MATHEMATICAL NOTE

A NOTE ON EVALUATION OF THE INTEGRAL

$$
\begin{gathered}
\int_{0}^{\infty} e^{-k t} I_{0}^{n}(t) d t \\
\text { by R. P. AGARWAL } \\
\text { (Received 10th October 1963) }
\end{gathered}
$$

1. The object of this note is to show that the integral

$$
\begin{equation*}
\int_{0}^{\infty} e^{-k t} I_{0}^{n}(t) d t \tag{1.1}
\end{equation*}
$$

for certain particular values of k and n can be evaluated in terms of complete elliptic integrals. The integral (1.1) for $n=1$ can be easily expressed as a binomial and for $n=2$ in terms of a complete elliptic integral (2). However, the corresponding value for other cases does not appear to be given in the literature.

In this note, I use an indirect method to evaluate (1.1) for $k=3=n$, in terms of a square of a complete elliptic integral. In the sequel, an interesting case of reducibility of a particular F_{c}-function (one of the Lauricella's hypergeometric functions of three variables (1)) is obtained.
2. Evaluation of (1.1) for $k=3=n$

It is very easy to see that (1.1) can be evaluated for positive integral values of n by term by term integration of the n-ple series representing $I_{0}^{n}(t)$. In fact, simple algebra shows that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-k t} I_{0}^{n}(t) d t=\frac{1}{k} F_{c}\left(\frac{1}{2}, 1 ; 1, \ldots, 1 ; \frac{1}{k^{2}}, \ldots, \frac{1}{k^{2}}\right) \tag{2.1}
\end{equation*}
$$

where F_{c} is one of the four Lauricella's hypergeometric functions of n-variables.
For $k=3=n$, (2.1) gives

$$
\begin{equation*}
\int_{0}^{\infty} e^{-3 t} I_{0}^{3}(t) d t=\frac{1}{3} F_{c}\left(\frac{1}{2}, 1 ; 1,1,1 ; \frac{1}{9}, \frac{1}{9}, \frac{1}{9}\right) \tag{2.2}
\end{equation*}
$$

Now, since

$$
I_{0}(t)=\frac{1}{\pi} \int_{0}^{\pi} e^{t \cos u} d u
$$

the left hand side of (2.2) can be written as

$$
\frac{1}{\pi^{3}} \int_{0}^{\infty} e^{-3 t}\left[\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} e^{t(\cos u+\cos v+\cos w)} d u d v d w\right] d t
$$

Interchanging the order of integration, which is obviously justified, this becomes

$$
\begin{equation*}
\frac{1}{\pi^{3}} \int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \frac{d u d v d w}{3-\cos u-\cos v-\cos w} \tag{2.3}
\end{equation*}
$$

Evaluating (2.3) by the help of a known integral due to Watson (3), we have

$$
\begin{equation*}
\int_{0}^{\infty} e^{-3 t} I_{0}^{3}(t) d t=\left(18+12 \sqrt{2}-10 \sqrt{3}-7 \sqrt{6}\left(\frac{2 K_{2}}{\pi}\right)^{2}\right. \tag{2.4}
\end{equation*}
$$

where K_{2} is the complete elliptic integral with modulus $(2-\sqrt{ } 3)(\sqrt{3}-\sqrt{2})$.
(2.4) gives the desired result.

Incidentally, we have shown that

$$
\begin{equation*}
\frac{1}{3} F_{c}\left(\frac{1}{2}, 1 ; 1,1,1 ; \frac{1}{9}, \frac{1}{9}, \frac{1}{9}\right)=(18+12 \sqrt{2}-10 \sqrt{3}-7 \sqrt{6})\left(\frac{2 K_{2}}{\pi}\right)^{2} . \tag{2.5}
\end{equation*}
$$

It does not appear to be easy to establish the reduction in (2.5) by direct transformation of its left hand series.

REFERENCES

(1) P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques (Paris, 1926).
(2) A. Erdélyi et al., Tables of Integrial Transform, Vol. 1 (Bateman Manuscript Project).
(3) G. N. Watson, Quart. Jour. Math. (Oxford), 10 (1939), 266-276.

Department of Mathematics
 University of Gorakhpur
 Gorakhpur

