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Abstract

An approximation method based on a certain Sonnenschein matrix is studied. Results are
obtained for approximation in an interval and in the complex plane. A connection between
convergence of the approximation process and regularity of the matrix is also discussed.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 41A30, secondary 41A35, 40G99,

1. Introduction

Let 4>(z, w) be a function which is analytic in w for | w | < R (R > 1) for
each fixed z in some set il and assume that </>(z, 1) = 1. Sonnenschein (1949),
Bajsanski (1956), Clunie and Vermes (1959), Sledd (1962, 1963a, 1963b),
Ramanujan (1963) and others have considered sequence to sequence summa-
bility methods given by the matrix A = (ank (z)) defined as follows:

am(z)= 1, ank(z) = 0, k = l , 2 , - - - .

The matrix (ank) is called a Sonnenschein matrix. Various important
special cases of A are Borel (Cooke (1950)), Euler-Knopp (Agnew (1944),
Vermes (1949)), the Hardy-Littlewood-Fekete or circle method, known also
as the Taylor method (Hardy (1949)) and Laurent (Vermes (1949)). It has
been shown by Vermes (1957) that Sonnenschein matrices are transposes of
series to series transformation matrices developed earlier by Perron (1923)
and Knopp (1926). Regularity of A has been studied by Bjasanski (1956) and
Clunie and Vermes (1959).

It is natural to associate with A linear operators Ln defined by

375

https://doi.org/10.1017/S144678870002111X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002111X


376 B. Wood [2]

for any function g such that the series converges. It is the purpose of this note
to investigate the special case when </>(z, w)= 1 - z + zf(w), where / is a
certain analytic function. If f(w)=w, A is the Euler-Knopp method and
Ln (g,z) is the well known n-th order Bernstein polynomial (Lorentz (1953)).
We shall investigate approximation properties of the operators and point out
that, when the linear operators satisfy certain convergence requirements, the
summability method is regular. See also King (1968) and King and Swetits
(1970) for results of this type.

2. Approximation properties

In the sequel let the functions ek, k = 0,1, • • •, be defined by ek (z) = zk.
It is easy to see that Ln (ek, z) is defined for k = 0,1, • • • and n = 1,2, • • • . The
following lemma lists some useful properties of the operators. Let A denote
the closed unit disk.

LEMMA 2.1. Let f be analytic in A, / ( I ) = / ' ( l ) = 1 and f » ( 0 ) a O for
k = 0,1, • • • . We have the following:

(i) If P(z) is a polynomial of degree m Ln (P, z) is a polynomial of degree
=s m for each n.

(ii) limn^» Ln (ek, z) = zk, k =0 ,1 ,2 , •••, uniformly in compacta of the
finite plane.

(iii) If P(z) is a polynomial, \imn^Ln (P, z) = P(z), uniformly in com-
pacta of the finite plane.

(iv) If g is bounded in [0,°°), Ln(g,z) is entire.
( v ) L (

n - | ( e t , 0 ) g 0 for i/ = 0 , l , - - - , k = 0 , 1 , • • -, a n d n = 1 , 2 , • •-, a n d
L (

n - » ( e t , 0 ) = 0 for v > k, k = 0 , 1 , • • •, a n d n = 1 , 2 , ••• .
(vi) \Ln (ek, z ) | g /_.„ (ek, \z \) for k = 0,1, • • •, n = 1,2, • • •, and all com-

plex numbers z.

PROOF, (i) Fix n. We have

(2.1) U-z+zf(w)]- = Jlank(z)wk, | w | S l .

Since Ln is linear, it suffices to prove the result for ek (z); i.e., it suffices to
show that ,

Ln (em, z) = - v 2 ank(z)k"
n t _ 0

is a polynomial in z of degree = m. Suppose this is true for eo,eu • • -,em-x.
Take the m-th derivative of (2.1) with respect to w and put w = 1 in the
resulting equation. The left hand side will be a polynomial, P{z), of degree
g m, while the right hand side will be of the form
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Ln (em,z)+alLn (em-,, z) + • • • + am-,Ln (euz)

where the ai(m,n) are constants. Transposing yields

Ln(em, z) = P(z)-alLn(em~l,z) am_,Ln (e,, z).

The proof is completed by observing that Ln(e0, z) = 1 for all z.
(ii) Let m be any positive integer and assume that limn^Ln (ek, z) = zk

almost uniformly for k = 0,1, • • •, m — 1. As in the proof of (i), take the m -th
derivative of (2.1) with respect to w and put w = 1 in the resulting equation.
After dividing the equation by nm, transposing and using the facts /(I) =
/'(!)= 1, it follows that

where, for fixed m, {an (m, z)} is uniformly bounded in compacta of the plane,
(iii) This follows directly from (ii).
(iv) Let \g(x)\ S M for 0 S x <°°. Fix n. Then

IMg,z)| = \ank(z

Since ank(z) is a polynomial in z for each k, it suffices to show that
2k_o|ank (z)\ is uniformly convergent in compacta of the plane. Let Q, be a
compact subset of the plane. Choose a > 1 such that f(w) is analytic for
| w | ^ a. Let Mn = max {| 1 - z + zf(t)\": z G fl and | f | = a}. It follows that

a — 1

(v) Fix n and z. Let /(w) = 2r=o ̂ tv ' for w G U, an open set containing
A. Since / is analytic in U, for \x \ sufficiently small it follows that

= [1 - z + zf{e
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Therefore, we have

.2-2, ^ M , ,

Take the ^-th derivative of (2.2) with respect to z and put z = 0 in the
resulting equation. It follows that

(2.3)

When the right hand side of (2.3) is written as a power series in x, all
coefficients are non-negative and the leading term is of order x". Therefore,
result (v) follows.

(vi) This follows directly from results (i) and (v).

THEOREM 2.2. Let f be as in Lemma 2.1 and g be defined and continuous
in [0,1]. Define g in ( — °°7oo) as follows:

Then limn_« Ln (g, x) = g(x) uniformly in [0,1].

PROOF. First, ank(x)=£0 for n = 1,2, • • •, k=0,1, • • •, and 0Six S I
implies {Ln} is a sequence of positive linear operators in [0,1]. The result now
follows from a theorem of Korovkin (1960) and Lemma 2.1(ii).

The proof of the next theorem is similar to that of Theorem 1.6.1 on page
20 of Lorentz (1953) and is omitted.

THEOREM 2.3. Let f be. as in Lemma 2.1 and g be defined and continuous
in [0,1]. Define g(x) = g(l) for j g l . Let w(g, 8) denote the modulus of
continuity of g; that is,

w(g,S) = m a x { | g ( x ) - g ( y ) | : 0 S x , y S I and | x - y | < S } .

Then

THEOREM 2.4. Let f have the properties described in Lemma 2.1 and

f(z) = 2k"-obkz
k. Let g(z) = I.k.oakz

k be entire. Then

lim Ln}(g,z) = gis)(z), s = 0,1,2, • • •,

uniformly in compact subsets of the finite plane.
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PROOF. Write l'=obn,w" = [f(w)]n, n = 1,2, • • • . It follows that

But fck = 0 for k > m implies b* = 0 for k > vm. Therefore, ank (z) = 0 for
k > nm. Thus

is a polynomial in z for each n. Define the function h as follows:

{
g(-m), x ^ -m

g(x), -m^x^m

g(m), x^m.
As in the proof of Theorem 2.2, lim,,^Ln (h, x) = h(x) uniformly on [0,1].
But Ln(h,x)= Ln(g,x) and h(x)=g(x), for O ^ x S l . Therefore,
\imn^Ln(g,x) = g(x) uniformly on [0,1]. Let | z | s=y<oo . Using Lemma
2.1(vi) we have

Fix n. Just as in the proof of Lemma 2.1(v), we have

Without loss of generality, assume y g l . Since / ( I ) = 1 and / ( k ) (0 )g0 , we
have

Thus the coefficients of x" in the series

are majorized by those in the series

rr0 vl \ n
But
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It follows that

Therefore,

for each n. These calculations show that the series

f a f a
is uniformly convergent on compacta of the finite plane, for each n, and the
sequence

) 2 2

is uniformly bounded on compacta of the plane. Since

is a polynomial in z, ¥„ (z) is an entire function of z for each n. Also, Ln (g,z)
is a polynomial in z and, for OSx S 1, we have ank (x)S0 and

since the second double series is absolutely convergent. It now follows that

for all complex numbers z. Thus {Ln (g, 2)} is uniformly bounded on compacta
of the finite plane, Ln (g, 2) is an entire function of 2, and Iimn^Ln (g, x) =
g(x) uniformly on O g x S l . Theorem 2.4 now follows from the above and
Vitali's theorem.

We shall now consider a relationship between convergence of {Ln (g, z)}
and regularity of (ank (2)). A result of Clunie and Vermes (1959) implies that
A (/, x) = (ank (x)) is regular when / satisfies the hypotheses of Lemma 2.1 and
0 < x S I . This result depends upon the fact that ank (x)§0 for all n, k and
x G. [0,1]. Theorem 2.6 below gives conditions under which A (/, x) is regular
when / is in a more general class of functions. Lemma 2.5 will be needed in
the proof of Theorem 2.6.
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LEMMA 2.5. Let f be analytic in A, / ( I ) = 1, / not a constant, and x > 0.
Suppose {Ln (g, x)} is almost convergent [10] for all g £ C[0, x], where C[0, x]
denotes the space of all functions g such that g is continuous in [0, x), defined in
[0,oc) and

sup | g (y ) |= sup

Then

sup

PROOF. We have

U(g,x) = 2 ank(x)g{-
to \ n

and

[l-x+xf(w)]"= 2 ank{x)wk,

Let | |Ln( , JC)|| = supngjai \Ln (g, x)\. Then £„ ( ,x) is a continuous linear
operator from C[0, x] to i?, where R is the set of real numbers. Our
hypothesis implies that {Ln ( , x)} is pointwise bounded on C[0,x]. It follows
from the uniform boundedness principle that {Ln ( , x)} is uniformly bounded.
Let n be a fixed positive integer and let m be a positive integer chosen so
large that m/n^ x. Define h(y) as follows:

h(y) =

sgnan0(x),

sgnan,(x)- snanU(x) (y -0 ) + sgnan(,(x),

y=o ,

0 < y g -
n

sgn anm (x)-sgn anm-i(x)

m 2

- 2
£

m - 1 sgna_,m-,(x),

m - 1 . m<y g—,
n n

L0,
m

y >—.n
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Then h<EC[0,x], \\h\\=l and LH (h, x) = 27-0\ eu (x)\. Therefore,
||LB( ,x)| | . It follows that S^ 0 | a n t (x)| S||Ln ( ,x)\\ and

THEOREM 2.6. Let f be as in Lemma 2.5. Let T = {x:x>0 and
/ [A] CD(x) where D(x) denotes the closure of D(x) = {w : 1 - x + xw | < 1}.
Let {Ln(g,x)} be almost convergent for all g E C[0,x]. Then A(f,x) =
(ank (x)) is regular for x G T.

PROOF. First I.k=oank (x) = 1 for n = 1,2, • • • . Next, our hypotheses and
the Cauchy integral formula show that \imn^*,ank (x) = 0, k = 0,1, • • • . An
application of Lemma 2.5 completes the proof.

THEOREM 2.7. Let f be as in Lemma 2.5, /(I)(1) = 1 and x0 > 0. Let g be
continuous in [0,°°) and limx^g(x) exist. Suppose {Ln(h,x0)} is almost
convergent for all h G C[0, x0]. Then limn^«(g, x0) = g{x0).

PROOF. Define the function i/>(x) as follows:

[ l i m g ( 0 , JC = 0 .

Then ijt is continuous in [0,1] and, given e > 0, there exists a polynomial
pm(x) = Sr=o a,x' such that \4i{x)~ pm (x)\ < e for O S x S l . Let i?m (0 =
pm(e" ') for 0 g ? < o c . Thus | g ( f ) - i ? m ( f ) | < e for 0 g ( <=». We have

|Ln (g ,x 0 ) - g(x,,)| S |LB (g - Rm,x0) | + |LB (Rm,x, ,)- Rm (xo)|

+ |R m (xo ) -g (x o ) | .

It follows from our hypotheses and Lemma 2.5 that

sup I 2) |an k(x0) | :n = 1,2, •••} = M<oc.

Thus \Ln(g - Rm, xo)| < eM. It only remains to show that limn_«Ln (i?m, x0) =
Rm (x0). Therefore, it suffices to show that limn^^Ln (/î , x0) =/i, (x0), where
hi (t) = c~", i = 0,1, • • •, m. Our hypotheses and the proof of Lemma 2.1 (ii)
show that limn_«Ln (eh z)- z' uniformly in compacta of the finite plane for
i =0 ,1 ,2 , ••• . Now

-it
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Let e >0 be given. For fixed i =£0, choose N(i,e) so large that

for 0 ̂  / < oo. Write

383

Mfc,*o)= 2 «
0

=0 K!

Thus

0 g lim sup | Ln (K xo) - h (x0) | S 2J , J - rii (Xo) eM<e(M+l) .

T h e r e f o r e , \imn^x LK (hh x0) = ht (x0) for i=0,l,---,m a n d t h e p r o o f is
complete.
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