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SOME COMMUTATIVITY RESULTS FOR RINGS

ABrRAHAM A, KLEIN, ITzHAK NaDA,
AND Howarp E. BELL

It is proved that certain rings satisfying generalized-commutator

constraints of the form Eﬂn, yn, yn, cens yn] = 0 must have nil

commutator ideal.

Let R be an associative ring; and define generalized commutators

Erl, Tos enes xk] , k=2, as follows: Erl, xe] = XX, - TS and for
k>2, [xl, T oo xk] = [[xl, cees xk-l]’ xk] . For x =z and
Ty, =y = ... =3 =y , abbreviate [z, y, ..., y1 vy =, y]k .

A few years ago it was proved independently by Herstein [2] and by
Anan'in and Zyabko [7] that R has nil commutator ideal if for each
xl, x2 € B there exist positive integers nl = nl(xl, x2) and

n n
1 2 .
n, = ngﬂzl, x2) such that [%l , xz:] = 0 ; more recently Herstein [3]
has established the same conclusion under the hypothesis that for all

xl, x2, x3 € R there are positive integers nl, n2, n3 such that

nl ny n3

I%l . x2 N x3:] = 0 . The following conjecture arises naturally from this
work.

CONJECTURE. Let k > 1 and suppose that for each x, y € R , there
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exist positive integers m, n such that [« yn]k =0 . Then the
commutator ideal of R s nil.
Given the complexity of [2] and [3], it would appear that no proof of

this conjecture is in sight; indeed, even the k = 3 case seems

difficult. Hence the following case may be of interest.

THEOREM 1. Let R be a ring and let M be a fixed positive

integer. Suppose that for each x, y € R there exist positive integers

m=mlx, y) =M and n =nlx, y) such that [xm, y", ¥l = 0. Then the

commutator ideal of R 1is nil.

Proof, By proceeding as in [3], we can reduce the problem to
establishing commutativity of R under the additional hypotheses that R
is prime and torsion-free, and that every element of R 1is either regular
or nilpotent - hypotheses which we henceforth assume. Moreover, in view of

the result of [1] and [2], we need only show that for each «, y € R ,
there exist m, n for which Erm, yn] =0 .

Clearly this condition holds for nilpotent y , so we assume that y

[

. n ”n
is regular, and choose m =M and nl for which [xm, y l, y l] =0.

— n n
Taking xl = xaﬂ , let w and n2 be such that liuli, y 2, Y 2:] =03 and

note that for v = 20 and n = N, , ve have [xm, yn, yn] and

my
[x . yn, yn] =0 , so that [gcm, yn] is nilpotent by [3, Lemma 1]. Thus,
if a 1is chosen to be an appropriate power of [xm, yn] and =z = yn , We
have a° = fa, 21 =0 .

For any u € R and < = 1 , there exist mi =M and si such that

m. s. s,
i . . . , .
[u “, (22+a) Y, (iz+a) 7’] =0 . Taking ¢ =1, 2, ..., 2441 and using the

pigeon-hole principle, we get 7:1’ i2, 713 with 1 = il < 122 < 123 < 2M41
for which m. =m. =m. . Denoting this common value by ¢ and
Zy 15 ig

defining s = s. 8, s, we have Eﬂ 12+q)° i.z-l-asil =0,
7’1’L27'3, ’(J ]’(J ]
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. 2
J =1, 2, 3 ; it now follows by use of the fact that a” = [a, 8] =0
that

(1) %8y i;s'lv + i?s_ev

Jl =O, j=l,2,3,

where vl’ v2, v are respectively defined to be [ﬁq, zs, zs] s

3
2s[ud, % 1q, 2°] and se[ﬁq, 2571, zs_la] . The 3 x 3 coefficient
matrix in (1) is obtained by multiplying the rows of a Vandermonde matrix by
non-zero integers, so the fact that R 1is torsion-free yields

v. =v_=v,=0; and since a- =0 = [a, z°7*]

1 > 3 and 2z 1is regular, the

statement v3 = 0 reduces to the result that auqa =0 .

If b € R and b2 =0, we claim that aba = 0 . For if v € R ,
there exists g = M for which alavab+b)a = 0 , which yields

ab(avab)q_la =0 = (abav)? . Thus abaR is a nil right ideal of bounded
index, which by the Nagata-Higman Theorem [4, p. 274] must be nilpotent;

and the primeness of R forces aba = 0 .

Now if e, d € R with ed = 0 , (dvc)2 = 0 for arbitrary v € R ,
and hence advea = 0 . Since AR is prime, we have ad =0 or ca =0,

so cad = 0 . Thus, insertion of a as a factor preserves triviality of

products; and from auqa = 0 we can conclude (au)

+
(au)M 1. 0 for all u € R , and another appeal to the Nagata-Higman

<+
q+l = 0 . Therefore
Theorem gives a = 0 . Thus we have that any power of the nilpotent

element Eﬂn, yn] whose square is O must also be 0 , so Eﬁn, yn] =0 .

The proof of Theorem 1 is now complete.

The following theorem, except of having its own interest, shows that

the conjecture is implied by the Kothe Conjecture.

THEOREM 2. Let R be a ring with no non-zero nil right ideals, and
let k >1 . OSuppose that for each =z, y € R there exist m, n > 1 such

that Eﬁ", y?]k =0. Then R 1is commutative.

Proof. Let a be in R with a2 =0, and let & be an arbitrary

https://doi.org/10.1017/50004972700006584 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006584

288 Abraham A. Klein, |tzhak Nada, and Howard E. Bell

!
o

element of R . Take m, m > 1 such that [(a+a:1:)m, (ax)n]k = This

condition reduces to (ax)ta =0 where t =m-1+ (k-1)n , hence aR is
nil, so a = 0 . Consequently, R * has no non-zero nilpotent elements;
and by a well-known result it is a subdirect product of domains. Our proof
will be complete once we establish that each of these domains must be
commutative. This is easily verified as in [3] for such a domain of

prime characteristic; and such a torsion-free domain is commutative by the

following lemma.

LEMMA. Let R be a torsion-free domain, and let k > 1 . Suppose
that for each x, y € R , there exist m, n =1 such that [xm, yn]k =0 .
Then R <is commutative.

Proof. Assume k = 3 and let x, y € R . Then there exist m, ry

r
such that [xm, Y l:]k'= 0 and there exist m', ry such that

r

!
[x(m)m .y 2]k =0 . It can easily be verified that

m r (em)m' r
[x,y]k=[x ay]k=0
for r»=rr_ . Taking x, = 2" and ¢ = 2n' and letting & ©be the

12 0

derivation defined by u8 = [u, y*] , we have xOGk-l = [xg)ék-l =0 . DNow

t=>2 and k=3, so t(k-2) 2k -1 and therefore ng)ét(k-g) =0 .

k-1 _

Expanding this last equation and using the fact that :I:O(S 0, we

t
obtain a non-zero integer s for which stoﬁk-Z) = 0 and our hypotheses

on R 7yield xoék_z

= 0 , which we may express as [xm, yr]k 1 = 0 . Thus
we work back to the k = 2 case of [1] and [2].

The entire problem becomes much more tractable for rings with 1 .

Indeed, we can establish the following theorem.

THEOREM 3. For all k >1 the conjecture is true for rings R with
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We omit the details of the proof. The computational details are
similar to the ones already presented. We merely note that it suffices to
establish commutativity of R wunder the additional hypotheses that R is
prime and torsion-free. A Vandermonde argument is used to prove that if
these additional hypotheses hold, then R has no non-zero nilpotent
elements so it is a domain, and it is commutative by the result of the

lemma.
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