)) fl@c+a)g ag)
for all f(x, «, g) € H,.

Construction of R;. Let ® be a free group with an infinite system of generators
{a_1, ao, a1, a2, ...}, and let the group G in the construction of R; be the
subgroup ®; of ® generated by a_; and a.. Let II be the group of all finite
permutations on the set of natural numbers. Put 7(a_;) = a_;, 7(a¢) = ao, and
m(a;) = a,u,t=1,2,..., for each m € II. Il is a group of permutations on
the set of free generators of ®, and naturally, a group of automorphisms of &.
Let @ II = {(g,7)| g € & 7 € 11}, and define (g, =) (&, m1) = (gr(h), w71)
for (g, ), (h, m1) € ® ® II. Itiseasily seen that ® ® IIisan ICC group under
this multiplication. The mapping ¢: a_1 — a_1, ao —> ap, a; —e€,1 = 1,2, ...,
T — e, m € II, between generators of ® ® II and that of &, clearly induces a
homomorphism ¢’: g — g’ of ® ® II onto ®,. The free group ®. has a unitary
representation #; on H; defined by (9) which induces a group of automorphisms
of R;. Putv; = u;0¢'. v1 is obviously a unitary representation of ¢ ® II on
H, such that v;(g)Riv1(g™!) = Riforall g € & ® II. By Lemmas 2 and 3, the
crossed product R = R1 @ v1on H; = H; ® ® ® II is a factor of type III
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with a separating vector ¢ = I®° As shown in (5, Theorem VIII),
Ry = WiR;W1, where W is an involuntary on H; defined by

1/2

(WAf) (%, a, g) = (%’;—“’ (x)> JE@) e+ a), @) g™
for all f (x, @, g) € Hs.

Construction of Ry. Let ® @ A be the group constructed in § 2, and let the
group G in the construction of R; be the subgroup ®; of ® ® A generated by
(ao, €) and (bo, €). The free group ®, has a unitary representation %, on H
defined by (9). Now, the mapping ¢1: (ao, €) — (ao, €), (bo, €) — (b, €),
(as,€) = (e, e), (bi,e) > (e,e), 1=1,2,..., (e,\) —> (e,e), \ € A, clearly
induces a homomorphism ¢,': g — g’ of ® ® A onto ®,. Then v = u; 0 ¢/
is a unitary representation of ® ® A on H; such that v(g)Rww(g~!) = R;and
|[Tw(g)I¢|| = ||TI¢|forallg € ® ® A, T € Ry. By Lemmas2and 3, the crossed
product Ry = Ri @ v = M(x,p)  u @ von Hy = H,; ® & ® Ais a factor of
type III with a separating vector ¢ = %% Asin (5, Theorem VIII), it can be
verified that Ry = W.R.W,, where W, is an involuntary on H4 defined by

1/2

T o) = (2072 ) F) "5 + o), @) ™)
for all f (x, @, g) € H,.

We shall prove the following lemmata for the factors of type 111 we con-
structed on separable Hilbert spaces H;, 2 = 1, 2, 3, 4.

LeEMMA 9. R,, R3, R4 are non-hyperfinite.
LemMmA 10. Both R3 and Ry have property L.
LeMMA 11. R; does not have property C.
LeMMA 12. R4 has property C.

Since R, is just the factor M, in (8) which does not have property L
(8, Lemma 13), the above lemmata imply the following theorem.

THEOREM 3. R, R;, R4 are three pairwise mon-isomorphic non-hyperfinite
factors of type III on a separable infinite-dimensional Hilbert space.

Proof of Lemma 9. Suppose that R, is hyperfinite. Since R, and R, are iso-
morphic by an involuntary Ws, R, is also hyperfinite. Let

MiCM,C...CM,C...R/

be an-increasing sequence of finite-dimensional von Neumann subalgebras of
R/ which generates it weakly. For any x, y € Hyand T" € B(H,), define

@) = | WIUslym @0),

https://doi.org/10.4153/CJM-1969-142-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-142-6

1304 WAI-MEE CHING

where U, is the compact group of all unitary operators in M, and u, is the
normalized Haar measure on U,,n =1, 2,... . Let

(0(T)x|y) = Banach lim (8,(T)x|y).

Then 6: T — 6(T) is a linear mapping from B (H}) onto (R4)’ = R4 such that
1) 0(T*) = 6(1)*, (ii) 0() = I, (iii) 6(AT) = A6(T), 0(TA) = 6(T)A for
all A € Ry, and (iv) T = 0 implies 6(7") = 0 (see 10).

The Hilbert space H, is the space of all complex functions F(x, &, g) on
X X K X ®® Asuch that

S| IFtx, e 9)*du < +0.

geP®A afK VX

Put 7(T) = (T¢|¢) for T € Rs. We shall prove that for each # € ker v (kernel
of) C®Q® A,

(10) r(L(I*"M*TL(I°*")) = +(T) forall T € R,

Since the linear span of all operators of the form L(f*?) is weakly dense in Rj,
we only need to verify that

(L(IEM*L(f=)L(I°")Elg) = (L(f*9)¢lE),

where f € M(x,pn), a € K,g € ® ® A, for each % € kerv. In fact, if g # ¢,
both sides equal 0; if g = ¢, both sidesequal (L (f:°)£|£) since L(I®") commutes
with L(f2-¢) when k € ker v.

The mapping 7': (ao, €) — e, (bo, €) — ¢, (as, \) — (@i, ), (by \) — (by M),
1=1,2,..., N\ € A, obviously induces a homomorphism 7 of & ® A onto
kerv C ® ® A. Now, for each subset o of ker v, let T, be the non-negative
operator on the Hilbert space H, defined by

_ F(x:a) g) lfg € "7(‘7)1
(T,F) (x’ o, g) = {0 ltg q 77(0)-
o — T, is a finitely additive operator-valued function of all subsets of ker v,
and Txer » = I. Put »(¢) = 7(6(7,)). Then »(¢) is a non-negative finitely

additive function defined for all subsets of ker v with »(ker ») = 1 by (ii) and
(iv) of the mapping 6. An elementary computation shows that

LI*9)*T,L(I*%) = Ty,
for each g € ker 9. Then it follows from (iii) and (10) that
v(gle) = 7(0(L(I9)*T,L(I°%))) = 7(L(I*?)*0(T5)L(I°*))
= 7(6(T,)) = v(s) for each g € kero.

Hence v is a Banach mean on the group ker v. But ker v obviously contains a
subgroup isomorphism to the free group with two generators, consequently,
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ker v cannot be amenable. This contradiction shows that R4, and hence R.,
are non-hyperfinite. The proof for R; or R, is exactly the same. We omit the
repetition here.

Proof of Lemma 10. We first note that strong lim U,T U* = T is equivalent
to limy_o|| (UrTUx* — T)¢|| = 0 for each T € R; (R.), and weak lim U, = 0
is equivalent to lim|(U|¢)] = 0 for any sequence of unitary operators
Uy (B =1,2,...) since £ is a cyclic vector for Ry’ (R4). Let \; be the element
of II which permutes 2 with £ 4+ 1 and leaves all others fixed (\; = px € A)
and let Uy = L(I™) for £ =1,2,.... U is unitary and (U|¢) = 0,
k=1,2,....Hence weak lim U, = 0.

For any given operator " = L(¢) in R = R; ® 1 (Ry = R, ® v), where tis
an R;-valued functionon ® @ II (®# ® A),and e > 0,let 77 = L(#') € R3 (R4)
be such that #/(g) = Oforall gin ® ® II (® ® A) except on a finite subset .S,
and ||(T — T")|| < €/2. Let p denote the largest natural number j for which
thereisa (g, 7) € S with 7(j) # j, ¢ denote the largest natural number j such
that a; (a; or b;) appears in the reduced word representation of the first
coordinate of some element in S. Let N = max(p, ¢). At this point, we note
that L(s®)L(I*) = L(I*)L(s®) for all & € (e, II) ((e, A)), s € R;. Clearly, for
all # > N, U, commutes with L(I?) if g € S. In short, 77U, = U;T’ for all
k > N. Hence k > N implies

N(UTU* = DE|| = [|ULT — T Ul + [[(T = Tl = 2I(T — T")E]|<e.

The last step in the above expression is justified since for each # € (e, IT) ((e, A))
we have:

(11) (LIMTLI")*¢|g) = (TE)g) forall T € R; (Ry).
To verify this, we only need to show that
(LI*ML(fxo) L(IM)E|E) = (L(f*9)E[E)

for arbitrary f € M(x,u),a € K,g € ® @ II (# ® A). In fact, both sides are
equal to zero if g 3 e or o # ¢, and equal to fxf(x) duif g = e, = e. Hence
limg, || (UTU* — T)E|| = 0, i.e. strong lim UyTUg* = T. Therefore, R; and
R, have property L.

Proof of Lemma 11. Assume, on the contrary, that R; has property C. Then,
for the unitary sequence Ui (B = 1, 2, ...) in the proof of Lemma 10, there
exists a sequence Vi (B = 1,2,...) of mutually commuting operators in Rj
such that strong lim(U; — Vi) = 0. Since Mepihy 32 Mehgrr, for 2 = 1,2, ...,
we have:

V2 = |[(Up1Ux — UpUpsn)El] £ ||(Uksr — Vo) Udl| + || Vi (U — V)|
+ [[(Vi = Up) (Vipr — Urrn)El| + || (Ve — Ux) Upad|
+ | Ue(Vier — U él] £ 2[|(Ukgr — Vi) &[] + [[(Vi — Un)él|
+ [ Vil (U — V& + | Ve — Ul [|(Virr — Uns1) &l
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by (11). Since strong lim(U — V) exists, {||Ux — Vil|}, B =1,2,..., and
{|Vill}, B =1,2,..., are bounded by some positive number M by the
uniform boundedness principle. Therefore, each term in the last expression
in the above inequality approaches 0 as £ — 0. This contradiction proves that
R; does not have property C.

Proof of Lemma 12. Let Uy = L(fi(x, , g)) (k = 1,2,...) be a sequence of
unitary operatorsin Ry = M(x, u) ® # ® vsuch thatstronglim U*T' Uy = T
for each T" € R4, where for each (o, g) € K X & ® A, fi(x, a, g) is a bounded
w-measurable function on X. Let R4 denote the von Neumann subalgebra of
Ry consisting of all L(f (x, a, g)) withf(x,a,g) = 0ifa # eorg ¢ A = (¢, A).
Note that L(I¢*)L(f*¢) = L(f*¢)L(I¢"*) for all h € A C kerv, f € M(x, p).
Since M (X, u) and A are abelian, R4 is an abelian von Neumann subalgebra
of Ry. By (11), (L(I®*)T%|g) = (T'L(I°*)¢|¢) for all B € A, T € Ry Also, for
each fo € M (X, u), we have:

(L(fo®*)TtE) = (TL(fo*°)¢lg) forall T € Ry
To verify this, we only need to show that

(L (fo")L(f)E[) = (L(f)L(fo**)E[£)

forany f € M(X,u),a € K, g € ® ® A. In fact, both sides are non-zero only
ifa = ¢, g = ¢, and in this case both sides are equal to [x fo(x)f(x) du. Hence,
for any T" € R4, S € R4, we have (T'Sg|g) = (ST¢|£), since the linear span of
L(fo¢¢)L(I"),fo € M(X, u), h € A, is weakly dense in Ry;. Now, by Lemma 4,
there exists a projection P of norm one from R, into R4. We claim that
Vi =P(Us) = L(fi(x, e, g)) (k=1,2,...) (where fi(x, ¢, g) = fu(x, ¢, g) if
g€ A, filx,a,8) = 0ifa 5 eor g ¢ A) is a sequence of mutually commuting
(since R4; is abelian) operators required for having property C.

Let G=® Q® A, g1, g2, S, B as described in the proof of Lemma 7. Let
T,= L(*%), 1 =1, 2. Note that »(g;) = I (¢ =1, 2). For given ¢ > 0,
suppose that N = N(e) is such that for z = 1, 2, £ > N implies

€> l[(Uk*TiUk - Ti)fll
= [[(LI%)L(fulx, @, g)) — L(filx, @, g))L(I"))E||

1/2
= <Z Z f lfk(gixrgia7 g) _fk(xv a’giggi_l)l2> .
g€EG a€K YX
Put F(a, g) = (fX |fu(x, @, g)|? du)'/?, where k is an arbitrary integer greater
than N. We observe that x — g (¢ = 1, 2) is a measure-preserving trans-
formation on X ; thus by an application of the triangle inequality, for 7z = 1, 2,
we have:

> 2 |Fla,gggs ™) — F@)

966 acK
= Z Z <L lfk(xrargiggi—l)IZdﬂyﬂ - <L lfk(gix’ g, g)|2 dﬂ>1/2
< [T — UT el < &

g€EG a€K
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By Lemma 5, we have:

(12) > 2 JX e, @ = 3 3 Pl )] < 1966

gEB a€EK
For a, B € K, we write a ~ f if there exists a g € &, such that ga = 8,
where @, is the subgroup of G generated by g1, gs. It is easy to see that in this
way we obtain an equivalence relation on K. We denote by Q the totality of
the equivalence classes not containing the identity e of K. In each w € ,
choose an element a,. Then every element of K can be written uniquely in the
form ga, (g € ®;). We introduce the function

fole) = (; | P g, W)

on ®, for each w € Q. Let

- <Z rwr) - sup(z teed — £ @L)

geP2 i=1,2 \g€P:

1/2

We remark that by (8, Lemma 11), we have ¢, < 20 d,. Hence

13) T [ han)
a€EK; hE
=33 3 IFgan )| =X ¢t £ 4004,

aFe
g€ds wEQ hEA wEQ WEQ

=400 sup >, > > |F(gguw, ) — Flge, k)"

i=1,2 w€R g€P2 hEA

< 400 sup 3 f (e, g ) — fulx, @, 2)|* du
i=1,2 :;t h€

< 400 sup |[(T.Ux — UT)E||* £ 400€°.
i=1,2
By (12) and (13), we have, for £ > N,

1= vt = = [ lhwanl
gEB a€K X
+2 2 L |felw, @, )| di < (196 + 400)<’.

a€K; hE

a#ze
Hence [[(Uy — Vi)é|| >0 as &k — 0. Since ||Vi|| = [|[P(U)|| £ ||Ui]] = 1,
E=1, 2, ..., {lIlVi—Ul}, =1, 2, ..., is also bounded. Thus,

strong lim (U, — V) = 0, since £ is a cyclic vector for Ry’. This completes the
proof that R4 has property C.
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