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The fundamental theorem of affine geometry is an easy 
corollary of the corresponding projective theorem 2. 26 in 
Artin1 s Geometric Algebra. However, a simple direct proof 
based on Lipman* s paper [this Bulletin, 4, 265-278] and his 
axioms 1 and 2 may be of some interest . 

L,ipmanT s [desarguian] affine geometry G determined 
a left l inear vector space JL = { a ,b , . . . } over a skew field F . 
We wish to construct 1-1 transformations y of G onto 

itself such that y and y map straight lines onto straight 
lines preserving paral le l ism. Designate any point 0 as the 
origin of G. Multiplying y with a suitable translation, we 
may assume y 0 = 0. Thus y will then be equivalent to a 1-1 
transformation P of L onto itself which prese rves l inear 

dependence. Since P will have the same proper t ies , P 
must also preserve l inear independence. By our assumptions 

r (o)=o, 

P (Xa) = ^ ( X , a ) . T (a) 

for all \€F, a £ L . 

.Let a and b be linearly independent. The straight 
lines through a paral lel to b and through b paral lel to a 
intersect at a+b. Hence the lines through p (a) paral lel 
to P (b) and through P (b) paral lel to P (a) intersect 
in P (a+b). This yields 

(1) T(a+b) = T(a)+ r ( b ) 

if a and b a re linearly independent. Replacing a by a+b, 
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we obtain 

(2) rU-b) = P (a) - T(b). 

Suppose now that a and b a re linearly dependent but 
that a ,b , and a+b do not vanish. By axiom 2, there exists 
a c such that a and c a re linearly independent. Since 
a+c and b as well as a+b and c a re l inearly independent, 
we have 

na+b)+r(c)=ru+b+c)=n(a+c)+b)=r(a+c)+r(b)=na)+r(b)+r(c). 
This yields (1). Fu r the rmore , (1) is t r ivial if a = 0 o r b = 0, 
It remains to prove (1) if a+b = 0, i. e. 

(3) P ( a ) + P ( - a ) = 0. 

Choose b such that a and b a r e l inearly independent. 
Then (1) and (2) imply 

r<*>> - r ^ ) = ro>-a>= r(b+c-a» = r w + r(-*>• 
This verif ies (3). Thus (1) - (3) a re always valid, 

Lret a and b be linearly independent. Then 

(X,a) r O O + P U . b ) P ( b ) = P (Xa) + P(Xb) 

= r (Xa+Xb) = P(X{a+b)) 

= cp (X, a+b) P (a+b) 

= cp (X.a+b) ( P ( a ) + P(b ) ) . 

Since | (a) and | (b) are also linearly independent, this 
implies 

<p (X, a ) = ^ ( X , b) . 

If a and b a re linearly dependent, let a and c be independent. 
Then <p{\, a) =^(X, c) =<p(\, b). Thus cp is independent of the 
vector , and we may write 
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(4) P(Xa) = X** . P(a) 

for al l a f L , X^ F. 

We have 

(V+,1)* P (a) = r (U+H>a> = p (*•»+»«> 

= X?P(a)+^P<a)=(X?V) T(a) 
and 

( \ » i ) T ( a > = r ( ^ a ) = P(M( ia ) ) = ̂  r ( R » ) = ^ H ^ r ( a ) -

Hence 

(5) ( X ^ ^ X ? - ^ * * , ( X ^ ^ ^ ^ t x ^ . 

Thus Ŝ  is an automorphism of F. 

Let {a } be a base of L. Thus every vector of L can 

be written in one and only one way as a left l inear combination 
of finitely many a as . The [""* (a ) will also form a base of L 

a l a 
and 

a = S X a implie s H (a) = Z X * f̂  (a ) . 
i a, \ a, 

i i 
This leads to the following construction of the transformations 
I""1 : Let {a } be a fixed base of L. Let {b } be any base 

a a 
of L and le t <P be an a u t o m o r p h i s m of L. Then 

P : 2 X .a — S \ , ? b 
i <ar. i or. 

l i 

will be the most general 1-1 transformation of L onto itself 
such that the corresponding 1-1 transformation y of G onto 
itself with y 0 = 0 maps straight lines onto straight lines and 
p rese rves para l le l i sm. 

Orillia, Ont. 
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