A remark on R. Moeckel's paper 'Geodesics on modular surfaces and continued fractions'

TOSHIHIRO NAKANISHI
Department of Mathematics, Shizuoka University, Shizuoka 422, Japan

(Received 23 February 1987 and revised 10 March 1989)

Abstract. It is shown that a result by Moeckel holds not only for admissible subgroups of $\operatorname{SL}(2, \mathbb{Z})$, but also for arbitrary subgroups of finite index.

The modular group $\Gamma=\operatorname{SL}(2, \mathbb{Z})$ acts discontinuously on a hyperbolic plane $\mathscr{H}=\{z=x+\mathrm{i} y ; y>0\}$. Let G be a subgroup of finite index in Γ. In his paper [1] Moeckel obtained the following result [1, Proposition 2.1]:

Let C be a G-cusp. If G is admissible, then for almost every irrational number β,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{n \leq N ; \beta_{n} \in C\right\}\right|=w(C) /[\Gamma: G], \tag{1}
\end{equation*}
$$

where β_{n} is the nth approximant $\left[b_{0}, b_{1}, \ldots, b_{n}\right]$ of the continued fraction espansion of $\beta=\left[b_{0}, b_{1}, \ldots,\right]$, and $w(C)$ denotes the width of C.

The objective of the present note is to show that Moeckel's proposition holds without the assumption that G is admissible.

It is necessary to say a few words about the correct statement of our generalization of Moeckel's proposition. Let \bar{G} be the inhomogenized group of G in $\bar{\Gamma}=\operatorname{PSL}(2, \mathbb{Z})$ ($[2, \mathrm{p} .71]$). As Γ is actually viewed as a group of linear fractional transformations, the statement of the generalized proposition is the same as Moeckel's, but (1) is replaced by

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{n \leq N ; \beta_{n} \in C\right\}\right|=w(C) /[\bar{\Gamma}: \bar{G}] .
$$

Here $2[\Gamma: G]=[\bar{\Gamma}: \bar{G}]$ if $-I \notin G$ and $[\Gamma: G]=[\bar{\Gamma}: \bar{G}]$ if $-I \in G$, where I is the unit matrix.

Let 2 be the fundamental quadrilateral defined by

$$
\mathscr{Q}=\{z=x+\mathrm{i} y ; 0 \leq x<1,|z| \geq 1,|z-1|>1\} \cup\{(1+\sqrt{3} \mathrm{i}) / 2\} .
$$

Let $S(z)=1 /(-z+1)$. An elementary triangle is the image of $\mathscr{Q} \cup S \mathscr{2} \cup S^{2} \mathscr{2}$ under an element of Γ. The group G partitions the rational numbers into equivalence classes called G-cusps.

Let C be a G-cusp and Δ be an elementary triangle with a vertex in C. The triangle Δ may be left invariant by a cyclic subgroup of order 3 in G, which does not occur for admissible groups. Hence the restriction of the canonical projection $\pi: \mathscr{H} \rightarrow \mathscr{H} / G$ to Δ may fail to be injective. To establish Moeckel's proposition we need a function on $T_{1}(\mathscr{H} / G)$, the unit tangent bundle to \mathscr{H} / G, of the same character as the function $f_{\left(C, \Delta^{\prime}\right)}$ in the proof of Proposition 3.2 of [1]. So we define for $\Delta^{\prime}=\pi \Delta$:

$$
f_{\left(C, \Delta^{\prime}\right)}(x, y, \theta)= \begin{cases}1 / \sigma & \begin{array}{l}
\text { if }(x, y, \theta) \text { lies on an initial } \\
\text { segment of arclength } \sigma \text { in } \Delta^{\prime} \\
\text { associated with } C,
\end{array} \\
0 & \text { otherwise }\end{cases}
$$

Here we view the coordinates (x, y, θ) of $T_{1} \mathscr{H}$, the unit tangent bundle to \mathscr{H} [1 , p. 70] as local coordinates of $T_{1}(\mathscr{H} / G)$ except possibly for the fixed point of the cyclic group or order 3. We can neglect this point for our purpose. By replacing G by a conjugation of G in Γ, if necessary, we can assume that $\Delta=\mathscr{Q} \cup S \mathscr{Q} \cup S^{2} \mathscr{Q}$ and ∞ belongs to C. In this case the width $w(C)$ of C is the smallest positive integer k such that the translation $z \rightarrow z+k$, is an element of G, and Δ is left invariant by the cyclic group $\left\{\mathbf{I}, S, S^{2}\right\}$. Let (x, y, θ) be a point of $T_{1} \mathscr{H}$ lying on an initial segment in Δ, associated with ∞. If we express this point by the coordinates (α, β, s) introduced at p. 70 of [1], then $-1 \leq \alpha<0$ and $1<\beta<\infty$. If $(x, y) \in \mathscr{2}$, then (a, β) is in the set $\bigcup_{i=1}^{4} \Omega_{i}$ depicted in figure 1. If $(x, y) \in S 2$, then (α, β) is in $\Omega_{3} \cup \Omega_{4} \cup \Omega_{5}$ and if $(x, y) \in S^{2} \mathscr{Q}$, then (α, β) is in $\Omega_{2} \cup \Omega_{4} \cup \Omega_{5}$. For the case where S is an element of G, we need the following lemma.
Lemma. Let $\left(x_{1}, y_{1}, \theta_{1}\right)$ and $\left(x_{2}, y_{2}, \theta_{2}\right)$ be points each of which lies on an initial segment in Δ associated with ∞. If they are equivalent under the action of $\left\{I, S, S^{2}\right\}$, then $\left(x_{1}, y_{1}, \theta_{1}\right)=\left(x_{2}, y_{2}, \theta_{2}\right)$.
Proof. Assume that the two points $\left(x_{1}, y_{1}, \theta_{1}\right)$ and $\left(x_{2}, y_{2}, \theta_{2}\right)$ are distinct. It suffices to consider the cases (1) $\left(x_{1}, y_{1}\right) \in \mathscr{Q}$ and $\left(x_{2}, y_{2}\right) \in S \mathscr{2}$, (2) $\left(x_{1}, y_{1}\right) \in \mathscr{2}$ and $\left(x_{2}, y_{2}\right) \in S^{2} \mathscr{\mathscr { L }}$, and (3) $\left(x_{1}, y_{1}\right) \in S \mathscr{2}$ and $\left(x_{2}, y_{2}\right) \in S^{2} \mathscr{Q}$. Express the points $\left(x_{i}, y_{i}, \theta_{i}\right)$, $i=1,2$, as $\left(\alpha_{i}, \beta_{i}, s_{i}\right)$ with $-1 \leq \alpha_{i}<0,1<\beta_{i}<\infty$. For the case (1), if the two points are equivalent under the action of $\left\{\mathbf{I}, S, S^{2}\right\}$, then $\left(\alpha_{1}, \beta_{1}\right)=\left(S^{2} \alpha_{2}, S^{2} \beta_{2}\right)$. However, as figure 1 shows, this is impossible. The figure also shows that other cases are impossible.

It follows from the lemma that, even though $\left.\pi\right|_{\Delta}$ is not injective, the tangent vectors of $T_{1} \mathscr{H}$ lying on initial segments in Δ, associated with ∞ and the tangent vectors of $T_{1}(\mathscr{H} / G)$ lying on initial segments in Δ^{\prime}, associated with C are in one-to-one correspondence. Hence for the present function $f_{\left(C, \Delta^{\prime}\right)}$ the following computation is also true [1, p. 82]:

$$
\begin{aligned}
\frac{1}{2} \int_{T_{1}(\mathscr{H} / G)} f_{\left(C, \Delta^{\prime}\right)} d \mu & =\int_{1}^{\infty} d \beta \int_{-1}^{0} \frac{2 d \alpha}{(\alpha-\beta)^{2}} \int_{\gamma(\alpha, \beta)} \frac{1}{\sigma} d s \\
& =2 \ln 2 .
\end{aligned}
$$

The function $f_{\left(C, s^{\prime}\right)}$ is defined so that its integral over a geodesic counts the number of initial segments along the geodesic which lie in Δ^{\prime}, are associated with C, like

Figure 1
$\Omega_{1}=\{(\alpha, \beta) ; \beta \geq \max (-1 / \alpha,(2-\alpha) /(1-\alpha)\}$,
$\Omega_{2}=\{(\alpha, \beta) ; \beta \geq-1 / \alpha, \beta<(2-\alpha) /(1-\alpha)\}$,
$\Omega_{3}=\{(\alpha, \beta) ; \beta<-1 / \alpha, \beta \geq(2-\alpha) /(1-\alpha)\}$,
$\Omega_{4}=\{(\alpha, \beta) ; \beta<\min (-1 / \alpha,(2-\alpha) /(1-\alpha)), \beta>(2-\alpha) /(1-2 \alpha)\}$,
$\Omega_{5}=\{(\alpha, \beta) ; \beta \leq(2-\alpha) /(1-2 \alpha)\}$.
the function in Proposition 3.2 of [1]. Hence, by proceeding with this function, we can prove Proposition 3.2 for G which may not be admissible. Then Moeckel's Proposition 2.1 follows, because Proposition 3.2 is a rephrasing of Proposition 2.1 in terms of the symbolic description of geodesics on \mathscr{H} / G.

We conclude this note by offering some examples. Let

$$
\begin{aligned}
& \Gamma_{0}(p)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma ; c \equiv 0 \bmod p\right\}, \quad \text { and } \\
& \Gamma^{0}(p)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma ; b \equiv 0 \bmod p\right\},
\end{aligned}
$$

where p is a prime [2, Chap. IV, 3]. These groups are not admissible if, for example, $p=7$ and 13. But now we can apply Moeckel's Proposition to them and obtain for almost every irrational number β,

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{n \leq N ; p \mid P_{n}\right\}\right| & =\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{n \leq N ; p \mid Q_{n}\right\}\right| \\
& =(1+p)^{-1},
\end{aligned}
$$

where the nth approximant of the continued fraction expansion of β is presented by a reduced ratio P_{n} / Q_{n} of integers.

REFERENCES

[1] R. Moeckel. Geodesics on modular surfaces and continued fractions. Ergod. Th. \& Dynam. Sys. 2 (1982), 69-83.
[2] B. Schoeneberg. Elliptic Modular Functions. Springer: Berlin-Heidelberg-New York, 1974.

