
JFP 34, e15, 26 pages, 2025. c© The Author(s), 2025. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796824000121

A simple blame calculus for explicit nulls

ONDŘEJ LHOTÁK
University of Waterloo, Waterloo, Canada

(e-mail: olhotak@uwaterloo.ca)

P H I L I P W A D L E R
School of Informatics, University of Edinburgh, Edinburgh, UK

(e-mail: wadler@inf.ed.ac.uk)

Abstract

Gradual typing provides a model for when a legacy language with less precise types interacts with
a newer language with more precise types. Casts mediate between types of different precision, allo-
cating blame when a value fails to conform to a type. The blame theorem asserts that blame always
falls on the less-precisely typed side of a cast. One instance of interest is when a legacy language
(such as Java) permits null values at every type, while a newer language (such as Scala or Kotlin)
explicitly indicates which types permit null values. Nieto et al. in 2020 introduced a gradually typed
calculus for just this purpose. The calculus requires three distinct constructors for function types and
a non-standard proof of the blame theorem; it can embed terms from the legacy language into the
newer language (or vice versa) only when they are closed. Here, we define a simpler calculus that
is more orthogonal, with one constructor for function types and one for possibly nullable types, and
with an entirely standard proof of the blame theorem; it can embed terms from the legacy language
into the newer language (and vice versa) even if they are open. All results in the paper have been
mechanized in Coq.

1 Introduction

Null pointers are infamous for causing software errors. Hoare (2009) characterized them
as “The Billion Dollar Mistake.”

One way to tame the danger of nulls is via types. Whereas older languages, such as
Pascal and Java, permit nulls at any reference type, more recent designs, including Kotlin,
Scala, C#, and Swift, adopt type systems that track whether a reference may be null. (In
Scala, the type system with explicit nulls (Nieto et al., 2020b) is available in versions 3.0.0
and later and is enabled is enabled by the compiler flag -Yexplicit-nulls.) How do we
permit code in older and newer languages to interact while preserving the type guarantees
of the newer languages?

Gradual typing provides a sound theoretical basis for answering such questions, where
a legacy language with a less precise type system (such as Java) interacts with a newer
language with a more precise type system (such as Kotlin or Scala). Important early sys-
tems include those by Siek and Taha (2006) and Matthews and Findler (2007). They

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796824000121
https://orcid.org/0000-0001-9066-1889
mailto:olhotak@uwaterloo.ca
https://orcid.org/0000-0001-7619-6378
mailto:wadler@inf.ed.ac.uk
https://doi.org/10.1017/S0956796824000121

2 O. Lhoták and P. Wadler

introduce casts to model monitoring the barrier between the two languages. A cast is intro-
duced at every place where the boundary is crossed. Each cast checks at runtime whether
values passed from the less-precisely typed language violate guarantees expected by the
more-precisely typed language.

A key innovation, introduced by Findler and Felleisen (2002), is that when a cast fails
blame is attributed to either the source or the target of the cast. Tobin-Hochstadt and
Felleisen (2006) and Matthews and Findler (2007) exploit this innovation to prove that
when a cast fails, blame always lies with the less-precisely typed side of the cast. Though
the fact is obvious, their proof is not, depending on observational equivalence. Wadler and
Findler (2009) introduced the blame calculus as an abstraction of the earlier models and
offered a simpler proof of the obvious fact based on a simple syntactic notion of blame
safety and a straightforward proof based on progress and preservation.

Nieto et al. (2020a) applied gradual typing and blame to the case of type systems that
track null references. Their λnull calculus supports three function types, which vary in the
guarantees they provide about whether a variable or field of that type could hold the null
value instead of a function value:

• #(S → T) is a non-nullable function type, corresponding to a non-nullable object
reference type such as String in Scala or Kotlin. Values of this type cannot be null.
(There are technical exceptions where the value can be null, as explained in that
paper.)

• ?(S → T) is a safe nullable function type, corresponding to a nullable object refer-
ence type such as String|Null in Scala or String? in Kotlin. Values of this type can be
null, and the type system ensures nulls are properly handled.

• !(S → T) is an unsafe nullable function type, corresponding to an object reference
type such as String in Java. Values of this type can be null, but the type system
guarantees nothing about proper handling of such nulls.

Their system also supports two forms of application, normal application s t and safe
application app(s, t, u). Both apply s to t when the function is not null, but when the func-
tion is null the former gets stuck, while the latter returns u. The two forms of application
align with the three function types as follows. Consider the type of a function term s.

• #(S → T) can be applied using standard application s t.
• ?(S → T) can be applied using safe application app(s, t, u).
• !(S → T) can be applied using either standard application s t or safe application

app(s, t, u).

Casts may be used to convert the types of terms and in particular to convert functions
between these various types. At runtime, if a cast attempts to convert null from one of the
latter two types to the first type the cast will fail, assigning blame appropriately to one side
or the other of the cast.

On top of λnull, that paper also defines λs
null, a calculus representing two languages, one

where nulls are implicitly permitted everywhere (like Java) and one with nulls reflected
explicitly in its types (like Scala or Kotlin). The syntax of the two languages is mutually
recursive with an import construct that makes it possible to embed a term of one of the lan-
guages within a term of the other, modeling that it is possible to call either language from

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 3

the other. The typing rules require each such embedded term to be closed, so it cannot have
free variables bound in the other language. Thus, a closure in one language cannot close
over bindings from the other language. The semantics of λs

null is defined by translation
to λnull, with import constructs translated to corresponding casts. The key result is that if
any of these casts fails, the blame is always assigned to code from the less-precisely typed
implicit language, where nulls are implicitly permitted everywhere.

The metatheory of Nieto et al. (2020a) was mechanized in Coq in an accompanying
artifact (Nieto et al., 2020c). The Coq mechanization closely follows the development as
presented in that paper.

This paper reiterates the development of the earlier paper, but using a simpler system
and one that is closer to the standard development of blame calculus.

• Instead of three variants of function types, our design is more orthogonal. There is a
function type A → B, and there is a nullable type D?, which adds nulls to an existing
type D. Here, A and B range over all types, while D is restricted to definite types
that do not already admit nulls. (This syntax rules out potentially confusing types
such as D??.) The values of type D? are either null or of the form 〈V〉, where V is a
value of type D. The angle brackets designate lifting from type D to D?.

• Instead of two forms of application, one safe and one unsafe, our orthogonal system
of types leads to a corresponding orthogonal system of terms, based on standard
forms of application for functions (L M) and case analysis for nullable values
(case L of {null �→ M; 〈x〉 �→ N}).

• Instead of a high-level language λs
null with explicit and implicit sublanguages that

translates into a core language λnull, we define an explicit language EN that ful-
fills the role of both λnull and the explicit half of λs

null and we define an implicit
language IN that fulfills the role of the implicit half of λs

null.
• The implicit language IN is given a semantics by translation into the explicit lan-

guage EN, making it easy to assign a semantics to arbitrary nesting of explicit and
implicit terms. There is no longer a requirement that nested terms be closed; free
variables of a term in one language can be bound in the other language.

• The resulting development is simpler and more standard than the previous devel-
opment. In particular, we adapt the Tangram Lemma of Wadler and Findler (2009)
to prove that blame is always assigned to the less-precisely typed language. The
previous development did not use the Tangram Lemma, relying instead on a more
convoluted argument.

Thus, our system can serve as a simpler and more canonical foundation for formal
models of the interaction between languages with explicit and implicit nulls.

Our development extends the simply typed lambda calculus with only those features
that are motivated by adding nulls. Thus, it is an initial foundation to which other language
features can be added in future work to study any hypothetical feature interactions. While
our theoretical results can guide the design of full programming languages, a caveat of all
work on core language calculi is that it is possible for larger language to violate proper-
ties established on a core calculus. For example, although Featherweight Java was proven
sound (Igarashi et al., 2001), the presence of null values in the full Java language was
found to undermine that soundness (Amin and Tate, 2016). There is value both in more

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

4 O. Lhoták and P. Wadler

complete semantics, in which feature interactions can be explored, and in featherweight
calculi, which elucidate the essence of a feature. The value of featherweight calculi was
discussed further by Griesemer et al. (2020), who as evidence compare citations counts for
the paper on Featherweight Java, Igarashi et al. (2001), with the four most-cited papers on
more complete models, Flatt et al. (1998), Nipkow and von Oheimb (1998), Drossopoulou
and Eisenbach (1997), and Syme (1999): 1226 as compared with 592, 270, 188, and 172,
respectively (Google Scholar, May 2024).

This paper is organized as follows. Section 2 defines the explicit language EN. Section 3
proves its key properties: type safety, blame safety, and the Tangram Lemma. Section 4
defines the implicit language IN and its translation to EN and proves that the translation
preserves types. Section 5 explores interoperability of the two languages: we show how
terms of each language can be embedded in the other, define the casts needed to medi-
ate between the two, and prove that any failure of these casts always blames the implicit
language IN . Section 6 further compares our calculi to those of Nieto et al. (2020a) and
discusses connections to full languages such as Scala and Java. Section 7 surveys related
work. Section 8 concludes.

We have mechanized all of our lemmas and propositions in Coq and included the mech-
anization with the paper as additional material. The mechanization follows the locally
nameless approach of Aydemir et al. (2008) and uses the Ott (Sewell et al., 2010) and
LNGen (Aydemir and Weirich, 2010) tools to automatically generate the associated Coq
infrastructure and lemmas from a file of definitions that directly follow those in the paper.
Aside from the use of a locally nameless representation, the mechanization directly follows
the development as it is presented in the paper.

2 The explicit language EN

In this section, we introduce a language that tracks the possibility of null references explic-
itly in types. We call it EN for short. Following the advice of Patrignani (2021), we use a
blue color and an upright sans-serif font for elements of EN to distinguish them from those of
another language that we will introduce in Section 4. In this section, we define syntax and
typing rules, a reduction relation, and four blame subtyping relations for EN. In Section 3,
we prove standard type safety and blame safety properties.

The syntax of EN is shown in Figure 1. The basic values are constants c of a base
type ι, function abstractions λx:A.N of a function type A → B, and the null constant null.
In addition to the two definite types ι and A → B, the type system includes nullable types
D?, where D is any definite type. The constructors of D? are the null constant null and the
lift operation 〈M〉, where M is a term of type D. When V is a value, 〈V〉 is also considered a
value, and when V is a function value, the cast V : A → B =⇒p A′ → B′ is also a function
value.

In addition to values, the calculus includes terms for function application L M, casts
M : A =⇒p B, a case construct case L of {null �→ M; 〈x〉 �→ N} that destructs terms of nul-
lable types D?, and a failure result blame p. As is standard in gradual type systems, each
cast has a blame label p so that the result of a failing computation can be traced to the
cast that failed. A cast with blame label p may fail at run time, yielding either blame p or
blame p. Here, blame p is positive blame and indicates that fault lies with the term contained

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 5

Fig. 1. EN syntax.

in the cast, while blame p is negative blame and indicates that fault lies with the context
containing the cast. The overbar is an involutive operator on blame labels: p = p.

As an example of positive blame, consider the term:

((λx:ι.null) : (ι → ι?) =⇒p (ι? → ι)) 〈c〉
During reduction, the function will be applied to a constant c of type ι, yielding null, caus-
ing a cast failure because null is not a value of the definite type ι given as the return type of
the function in the target type (ι? → ι) of the cast. The fault lies with the function within the

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

6 O. Lhoták and P. Wadler

cast, which returned null although the cast promised that it would return a non-null value.
This example term evaluates to positive blame p.

As an example of negative blame, consider the similar term:

((λx:ι.null) : (ι → ι?) =⇒p (ι? → ι)) null

During reduction, the function will be applied to null, causing a cast failure because null is
not a value of the definite type ι specified as the parameter type of the function. The fault
lies with the context containing the cast, namely the null value to which the cast term is
being applied. This example term evaluates to negative blame p.

The typing rules of EN are shown in Figure 2. The rules for variables, base type constants
and operations, and function abstraction and application are standard. The NULL and LIFT

rules identify the null constant null and the lift operation 〈M〉 as the constructors of a
nullable type D?. The CASE rule specifies that case destructs terms of a nullable type D?.
The CAST rule allows casts from type A to type B as long as A and B are compatible,
written A ∼ B. Informally, two types are compatible if they have the same structure but
differ only in the nullability of their components. Finally, the BLAME rule specifies that a
failure result blame p is possible at any type A.

The operational semantics of EN is shown in Figure 3. The BINOP rule reduces a base
operation applied to values V and W to a base constant specified by an external base oper-
ation evaluation function �⊕�(V, W) (which requires and returns only base constants, not
nulls). The APP rule is standard β-reduction. Two rules reduce a case. When the scrutinee
is null, the case reduces to the term in the null branch (CASE-NULL). When the scrutinee is
a lifted value 〈V〉, the case reduces to the term in the non-null branch, with V substituted for
the parameter x (CASE-LIFT). The WRAP rule defines β-reduction for a function wrapped
in a cast, ensuring that the argument W and the final result of the function application are
cast accordingly. During reduction, the argument will first be cast from A′ to A, then the
function V will be applied to it, and finally the result will be cast from B to B′. There are
four rules for reducing casts from a nullable type D?. A cast of null to another nullable type
E? reduces to just null (CAST-NULL). A cast of null to a non-nullable type E reduces to
blame p (DOWNCAST-NULL). A cast of a lifted value 〈V〉 from type D? to a non-nullable
type E evaluates to V wrapped in a cast from D to E (DOWNCAST-LIFT). When such a
lifted value is cast to a nullable type E?, this result is additionally lifted (CAST-LIFT). A
cast from base type to itself is the identity (CAST-BASE). A grammar of evaluation con-
texts E ensures call-by-value reduction in function applications, inside casts, cases, lift
operations, and base type operations. The CTX rule specifies reduction inside an evalua-
tion context. The ERR rule specifies that a failure inside an evaluation context floats up to
the top level, terminating the reduction sequence.

3 Properties of the explicit language EN

3.1 Type safety

We prove type safety of EN by proving preservation and progress (Wright and Felleisen,
1994). For each result, we specify the name of the corresponding result in the Coq
mechanization accompanying the paper.

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 7

Fig. 2. EN typing rules.

Proposition 1 (Preservation). (Coq: preservation)
If � � M : A and M −→ N then � � N : A.

Proof The proof is by induction on the reduction relation. The APP and CASE-LIFT cases
depend on a substitution lemma, which is shown below. The WRAP case depends on
symmetry of the compatibility relation ∼. �

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

8 O. Lhoták and P. Wadler

Fig. 3. EN reduction rules.

Lemma 2 (Substitution). (Coq: substitution)
If �, x : A � N : B and � � M : A, then � � N[x �→ M] : B.

Proof The proof is standard, by induction on the typing of N . The VAR case depends on
a weakening lemma, also proved by straightforward induction. �

Lemma 3 (Compatibility Symmetry). (Coq: compat_sym) If A ∼ B then B ∼ A.

Proof The proof is by straightforward induction on the derivation of A ∼ B. �

Proposition 4 (Progress). (Coq: progress)
If � M : A then either M is a value, M −→ N for some N, or M = blame p for some p.

Proof The proof is by induction on the typing derivation. The APP case depends on a
canonical forms lemma for function types, which is shown below. �

Lemma 5 (Canonical Forms Arrow). (Coq: canonical_forms_arrow)
If � V : A → B, then either V = λx:A.N for some x and N, or V =
W : A′ → B′ =⇒p A′′ → B′′ for some W, A′, B′, A′′, B′′, and p.

Proof The proof is by straightforward induction on the typing derivation. �

3.2 Blame safety

In addition to type safety, we have also proved blame safety following the approach of
Wadler and Findler (2009) (see also Wadler (2015) for a more accessible summary of the

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 9

Fig. 4. EN subtyping rules.

approach). The applicability of this standard approach is one of the benefits of EN relative
to the calculus of Nieto et al. (2020a).

The approach depends on four subtyping relations, defined for EN in Figure 4.
Intuitively, a cast between types related by positive subtyping cannot give rise to positive
blame (blame with the same label as the cast) and a cast between types related by negative
subtyping cannot give rise to negative blame (blame with a label that is the complement
of that on the cast). Ordinary subtyping is an intersection of these two relations, so a cast
between types related by ordinary subtyping cannot give rise to any blame. We will discuss
naive subtyping and its relationship to the other three subtyping relations in Section 3.3.
Positive, negative, and ordinary subtyping on functions are contravariant in the domain
and covariant in the range, while naive subtyping is covariant in both the domain and the
range.

We make the intuitive understanding of positive and negative subtyping precise as
follows:

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

10 O. Lhoták and P. Wadler

Fig. 5. Definition of safe terms.

Definition 6 (Safe Term). (Coq: safe) A term M is safe for blame label p, written
M safe p, if M has no subterm of the form blame p, every cast in M of the form N : A =⇒p B
satisfies A <:+ B, and every cast in M of the form N : A =⇒p B satisfies A <:− B. An
explicit inductive definition is given in Figure 5.

With this definition, we can prove blame safety of EN, that when M safe p, M cannot
reduce to blame p in any number of steps. Note, however, that M can reduce to blame q
with a different label q �= p, and, in particular, M can reduce to blame p.

Proposition 7 (Safe Term Preservation). (Coq: safe_preservation)
If � � M : A and M safe p and M −→ N, then N safe p.

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 11

Proof The proof is by induction on the derivation of M −→ N. Each case is straightfor-
ward except in the APP and CASE-LIFT cases, we need the following lemma to show that
the safety relation is preserved by substitution. �

Lemma 8 (Substitution Preserves Safe Terms). (Coq: subst_pres_safe)
If M safe p and N safe p, then N[x �→ M] safe p.

Proof By straightforward induction on the structure of N. �

Corollary 9 (Safe Term Progress). (Coq: safe_progress)
If � M : A and M safe p and M −→ blame q, then p �= q.

Proof This follows directly from Proposition 7 and the definition of safe. �

Proposition 10 (Blame Safety). (Coq: safety)
If � M : A and M safe p and M −→∗ N, then N �= blame p.

Proof The proof is by induction on the transitive reduction relation. In the inductive case,
it uses Propositions 1 and 7. �

3.3 Naive subtyping and the Tangram lemma

Naive subtyping relates types according to how definite they are in the sense of gradual
typing. Where we write A <:n B, Siek et al. (2015) write A � B. In our specific setting, A
is a naive subtype of B if they have the same structure, but some non-nullable components
D of A may be replaced by nullable components D? in B. One function is a naive subtype
of another if both the domains and ranges are naive subtypes; note that this is covariant in
both the domain and range of the function, as opposed to the other three subtyping relations
which are contravariant in the domain and covariant in the range.

The Tangram Lemma of Wadler and Findler (2009) relates these four subtyping rela-
tions. Part 1 concerns ordinary subtyping and part 2 concerns naive subtyping; note that
we have A <:− B in part 1 and B <:− A in part 2. We show that the Tangram Lemma holds
for the relations defined in Figure 4.

Proposition 11 (Tangram Lemma). (Coq: tangram)

1. A <: B if and only if A <:+ B and A <:− B.
2. A <:n B if and only if A <:+ B and B <:− A.

Proof Each of the four cases is proved by a straightforward induction on the derivation of
A <: B, the derivation of A <:n B, or mutual induction on the derivations of A <:+ B and
A <:− B. �

The practical consequence of the Tangram Lemma is that if A <:n B and M is safe for p,
then the two casts M : A =⇒p B and M : B =⇒p A are also safe for p. When we study
interoperability between languages with implicit and explicit nulls in Section 5, we will

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

12 O. Lhoták and P. Wadler

Fig. 6. IN syntax.

use second half of the Tangram Lemma to conclude that all such casts are safe for blame
labels that assign blame to the language with explicit nulls. If something goes wrong, it
will be blamed on the language with implicit nulls.

4 The implicit language IN

Having defined EN, an explicit language with casts (like Scala), we now define an implicit
language that ignores nullability in its types (like Java). We call the implicit language IN
for short.

4.1 Syntax

The syntax of IN is defined in Figure 6. Following the advice of Patrignani (2021), we use
a red-orange color and a slanted serif font to distinguish elements of IN from EN. The
syntax of IN terms L , M , N mirrors that of EN, but omits lifting, case, casts, and blame,
since those are useless without the distinction between nullable and non-null types.

Types A, B, C of IN are not distinguished as nullable or non-null. All types in IN admit
the null constant.

4.2 Typing

The typing rules of IN are standard and are shown in Figure 7. The null constant can have
any type A.

4.3 Semantics

We define the semantics of IN by translation to EN, whose operational semantics we
defined in Section 2. The translation is presented in Figure 8.

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 13

Fig. 7. IN typing rules.

Fig. 8. Translation from IN to EN.

Types of IN are translated to types in EN that are equivalent in that they admit equivalent
sets of values: in particular, the translated types admit the null constant.

In the translation of terms of IN , we will make frequent use of case. We introduce as
shorthand the Elvis operator M ?: N (as in Kotlin and other languages) that takes a term M
of nullable type D? and reduces to V when M evaluates to 〈V〉 and to N when M evaluates
to null.

Variable references and the null constant are just translated to themselves. Base con-
stants c, base operations M ⊕ N , and function abstractions λx :A(N have types in IN that
translate to nullable types in EN, so these terms are translated to lifted terms in EN. The
translation of a base operation ⊕ uses the Elvis operator to check the whether the operands

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

14 O. Lhoták and P. Wadler

N and M are null before performing the operation ⊕. The blame label op is used to signal
that a null check in a base operation failed. (Some might prefer the blame labels op and
deref to indicate that the fault lies with the containing context, but arguably the blame lies
with the contained term for not providing a non-null value. In any event, the desirability of
using overbars is not clear in the absence of a cast, so we follow the advice of Tufte (2001)
to minimize the ink on the page.) Similarly, the translation of a function application L M
first checks whether L (the function) evaluates to null before evaluating the argument M
and performing the application.

4.4 Type preservation of the translation

The translation from IN to EN preserves typing:

Proposition 12 (Translation Preserves Typing). (Coq: desugaring_typing)
If � � M : A, then |�| � |M| : |A|, where a typing context |�| is obtained by replacing each
binding of the form x : A in � with x : |A|.

Proof The proof is by induction on the derivation of � � M : A. The IMP-ABS rule is
parameterized by an arbitrary fresh variable x , so a proof for this case must be valid for
any such fresh x . To prove this case, we need to show that the translation function |·| com-
mutes with α-renaming of variables. In fact, we prove a stronger result that this function
commutes with substitution of an arbitrary term for a free variable, which we show below
in Lemma 13. All other cases are straightforward. �

Lemma 13 (Substitution Commutes With Translation). (Coq: open_trm_of_itrm)

|N [x �→ M]| = |N |[x �→ |M|]

Proof The proof is by straightforward induction on the structure of N . �

5 Interoperability

In this section, we will explore how terms of EN can use terms of IN and vice versa.

5.1 Implicit terms within explicit terms

To use a term M of IN within a term of EN, we just translate the IN term first and use |M|
within the EN term. However, the translated term has an inconvenient type, so it cannot be
used directly. For example, the translated IN constant term |c| has the nullable type ι?, so
it cannot be an operand of the EN ⊕ operator, which requires operands of type ι. Similarly,
the translated IN function term |λx :A(N | has the nullable type (|A| → |B|)? (where B is a
type of the body N), so it cannot be used directly in a function application.

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 15

We can use an IN term M of type A in EN directly by embedding it within a cast to the
desired type:

|M| : |A| =⇒implicit �A� (1)

Here, �A� is a naive translation of the IN type A, defined in general as follows:

�ι� = ι

�A → B� = �A� → �B�
The naive translation maps a base type of IN to a base type of EN, and it maps a function
type of IN to a function type of EN. Thus, the cast enables the IN term M to be used in EN
directly with a definite base or function type. The blame label implicit indicates that the
cast is from IN to EN.

The cast could fail but only with positive blame, blaming the IN subterm |M| rather than
the surrounding EN context. This is because �A� is a naive subtype of |A|:

Proposition 14 (IN Naive Subtyping). (Coq: imp_naive_subtyp)
For every IN type A, �A� <:n |A|.

Proof The proof is by straightforward induction on the structure of A. �

Then by the Tangram Lemma, term (1) may reduce to blame implicit but can never
reduce to blame implicit.

5.2 Explicit terms within implicit terms

To use a term M of EN within a term of IN , we need to apply the translation to the IN
context that surrounds M. In symbols, our approach is to translate a mixed term C[M] into
the EN term |C |[M] using a natural extension of the translation from Figure 8 to contexts.

In comparison, the approach taken in the previous section was to translate a mixed
term C[M] into the EN term C[|M|]. That only required applying the translation to the
IN subterm M rather than to an IN context C .

Suppose the EN subterm M has some type A. Typing the surrounding IN context C
requires an IN type for the term intended to plug the hole. We define the erasure of a type
from EN to IN as follows:

�D?� = �D�
�ι� = ι

�A → B� = �A� → �B�
We then say that an EN subterm of type A can be used within an IN context that can be
typed under the assumption that an IN term that plugs its hole has type �A�.

When we translate the IN context C , the resulting EN context |C | will be typable assum-
ing that the term that plugs its hole has type |�A�|. Note that it is possible to define |�A�|
directly as follows:

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

16 O. Lhoták and P. Wadler

|�D?�| = |�D�|
|�ι�| = ι?

|�A → B�| = (|�A�| → |�B�|)?
We can use an EN term M of type A in IN directly by embedding it within a cast to the
desired type:

M : A =⇒explicit |�A�| (2)

The cast could fail but only with negative blame, blaming the surrounding IN context
rather than the EN subterm M. This is because A is a naive subtype of |�A�|:

Proposition 15 (EN Naive Subtyping). (Coq: exp_naive_subtyp)
For every EN type A, A <:n |�A�|.

Proof The proof is by straightforward induction on the structure of A. �

Then by the Tangram Lemma, term (2) may reduce to blame explicit but can never
reduce to blame explicit.

5.3 Metatheory of contexts

So far, we have taken for granted that when a term is embedded in a context, C[M], the
term M can refer to free variables bound in the context C. This deserves to be established
formally, particularly when we mix contexts and subterms from EN and IN . We make this
precise in this section.

One may be tempted by a simpler construction. In an earlier version of this paper, we
used the construct let x = (M : A =⇒explicit |�A�|) in |N |, where let x = M in N abbreviates
(λx:A.N) M when A is the type of M. However, that approach has the significant disadvan-
tage of requiring M to be closed. Here, in the mixed term C[M], the subterm M can refer
to free variables bound in the context C , an important generalization.

Figure 9 defines grammars of EN and IN contexts following the syntax of terms, but
with a hole � that can be plugged by a subterm.

We introduce the notation �′ �� : A′ � � � C : A for typing judgments for EN con-
texts and similarly for IN contexts. Such a judgment is to be interpreted as follows: if the
hole � in context C is filled with some term M′ such that �′ � M′ : A′, then the term that
results from plugging the hole in context C with the term M′ has type A in typing context
�. Inductive definitions of the typing relations for EN and IN contexts are presented in
Figures 10 and 11. By design, both the EN and IN context typing rules satisfy the intended
property:

Proposition 16 (EN Plugged Typing). (Coq: typing_plugged)
For any EN context C and term M′, if �′ �� : A′ � � � C : A and �′ � M′ : A′ for some
typing contexts �, �′ and types A, A′, then � � C[M′] : A.

Proof The proof is by induction on the typing relation for EN contexts (Figure 10). �

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 17

Fig. 9. Syntax of EN and IN contexts.

Proposition 17 (IN Plugged Typing). (Coq: ityping_plugged)
For any IN context C and term M ′, if �′ �� : A′ � � � C : A and �′ � M ′ : A′ for some
typing contexts �, �′ and types A, A′, then � � C[M ′] : A.

Proof The proof is by induction on the typing relation for IN contexts (Figure 11). �

Having defined typing for contexts, we can state a formal criterion for allowing an IN
term to be used within an EN context, as we sketched in Section 5.2:

Definition 18 (Allowable IN term for EN context). An IN term M may plug an EN context
C if there exist EN typing contexts �, �′, IN type A, and EN type B such that ��′� � M : A
and |��′�| �� : �A� � � � C : B.

In the definition, �′ records the types of the variable bindings in C. The IN subterm M
has some type A in the context ��′�, which applies erasure to the types in �′.

The EN context C needs to be typed under the assumption that the hole has type �A�, the
naive translation of A, in the typing context |��′�|, which is the translation of the erased
context ��′�. To see why |��′�| is necessary instead of just �′, consider that an IN context
��′� cannot distinguish whether �′ binds some variable x to a definite type such as ι or a

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

18 O. Lhoták and P. Wadler

Fig. 10. EN context typing rules.

nullable type such as ι?; both are erased to ι. Typing the hole in the translated erased typing
context solves the problem, since |�ι�| = |�ι?�| = ι?.

This criterion ensures that when an implicit term M is plugged into an explicit context
C, its translation C[|M| : |A| =⇒implicit �A�] is well typed.

Proposition 19 (Typing of EN term in IN context). (Coq: nest_itrm_in_ctx)
For any EN context C and IN term M that satisfy Definition 18 with EN typing contexts �,
�′, IN type A, and EN type B,

� � C[|M| : |A| =⇒implicit �A�] : B

Proof This follows directly by Proposition 12 and Proposition 16. Proposition 14 is
needed to justify the compatibility of the types |A| and �A� in the cast. �

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 19

Fig. 11. IN context typing rules.

Turning our attention to EN terms embedded in IN contexts, we define a similar typing
criterion for such mixed terms C[M]:

Definition 20 (Allowable EN term for IN context). An EN term M may plug an IN context
C if there exist IN typing contexts �, �′, EN type A, and IN type B such that |�′| � M : A
and �′ �� : �A� � � � C : B.

The EN term M is typed in a typing context |�′|, which contains the variables bound in
C , but with their types translated from IN to EN using the translation from Figure 8. In
that context, M has some EN type A, which erases to the IN type �A�, so the IN context C
must be typable under the assumption that its hole has the erased type �A�.

We can apply the translation from Figure 8 to the IN context C to obtain an EN context
|C |. The translation of contexts is defined to be the same as the translation of terms, with
the additional case that a hole translates to a hole. The resulting EN context will satisfy
|�′| �� : |�A�| � |�| � |C | : |B| by the following proposition:

Proposition 21 (Translated Context Typing). (Coq: ictrm_desugaring_typing)
For any IN context C , types A, B, and typing contexts �, �′, if �′ �� : A � � � C : B,
then |�′| �� : |A| � |�| � |C | : |B|.

Proof The proof is by induction on the derivation of the context typing of C . The case of
function abstraction requires the following Lemma 22, an analog of Lemma 13 for contexts
rather than terms. �

Lemma 22 (Substitution Commutes With Translation of Contexts).
(Coq: open_ctrm_of_ictrm)

|C[x �→ C ′]| = |C|[x �→ |C ′|]
Proof The proof is by straightforward induction on the structure of C . �

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

20 O. Lhoták and P. Wadler

To plug the resulting EN context |C | with the term M, we must use a cast to adapt the
type of M from A to the type |�A�| that the context |C| requires. We summarize the type
safety of the translation as follows.

Proposition 23 (Typing of EN term in IN context). (Coq: nest_trm_in_ictx)
For any IN context C and EN term M that satisfy Definition 20 with IN typing contexts �,
�′, EN type A, and IN type B,

|�| � |C |[M : A =⇒explicit |�A�|] :|B|

Proof This follows directly by Proposition 21 and Proposition 16. Proposition 15 is
needed to justify the compatibility of the types A and |�A�| in the cast. �

5.4 A defensive alternative

Although the casts presented in the previous two subsections always blame the implicit
language when they fail, it is also possible to prevent any possibility of failure by using case
to explicitly test for null and manually (and tediously) providing explicit error-handling
terms to be evaluated when a null value is encountered.

To show how tedious, consider the IN term M = λx :(ι → ι)(x c to be embedded in the
EN context C =� (λx′:ι.x′). The translated term |M| has type ((ι? → ι?)? → ι?)?, but the
context requires the hole to be plugged by a term of type (ι → ι) → ι. Instead of using a
cast to mediate between |M| and C, we could interpose the context

C′ = case � of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

null �→ blame p;

〈x〉 �→ λx′:ι → ι. case

⎛
⎜⎜⎜⎜⎝x

〈
λx′′:ι?.

〈
x′ case x′′ of{

null �→ blame p;〈
x′′′〉 �→ x′′′

}
〉〉

⎞
⎟⎟⎟⎟⎠ of

{
null �→ blame p;〈
x′′′′〉 �→ x′′′′

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The resulting term would be C[C′[|M|]]. The occurrences of blame p in C′ identify the
places where null can occur at run time and could be replaced by user-defined defensive
compensation code.

In the other direction, consider the EN term M = λx:(ι → ι).x c to be embedded in the
IN context C =� (λx ′:ι(x ′). The term M has type (ι → ι) → ι, but the translated context
|C | requires the hole to be plugged by a term of type ((ι? → ι?)? → ι?)?. Instead of using
a cast to mediate between M and |C |, we could interpose the context

C′ =
〈
λx:(ι? → ι?)?.

〈
� case x of⎧⎪⎪⎨

⎪⎪⎩
null �→ blame p;〈
x′〉 �→ λx′′:ι. case x′ 〈

x′′〉 of{
null �→ blame p;〈
x′′′〉 �→ x′′′

}
⎫⎪⎪⎬
⎪⎪⎭

〉〉

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 21

The resulting term would be |C |[C′[M]]. The occurrences of blame p in C′ identify the
places where null can occur at run time and could be replaced by user-defined defensive
compensation code.

Given any pair of compatible EN types, we can synthesize the necessary compensation
code using the following function, which follows the structure of the inductive definition
of compatibility from Figure 2:

‖ι =⇒ ι‖ =�
‖A =⇒ D?‖ = 〈‖A =⇒ D‖〉
‖D? =⇒ A‖ = case � of {null �→ blame p; 〈x〉 �→ ‖D =⇒ A‖[x]}

‖(A → B) =⇒ (A′ → B′)‖ = λx:A′.‖B =⇒ B′‖[� (‖A′ =⇒ A‖[x])]

As before, occurrences of blame p can be replaced by user-defined defensive compensation
code.

6 Connections with other languages

Now that we have presented our explicit and implicit languages in full, we briefly discuss
the connections with the languages of Nieto et al. (2020a) and with complete languages
like Scala and Java.

6.1 Connections with λnull and λs
null

Recall that the core language λnull of Nieto et al. (2020a) defines three function types,
which correspond to types in EN and IN as follows:

• #(S → T) in λnull corresponds to A → B in EN.
• ?(S → T) in λnull corresponds to (A → B)? in EN.
• !(S → T) in λnull corresponds to A → B in IN .

Here, we assume that S and T correspond to A and B or A and B.
The semantics of safe application app(s, t, u) in λnull is analogous to the EN term

case L of {null �→ N; 〈x〉 �→ x M}, where s, t, u correspond to L, M, N. This term requires L
to be of type (A → B)?, while standard function application requires a term of type A → B.
Since a λnull term of type !(S → T) can be used in both forms of application, it does not
correspond to any one type in EN, but more closely to the IN type A → B: values of that
type include both null and functions, and terms of that type can be used in IN function
application.

This illuminates a key difference between EN and λnull. In EN, all implicit features
have been desugared away into casts, and casts are the only terms that can fail with blame.
In contrast, λnull retains unsafe nullable function types, an implicit language feature, so
applications there can also fail with blame. This difference motivates the various auxiliary
relations needed in λnull, such as blame assignment and normalization.

The surface language λs
null provides importe and importi terms that enable an explicit

term to be used within an implicit term and vice versa, like the embeddings that we dis-
cussed in Sections 5.1 and 5.2. A key difference is that the λs

null typing rules require the

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

22 O. Lhoták and P. Wadler

embedded subterms to be closed, so they cannot refer to variables bound in the surrounding
context in the other sublanguage.

6.2 Connections with Scala and Java

In this section, we briefly compare the core explicit and implicit languages with Scala and
Java.

The types of the implicit language correspond to the reference types of Java, in that every
type admits the null value. The nullable types D? of the explicit language correspond to
union types T|Null in Scala, where T is a Scala type corresponding to the definite type D.
Thus, interoperability between Scala and Java directly follows the interoperability between
the explicit and implicit languages. We can embed a Java term, such as a call to a Java
method, in Scala following the translation from Section 5.2. We can embed a Scala term,
such as a call to a Scala method, in Java following the translation from Section 5.1. Such
embedded terms are not limited to calls and can refer to variables bound in the surrounding
context in the opposite language, to model higher-level language features such as terms
referring to fields and variables defined in other classes, including in code written in the
opposite language. The same applies to Kotlin instead of Scala, where a nullable type is
written as T?.

There is a minor difference in the values. The explicit language distinguishes a value V
of definite type D and a lifted value 〈V〉 of nullable type D?. In Scala, both values have the
same runtime representation and the lifting operation is a no-op at run time.

As core calculi based on simply typed lambda calculus, the explicit and implicit lan-
guages obviously omit many features present in Scala and Java, notably objects, classes
and class types, and generic methods and generic class types. The calculi serve as a founda-
tion to guide the design of null safety for these additional language features. In particular,
one practical challenge in a full language arises when a single type describes a large, linked
data structure, such as a linked list or tree. If the type does not say anything about null val-
ues within the structure, such values could occur anywhere within it. Extensions of the core
languages for classes and objects would add casts to identify places where blame must be
assigned for inter-language operations on objects. Those casts would identify the places in
practical programs where nulls can arise.

7 Related work

Findler and Felleisen (2002) introduced the concept of blame to function contracts, allow-
ing to assign responsibility for a runtime failure either to a function itself or to the
arguments passed to the function. Siek and Taha (2006, 2007) introduced the concept of
gradual typing to enable interoperability between parts of a program with and without
static types. Wadler and Findler (2009) combined the two concepts and proved that in a
gradually typed program, any cast failure on the boundary can always be blamed on the
untyped (or, more generally, the less-precisely typed) part of the program. They gener-
alized their result in the Tangram Lemma, which can be instantiated for other gradually
typed calculi. Also see Wadler (2015).

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 23

Garcia et al. (2016) used the framework of abstract interpretation (Cousot and Cousot,
1977) to explain what it means for part of a program to be more-precisely or less-precisely
typed. This abstract interpretation notion of the precision of a type is identical to naive
subtyping. Estep et al. (2021) applied this methodology to a static analysis that determines
which expressions in a program may evaluate to null at run time. Their baseline static
analysis works for an intermediate language in which every variable is explicitly annotated
to be either non-null or nullable; they systematically derive a gradual static analysis that
works for an intermediate language that allows a subset of variables to be left unannotated.
Malewski et al. (2021) applied the abstract interpretation framework to a calculus with
algebraic data types (ADTs) to systematically derive a calculus with gradual ADTs. Their
(open) gradual datatype designates expressions that evaluate to a value of some ADT, but
the specific ADT and its set of constructors is not known statically and can even be open
in the sense of allowing extension with new constructors.

Nieto et al. (2020a) instantiated the concepts of gradual typing and blame for their
explicit-null extension of the Scala language (Nieto et al., 2020b). There, the less-precisely
typed parts of a program are those written in Java or older versions of Scala, and the more-
precisely typed parts are those written in the new version of Scala in which the possibility
of a reference being null is made explicit in its type.

Similar issues occur in other languages that make nulls explicit in their type system but
interoperate with older code in type systems agnostic to null.

The Kotlin language (JetBrains, 2022) aims for null safety within Kotlin code but adapts
Java types to avoid any compile-time errors related to nullability at the boundary between
code written in Kotlin and Java. It uses a concept called platform types, which are a sub-
type of a non-null type but a supertype of a nullable type, to avoid reporting errors in both
covariant and contravariant contexts. Platform types are inherently unsound since, by tran-
sitivity, they make a nullable type a subtype of the corresponding non-null type, but they
are necessary in practice to avoid the overwhelming number of compile-time errors that
would result if we insisted on static null safety at the boundary between Java and Kotlin.

Recent versions of the C# language (Microsoft, 2022) have nullable types that indicate
that a reference can be null. Types in code written in older versions of the language are
interpreted to mean that references are non-null. To enable interoperability, conversions
from a nullable to a non-null type and vice versa are allowed but generate a compile-time
warning in areas of code designated to issue such warnings. A null value may still flow
at run time to a context in which a non-null value is expected, resulting in a run-time
exception.

The Swift language (Apple, 2022) has optionals similar to discriminated options like
Scala’s Option and Haskell’s Maybe, and implicitly unwrapped optionals which are
automatically cast to a non-null type in contexts that require one. When Swift code
interoperates with code in Objective-C, which does not make nullability explicit in its
types, Objective-C expressions are given an implicitly unwrapped optional type in Swift.
Attempting to use an implicitly unwrapped optional that is nil at run time results in a
run-time exception.

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121

24 O. Lhoták and P. Wadler

8 Conclusion

We have defined a pair of core calculi for modeling interoperability between languages
that track null references explicitly in their type systems and ones that do not. Our defini-
tions follow the standard blame calculus of Wadler and Findler (2009); in particular, their
Tangram Lemma approach can be used to assign blame for cast failures to the less precise
language whose type system ignores nullability. These core calculi can serve as a basis
for modeling nullness interoperability in larger languages, in the same way that founda-
tions such as Featherweight Java (Igarashi et al., 2001) and DOT (Amin et al., 2016) have
guided the design of Java and Scala. Our development is formalized in Coq and is included
as an artifact accompanying the paper.

Conflict of interest.

The authors report no conflict of interest.

Supplementary material

For supplementary material for this article, please visit https://doi.org/10.1017/
S0956796824000121.

References

Amin, N., Grütter, S., Odersky, M., Rompf, T. & Stucki, S. (2016) The essence of dependent object
types. In A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday (Lecture Notes in Computer Science, Vol. 9600), Lindley, S.,
McBride, C., Trinder, P. W. & Sannella, D. (eds.), Springer, pp. 249–272. https://doi.org/
10.1007/978-3-319-30936-1_14

Amin, N. & Tate, R. (2016) Java and Scala’s type systems are unsound: The existential crisis of
null pointers. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH
2016, Amsterdam, The Netherlands, October 30 – November 4, 2016, Visser, E. & Smaragdakis,
Y. (eds.), ACM, pp. 838–848.

Apple (2022) The Swift Programming Language. https://docs.swift.org/swift-book/
(accessed 17 March 2022).

Aydemir, B. & Weirich, S. (2010) LNgen: Tool Support for Locally Nameless
Representations. Technical Report MS-CIS-10-24. Computer and Information Science, University
of Pennsylvania.

Aydemir, B. E., Charguéraud, A., Pierce, B. C., Pollack, R. & Weirich, S. (2008) Engineering
formal metatheory. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2008, San Francisco, California, USA, January 7–12, 2008,
Necula, G. C. & Wadler, P. (eds.), ACM, pp. 3–15. https://doi.org/10.1145/1328438.
1328443

Cousot, P. & Cousot, R. (1977) Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, Graham, R. M., Harrison, M. A. & Sethi, R. (eds.), ACM, pp. 238–252. https://doi.
org/10.1145/512950.512973

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796824000121
https://doi.org/10.1017/S0956796824000121
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://docs.swift.org/swift-book/
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1017/S0956796824000121

A simple blame calculus for explicit nulls 25

Drossopoulou, S. & Eisenbach, S. (1997) Java is type safe - Probably. In ECOOP’97 -
Object-Oriented Programming, 11th European Conference, Jyväskylä, Finland, June 9-13, 1997,
Proceedings (Lecture Notes in Computer Science, Vol. 1241), Aksit, M. & Matsuoka, S. (eds.),
Springer, pp. 389–418. https://doi.org/10.1007/BFB0053388

Estep, S., Wise, J., Aldrich, J., Tanter, É., Bader, J. & Sunshine, J. (2021) Gradual program anal-
ysis for null pointers. In 35th European Conference on Object-Oriented Programming, ECOOP
2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs, Vol. 194), Møller, A. &
Sridharan, M. (eds.), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 3:1–3:25. https://
doi.org/10.4230/LIPICS.ECOOP.2021.3

Findler, R. B. & Felleisen, M. (2002) Contracts for higher-order functions. In Proceedings of
the Seventh ACM SIGPLAN International Conference on Functional Programming (ICFP ’02),
Pittsburgh, Pennsylvania, USA, October 4-6, 2002, Wand, M. & Peyton Jones, S. L. (eds.),
ACM, pp. 48–59.

Flatt, M., Krishnamurthi, S. & Felleisen, M. (1998) Classes and Mixins. In POPL ’98, Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, CA, USA, January 19-21, 1998, MacQueen, D. B. & Cardelli, L. (eds.), ACM, pp. 171–
183. https://doi.org/10.1145/268946.268961

Garcia, R., Clark, A. M. & Tanter, É. (2016) Abstracting gradual typing. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20–22, 2016, Bodík, R. & Majumdar, R. (Eds.). ACM,
pp. 429–442. https://doi.org/10.1145/2837614.2837670

Griesemer, R., Hu, R., Kokke, W., Lange, J., Taylor, I. L., Toninho, B., Wadler, P. & Yoshida, N.
(2020) Featherweight go. Proc. ACM Program. Lang. 4, 149:1–149:29. https://doi.org/10.
1145/3428217

Hoare, T. (2009) Null References: The Billion Dollar Mistake. https://www.infoq.
com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
(accessed 17 March 2022).

Igarashi, A., Pierce, B. C. & Wadler, P. 2001. Featherweight Java: A minimal core calculus for
Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450. https://doi.org/10.1145/
503502.503505

JetBrains (2022) Kotlin Programming Language. https://kotlinlang.org/ (accessed 17 March
2022).

Malewski, S., Greenberg, M. & Tanter, É. (2021) Gradually structured data. Proc. ACM Program.
Lang. 5, 1–29. https://doi.org/10.1145/3485503

Matthews, J. & Findler, R. B. (2007) Operational semantics for multi-language programs. In
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2007, Nice, France, January 17-19, 2007, Hofmann, M. & Felleisen, M.
(eds.), ACM, pp. 3–10. https://doi.org/10.1145/1190216.1190220

Microsoft (2022) C# Language Specification. https://docs.microsoft.com/en-us/dotnet/
csharp/language-reference/language-specification (accessed 17 March 2022).

Nieto, A., Rapoport, M., Richards, G. & Lhoták, O. (2020a) Blame for null. In 34th European
Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020, Berlin,
Germany (Virtual Conference) (LIPIcs, Vol. 166), R. Hirschfeld & T. Pape (eds.), Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 3:1–3:28. https://doi.org/10.4230/LIPIcs.
ECOOP.2020.3

Nieto, A., Zhao, Y., Lhoták, O., Chang, A. & Pu, J. (2020b) Scala with explicit nulls. In 34th
European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Hirschfeld, R. & Pape, T. (eds.),
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 25:1–25:26. https://doi.org/10.
4230/LIPIcs.ECOOP.2020.25

Nieto, A., Zhao, Y., Lhoták, O., Chang, A. & Pu, J. (2020c) Scala with explicit nulls (artifact).
Dagstuhl Artifacts Ser. 6(2), 14:1–14:2. https://doi.org/10.4230/DARTS.6.2.14

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1007/BFB0053388
https://doi.org/10.4230/LIPICS.ECOOP.2021.3
https://doi.org/10.4230/LIPICS.ECOOP.2021.3
https://doi.org/10.1145/268946.268961
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/3428217
https://doi.org/10.1145/3428217
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://kotlinlang.org/
https://doi.org/10.1145/3485503
https://doi.org/10.1145/1190216.1190220
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://doi.org/10.4230/DARTS.6.2.14
https://doi.org/10.1017/S0956796824000121

26 O. Lhoták and P. Wadler

Nipkow, T. & von Oheimb, D. (1998) Javalight is Type-Safe - Definitely. In POPL ’98, Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, CA, USA, January 19-21, 1998, MacQueen, D. B. & Cardelli, L. (eds.), ACM, pp.
161–170. https://doi.org/10.1145/268946.268960

Patrignani, M. (2021) Why Should Anyone use Colours? or, Syntax Highlighting Beyond Code
Snippets. arXiv:2001.11334 [cs.SE]

Sewell, P., Nardelli, F. Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S. & Strnisa, R. (2010) Ott:
Effective tool support for the working semanticist. J. Funct. Program. 20(1), 71–122.

Siek, J. G. & Taha, W. (2006) Gradual typing for functional languages. In Scheme and Functional
Programming Workshop, Vol. 6, pp. 81–92.

Siek, J. G. & Taha, W. (2007) Gradual typing for objects. In ECOOP 2007 - Object-
Oriented Programming, 21st European Conference, Berlin, Germany, July 30 - August 3, 2007,
Proceedings (Lecture Notes in Computer Science, Vol. 4609), Ernst, E. (ed.), Springer, pp. 2–27.
https://doi.org/10.1007/978-3-540-73589-2_2

Siek, J. G., Vitousek, M. M., Cimini, M. & Boyland, J. T. (2015) Refined criteria for gradual
typing. In 1st Summit on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015,
Asilomar, California, USA (LIPIcs, Vol. 32), Ball, T., Bodík, R., Krishnamurthi, S., Lerner,
B. S. & Morrisett, G. (eds.), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 274–293.

Syme, D. (1999) Proving Java type soundness. In Formal Syntax and Semantics of Java (Lecture
Notes in Computer Science, Vol. 1523), Alves-Foss, J. (ed.), Springer, pp. 83–118. https://
doi.org/10.1007/3-540-48737-9_3

Tobin-Hochstadt, S. & Felleisen, M. (2006) Interlanguage migration: From scripts to programs. In
Dynamic Languages Symposium, OOPSLA Companion. ACM, pp. 964–974.

Tufte, E. R. (2001) The Visual Display of Quantitative Information (second ed.). Graphics Press,
Cheshire, Connecticut.

Wadler, P. (2015) A complement to blame. In 1st Summit on Advances in Programming Languages,
SNAPL 2015, May 3-6, 2015, Asilomar, California, USA (LIPIcs, Vol. 32), Ball, T., Bodík, R.,
Krishnamurthi, S., Lerner, B. S. & Morrisett, G. (eds.), Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, pp. 309–320.

Wadler, P. & Findler, R. B. (2009) Well-typed programs can’t be blamed. In Programming
Languages and Systems, 18th European Symposium on Programming, ESOP 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,
March 22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5502), Castagna, G.
(ed.), Springer, pp. 1–16.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inf. Comput. 115(1),
38–94.

https://doi.org/10.1017/S0956796824000121 Published online by Cambridge University Press

https://doi.org/10.1145/268946.268960
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/3-540-48737-9_3
https://doi.org/10.1007/3-540-48737-9_3
https://doi.org/10.1017/S0956796824000121

	A simple blame calculus for explicit nulls
	Introduction
	The explicit language RoyalBlueEN
	Properties of the explicit language RoyalBlueEN
	Type safety
	Blame safety
	Naive subtyping and the Tangram lemma

	The implicit language RedOrangeIN
	Syntax
	Typing
	Semantics
	Type preservation of the translation

	Interoperability
	Implicit terms within explicit terms
	Explicit terms within implicit terms
	Metatheory of contexts
	A defensive alternative

	Connections with other languages
	Connections with null and nulls
	Connections with Scala and Java

	Related work
	Conclusion

