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Abstract. It is shown that a result by Moeckel holds not only for admissible subgroups
of SL (2,Z), but also for arbitrary subgroups of finite index.

The modular group F = SL (2, Z) acts discontinuously on a hyperbolic plane
9P={z = x + iy; y>0}. Let G be a subgroup of finite index in F. In his paper [1]
Moeckel obtained the following result [1, Proposition 2.1]:

Let C be a G-cusp. If G is admissible, then for almost every irrational number fi,

J | | G], (1)

where fin is the nth approximant [bo,bi,...,bn'\ of the continued fraction espansion
°fP =[bo,bi,...,], and w(C) denotes the width of C.

The objective of the present note is to show that Moeckel's proposition holds without
the assumption that G is admissible.

It is necessary to say a few words about the correct statement of our generalization
of Moeckel's proposition. Let G be the inhomogenized group of G in F = PSL (2, Z)
([2, p. 71]). As F is actually viewed as a group of linear fractional transformations,
the statement of the generalized proposition is the same as Moeckel's, but (1) is
replaced by

lim -J- |{R =s N; fln e C}\ = w(C)/[T:G].

Here 2[F: G] = [T: G] if - I £ G and [T: G] = |T: G] if - I e G, where I is the unit
matrix.

Let SL be the fundamental quadrilateral denned by

Let S(z) = l / ( -z +1). An elementary triangle is the image of Si u S3. u S23. under
an element of F. The group G partitions the rational numbers into equivalence
classes called G-cusps.
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Let C be a G-cusp and A be an elementary triangle with a vertex in C. The triangle ]
A may be left invariant by a cyclic subgroup of order 3 in G, which does not occur
for admissible groups. Hence the restriction of the canonical projection IT : 3£-> ffl/
to A may fail to be injective. To establish Moeckel's proposition we need a function
on T,($f/G), the unit tangent bundle to SK/G, of the same character as the function
/(C,A) in the proof of Proposition 3.2 of [1]. So we define for A' = TTA:

{l/o- if (x, y, d) lies on an initial
segment of arclength cr in A',
associated with C,

0 otherwise.

Here we view the coordinates (x, y, 0) of T,$f, the unit tangent bundle to "X [1,
p. 70] as local coordinates of 7\($f/G) except possibly for the fixed point of the
cyclic group or order 3. We can neglect this point for our purpose. By replacing G
by a conjugation of G in Y, if necessary, we can assume that A = 2 u S 3 u S22. and
00 belongs to C. In this case the width w(C) of C is the smallest positive integer k
such that the translation z -» z + k, is an element of G, and A is left invariant by the
cyclic group {I, S, S2}. Let (x, y, 0) be a point of T,5if lying on an initial segment in
A, associated with oo. If we express this point by the coordinates (a, /3, s) introduced
at p. 70 of [1], then - l < a < 0 a n d K / 3 < ° o . If (x,y)eSt, then (a,/3) is in the set
L_Jf=i ft; depicted in figure 1. If (x, y)eS3., then (a, fi) is in Q 3 u n 4 u f l 5 and if
(x,y)e S22., then (a, )3) is in fl2ufl4ufl5. For the case where S is an element of
G, we need the following lemma.

LEMMA. Let (*,,>>,,#,) and (x2,y2, O2) be points each of which lies on an initial
segment in A associated with 00. If they are equivalent under the action of {I, S, S2},
then (x1,y1,ei) = (x2,y2,e2).

Proof. Assume that the two points (*i,}>i,0i) and {x2,y2,02) are distinct. It
suffices to consider the cases (1) (xx,yx)&9. and (x2,y2)eS°i, (2) ( x , j , ) e 2 and
(x2,y2) e S22., and (3) (x,, >>,) e S2, and (x2,y2) e S22.. Express the points (xt, y,, 0,),
1 = l,2, as (a,, Pi, st) with - l < a , < 0 , Kj8,<oo. For the case (1), if the two points
are equivalent under the action of {I, S, S2}, then (a,, /?]) = (S2a2, S2/32). However,
as figure 1 shows, this is impossible. The figure also shows that other cases are
impossible. •

It follows from the lemma that, even though TT|A is not injective, the tangent
vectors of T,$f lying on initial segments in A, associated with 00 and the tangent
vectors of Tt(^/G) lying on initial segments in A', associated with C are in
one-to-one correspondence. Hence for the present function /<C,A) the following
computation is also true [1, p. 82]:

T,(*/G) Jl

= 2 In 2.

The function/( C A') is defined so that its integral over a geodesic counts the number
of initial segments along the geodesic which lie in A', are associated with C, like
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FIGURE 1

the function in Proposition 3.2 of [1]. Hence, by proceeding with this function, we
can prove Proposition 3.2 for G which may not be admissible. Then Moeckel's
Proposition 2.1 follows, because Proposition 3.2 is a rephrasing of Proposition 2.1
in terms of the symbolic description of geodesies on 96/ G.

We conclude this note by offering some examples. Let

and

= 0mod/>

where p is a prime [2, Chap. IV, 3]. These groups are not admissible if, for example,
p = 1 and 13. But now we can apply Moeckel's Proposition to them and obtain for
almost every irrational number fl,

lim ±:\{n<
N-.cc J>

\= lim ^-|{«< N;p\Qn}\
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where the nth approximant of the continued fraction expansion of /3 is presented
by a reduced ratio Pn/Qn of integers.
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