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SOME COMMUTATIVITY RESULTS FOR RINGS

ABRAHAM A. KLEIN, ITZHAK NADA,
AND HOWARD E. BELL

It is proved that certain rings satisfying generalized-commutator

constraints of the form \x , y , y , ..., t/ ] = 0 must have nil

commutator ideal.

Let R be an associative ring; and define generalized commutators

\xl, x2, . . ., x^\ , k S 2 , as follows: [a^, x,J = x^2 - x ^ ; and for

k > 2 , [x±, x2, . . . , xfe] = [[a^, . . . , xk_^\, x^\ . For x± = x and

x2 = x^ = . . . = x ^ = y , a b b r e v i a t e [x, y, . . . , y] by [x, z/L .

A few years ago i t was proved independently by Herstein [2] and by

Anan'in and Zyabko [7] that R has n i l commutator ideal if for each

x , x (. R there exist positive integers n = n [x , x ) and

[ 3 ]
Fni n2l

n = n [x , x ) such that x x = 0 ; more recently Herstein

has established the same conclusion under the hypothesis that for all

Xl' X2' X1 ^ ̂  t h e r e a r e positive integers n , n , n such that

x , x , x = 0 . The following conjecture arises naturally from this

work.

CONJECTURE. Let k > 1 and suppose that for each x, y i R , there
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exist positive integers m, n such that \x , yn~\^ = 0 . Then the

commutator ideal of R is nil.

Given the complexity of [2] and [3], i t would appear that no proof of

this conjecture is in sight; indeed, even the k = 3 case seems

difficult . Hence the following case may be of interest.

THEOREM 1. Let B be a ring and let M be a fixed positive

integer. Suppose that for each x, y (. R there exist positive integers

m = m(x, y) 5 M and n = n(x, y) such that [x , yn, yn] = 0 . Then the

commutator ideal of R is nil.

Proof. By proceeding as in [3], we can reduce the problem to

establishing commutativity of R under the additional hypotheses that R

is prime and torsion-free, and that every element of R is either regular

or nilpotent - hypotheses which we henceforth assume . Moreover, in view of

the result of [ '] and [2], we need only show that for each x, y 6 R ,

there exist m, n for which \x , y ] = 0 .

Clearly this condition holds for nilpotent y , so we assume that y

n.
i s r e g u l a r , and choose m 2 M and n for which \x , y , y ] = 0 .

Taking x = x , l e t W and n . be such t h a t \x , y , y = 0 ; and

no te t h a t for V = 2J and n = o , , ve have \x , y , y J and

&• 5 j / ) y j = 0 » s o t h a t [x , y ] i s n i l p o t e n t by [ 3 , Lemma 1 ] . Thus,

i f a i s chosen t o be an appropr i a t e power of [a; , y J and z = y , we

have a = [a, z] = 0 .

For any u £ R and i ; 1 , there exist m. £ M and s . such that

m . s . s .
\u %', {iz+a) \ (iz+a) V~\ = 0 . Taking i = 1, 2, . . . , 2M+1 and using the

pigeon-hole principle, we get i , i , i with 1 £ i < i < £_ S 2W+1

for which m. = m. = m. . Denoting th is common value by a and
*1 %2 V3

defining s = s. s. s. , we have w^, [i .z+a]S, [i.z+a)s\ = 0 ,
1 2 3 1_ </ <7 J
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3 = 1, 2, 3 ; i t now follows toy use of the fact that a = [a, a] = 0

that

(1) i fu , + if~\ + if~% = 0 , j = 1, 2, 3 ,

where V, , Vp, v_ are respectively defined to be \u", z , z ] ,

2s [V7, zs~Xa, zs] and s2[w?, ^""""a, 2S~V] . The 3 * 3 coefficient

matrix in ( l ) i s obtained by multiplying the rows of aVandermonde matrix by

non-zero integers, so the fact that R is torsion-free yields

V = v = V = 0 ; and since a = 0 = [a, z ~ ] and z i s regular, the

statement v = 0 reduces to the resul t that aSa = 0 .

p
If J ( J? and & = 0 , we claim that aba = 0 . For i f v € R ,

there exists q 2 M for which a(ava£>+2>)̂ a = 0 , which yields

ab(avab)1~ a = 0 = (abav)1 . Thus ai>a/? is a n i l r ight ideal of bounded

index, which by the Nagata-Higman Theorem [4, p. 27*0 must be nilpotent;

and the primeness of R forces aba = 0 .

Now if a, d £ R with od = 0 , (dvc) = 0 for arbi t rary v 6 i? ,

and hence advaa = 0 . Since /? i s prime, we have ad = 0 or ca = 0 ,

so cad = 0 . Thus, insertion of a as a factor preserves t r i v i a l i t y of

products; and from au a = 0 we can conclude (au)" = 0 . Therefore

(aw) = 0 for a l l u € R , and another appeal to the Nagata-Higman

Theorem gives a = 0 . Thus we have that any power of the nilpotent

element [ # » { / ] whose square is 0 must also be 0 , so [x , y J = 0 .

The proof of Theorem 1 is now complete.

The following theorem, except of having i t s own in te res t , shows that

the conjecture i s implied by the Kothe Conjecture.

THEOREM 2. Let R be a ring with no non-zero nil right ideals, and

let k > 1 . Suppose that for each x, y € R there exist m, n 2 1 such

that \x , y J, = 0 . Then R is commutative.

2
Proof. Let a be in R with a = 0 , and l e t x be an arbi t rary
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element of R . Take m, n > 1 such that [(a+ax)w, (ax)"], = 0 . This

condition reduces to (ax) a = 0 where t = m - 1 + (k-l)n , hence aR is

ni l , so a = 0 . Consequently, R *" has no non-zero nilpotent elements;

and by a well-known result i t is a subdirect product of domains. Our proof

will be complete once we establish that each of these domains must be

commutative. This is easily verified as in [3] for such a domain of

prime characteristic; and such a torsion-free domain is commutative by the

following lemma.

LEMMA. Let R be a torsion-free domain, and let k > 1 . Suppose

that for each x, y € R , there exist m, n > 1 such that [xm, J/W]i. = 0 .

Then R is commutative.

Proof. Assume k > 3 and l e t x, y € R . Then there exist m, r.

such that \x , y Jj, = 0 and there exist m', r>_ such that

\xr , y ] , = 0 . It can easily be verified that

r m r-\ r (2m)m' r-\
\? > y \ = [« ' y \ = °

for r = zy^o • Taking x = x and t = 2m' and le t t ing 6 be the

derivation defined by w6 = [w, y J , we have xQ6 ~ = x . 6 = 0 .

t 2 2 and Zc > 3 , so t{k-2) > k - 1 and therefore x * | 6 * ^ " 2 ) = 0 .

k-1Expanding this last equation and using the fact that x 6 = 0 , we

How

obtain a non-zero integer s for which s Jx 6 ""I =0 and our hypotheses
•(*.«")' • •

on R yield x 6 = 0 , which we may express as [x , y ~\, = 0 . Thus

we work back to the k = 2 case of [7] and [2 ] .

The ent i re problem becomes much more t ractable for rings with 1 .

Indeed, we can establish the following theorem.

THEOREM 3. For all k > 1 the conjecture is true for rings R with
1 .
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We omit the details of the proof. The computational details are

similar to the ones already presented. We merely note that i t suffices to

establish commutativity of R under the additional hypotheses that R is

prime and torsion-free. A Vandermonde argument is used to prove that if

these additional hypotheses hold, then R has no non-zero nilpotent

elements so i t is a domain, and i t is commutative "by the result of the

lemma.
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